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Abstract
Background: Breast cancer (BC) is the most common malignant tumor world-
wide. Apoptosis and hypoxia are involved in the progression of BC, but reliable 
biomarkers for these have not been developed. We hope to explore a gene signa-
ture that combined apoptosis and hypoxia- related genes (AHGs) to predict BC 
prognosis and immune infiltration.
Methods: We collected the mRNA expression profiles and clinical data infor-
mation of BC patients from The Cancer Genome Atlas database. The gene sig-
nature based on AHGs was constructed using the univariate Cox regression, 
least absolute shrinkage and selection operator, and multivariate Cox regression 
analysis. The associations between risk scores, immune infiltration, and immune 
checkpoint gene expression were studied using single- sample gene set enrich-
ment analysis. Besides, gene signature and independent clinicopathological char-
acteristics were combined to establish a nomogram. Finally, Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed on the 
potential functions of AHGs.
Results: We identified a 16- AHG signature (AGPAT1, BTBD6, EIF4EBP1, 
ERRFI1, FAM114A1, GRIP1, IRF2, JAK1, MAP2K6, MCTS1, NFKBIA, NFKBIZ, 
NUP43, PGK1, RCL1, and SGCE) that could independently predict BC prognosis. 
The median score of the risk model divided the patients into two subgroups. By 
contrast, patients in the high- risk group had poorer prognosis, less abundance of 
immune cell infiltration, and expression of immune checkpoint genes. The gene 
signature and nomogram had good predictive effects on the overall survival of 
BC patients. GO and KEGG analyses revealed that the differential expression of 
AHGs may be closely related to tumor immunity.
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1  |  INTRODUCTION

The incidence of breast cancer (BC) ranks first in the 
world, and its global burden is still increasing.1,2 It is 
estimated that by 2022, there will be 287,850 new cases 
of female breast cancer and 43,250 deaths in the United 
States alone.3 Existing therapeutic modalities such as che-
motherapy, surgery, radiotherapy, endocrine therapy, tar-
geted therapy, and immunotherapy have been widely used 
in clinical practice and have made significant progress in 
recent years. However, BC still has a high recurrence and 
mortality rate.4 Identification of high- risk patients to im-
prove treatment accuracy is indispensable for improving 
prognosis. Therefore, developing valuable BC biomarkers 
is paramount for patient selection and therapy response 
prediction.

Cell death has various forms such as apoptosis, necro-
sis, pyrosis, oncosis, and autophagy, which have their own 
characteristics.5 In recent years, the understanding of the 
various forms of cell death has deepened. Interrupting cell 
death for cancer treatment has been widely investigated. 
Apoptosis is a type of programmed cell death that con-
tributes to the control of cell proliferation, elimination of 
harmful and unessential cells in vivo, and maintenance of 
tissue homeostasis in multicellular organisms.6 Therefore, 
apoptotic signals help protect genome integrity and main-
tain organism integrity.7 Evasion of apoptosis is considered 
a hallmark of cancer. Inhibition of apoptotic pathways 
can enhance the viability of cancer cells, thereby promot-
ing their uncontrolled proliferation.8 Hypoxia is a typical 
factor of almost all solid tumor microenvironments and 
induces apoptosis.9 Hypoxia inducible factor- 1 (HIF- 1) is 
indispensable in regulating this process.10 It can increase 
the expression of pro- apoptotic proteins (such as BNIP3) 
and initiate hypoxia- induced apoptosis, or regulate BAX, 
BAK, and other proteins to induce apoptosis by stabiliz-
ing protein products of tumor suppressor gene p53.11,12 
Hence, apoptosis and hypoxia are closely related and in-
teract with each other in the process of tumorigenesis and 
development.

Increasing studies have shown that the immune sys-
tem is integral to the occurrence and development of BC, 
and immunotherapy may ameliorate the clinical results of 
BC.13,14 The clinical activity and safety of immunotherapy 
have been preliminarily confirmed in early BC vaccine 

trials.15,16 New immune regulation strategies, such as 
those targeting myeloid suppressor cells and regulatory T 
cells, have also received widespread attention.17,18 Notably, 
blocking immune checkpoints has shown potential in the 
treatment of BC. Immunotherapy targeting programmed 
cell death- 1/programmed death ligand- 1 (PD- 1/PD- L1) 
has a survival benefit in some patients with metastatic 
triple- negative BC (TNBC).13 At present, the main chal-
lenges of immunotherapy are still identifying biomarkers 
that can predict the potential response to immunother-
apy, as well as selecting appropriate target populations. 
Some studies have confirmed that tumor cells directly 
participate in immune escape by acquiring apoptosis re-
sistance.19 Apoptosis resistance may not only be related 
to tumorigenesis and chemotherapy resistance, but also 
affect immune monitoring and immunotherapy. Besides 
hypoxia, stress causes immunosuppression by controlling 
angiogenesis, as well as by promoting immunosuppres-
sion and tumor resistance.20

In evaluating the relationships between apoptosis, 
hypoxia, and the immune system in the tumor micro-
environment (TME), we identified a gene signature that 
combined apoptosis and hypoxia- related genes (AHGs) 
to evaluate the prognosis of BC, supported by The Cancer 
Genome Atlas (TCGA) database. Moreover, assessing im-
mune infiltration by risk score was helpful to select the 
appropriate population for immunotherapy. In addition, 
we constructed a nomogram by integrating the risk model 
with several clinicopathological features to quantitatively 
predict the survival of BC patients.

2  |  MATERIALS AND METHODS

2.1 | Collection and preparation of data

We collected RNA sequencing profiles of 1109 BC sam-
ples and 113 healthy controls from the TCGA database 
(https://portal.gdc.cancer.gov/). These gene expression 
data were then formatted into fragments per kilobase of 
transcript per million mapped reads (FPKM) and normal-
ized by log2(FPKM+1) in the gene expression comparative 
analysis. In addition, we collected detailed clinical data of 
these BC cases, including age, survival time and status, 
TNM stage, pathological stage, and expression status of 

Conclusion: We established and verified a 16- AHG BC signature which may 
help predict prognosis, assess potential immunotherapy benefits, and provide in-
spiration for future research on the functions and mechanisms of AHGs in BC.
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the estrogen receptor (ER), progesterone receptor (PR), 
and human epidermal growth factor receptor 2 (HER2). 
Moreover, another external verification cohort of 1052 BC 
cases from the International Cancer Genome Consortium 
(ICGC) database (https://dcc.icgc.org/proje cts/BRCA- US) 
was obtained to verify our findings. Figure S1 displays the 
analysis procedures of this study.

2.2 | Identification of differentially 
expressed apoptosis and hypoxia- 
related genes

Gene set enrichment analysis (GSEA) is a tool for ana-
lyzing the differential expression of annotated genes or 
gene sets and interpreting the results in the biological 
processes involved.21 The molecular signatures database 
(MSigDB, https://www.gsea- msigdb.org/gsea/msigd b/
index.jsp) was originally developed for GSEA and other 
similar approaches and has been one of the biggest and 
most influential libraries of gene sets. The most recent 
version of MSigDB has nine collections (H and C1- C8), 
including hallmark gene sets (H), positional gene sets 
(C1), curated gene sets (C2), regulatory target gene sets 
(C3), computational gene sets (C4), ontology gene sets 
(C5), oncogenic signature gene sets (C6), immunologic 
signature gene sets (C7), and cell type signature gene 
sets (C8).22,23 Based on the MSigDB, we screened ap-
optosis-  and hypoxia- related gene sets for subsequent 
analyses.

The list of 29 apoptosis-  and 49 hypoxia- related gene 
sets selected from the MSigDB for GSEA included 2556 
and 4610 genes, respectively. The “limma” R package was 
used to identify differentially expressed genes in these sets 
after normalization.

2.3 | Construction and verification of the 
gene signature

To begin, we conducted univariate Cox regression analy-
sis on differentially expressed genes (DEGs) and screened 
for genes that were meaningfully linked to overall sur-
vival (OS) in BC. Then, to reduce the risk of overfitting, 
we constructed a penalty function and used the least abso-
lute shrinkage and selection operator (LASSO) regression 
to obtain a more accurate signature. Lastly, multivariate 
Cox regression analysis was performed to examine the 
genes acquired in the previous stage, and the final genes 
were utilized to create an independent gene prediction 
signature. The following equation was used to deter-
mine the gene signature's risk score: Risk score  =  h (t, 
X) = h0(t) × eƩ (coefi * Expri). In this formula, Expri represents 

gene expression, while h0(t) and coefi represent constant 
and coefficient obtained in multivariate Cox regression 
analysis, respectively. Each patient's risk score was de-
termined in both the TCGC and ICGC cohorts, and the 
high-  and low- risk groups were separated based on the 
median risk score. The survival difference between these 
two subgroups was assessed using the Kaplan– Meier 
(KM) survival analysis and the log- rank test. Likewise, 
receiver operating characteristic (ROC) analysis was con-
ducted to further evaluate the prognostic signature's ac-
curacy. These studies used the R packages “Survminer” 
and “survivalROC”.

2.4 | Associations between risk score and 
immune infiltration profiles and immune 
checkpoint gene expression in BC

We assessed the tumor purity and immune, stromal, and 
estimate scores of high-  and low- risk groups using the R 
package “estimate” and unsupervised consensus cluster 
analysis, and then estimated the distribution of stromal 
and immune cells in tumor tissues using the “estimate” 
R package.24,25 The CIBERSORT technique was used in 
our work to determine the relative percentage of 22 im-
mune cells in each tumor tissue sample, using the LM22 
signature matrix to run the algorithm under 1000 permu-
tations.26,27 Next, we explored the relationship between 
gene signature's risk scores and immune scores, infiltra-
tion of immune cells and immune- related pathways, and 
expression of immune checkpoints based on the single- 
sample GSEA (ssGSEA) of the “GSVA” R package.28

2.5 | Establishment and assessment of 
a nomogram based on the combined 
apoptosis and hypoxia gene signature

A nomogram was created to quantitatively estimate the 
OS in BC patients by incorporating the combined apop-
tosis and hypoxia gene signature with clinicopathological 
features that can independently predict prognosis. Cox 
regression analysis assigned a certain score to each vari-
able in the nomogram to predict the 3- , and 5- year survival 
rates. Scores were negatively correlated with prognosis. 
Moreover, Harrell's concordance index (C- index), KM 
survival analysis, the area under the ROC curve (AUC), 
and calibration curves were employed to assess the nomo-
gram's prediction performance. The higher the C- index, 
the stronger the prediction power of the nomogram. The 
nomogram- predicted survival rates and observed survival 
rates were plotted on the x-  and y- axes of the calibra-
tion curves, with the 45- degree line representing the best 

https://dcc.icgc.org/projects/BRCA-US
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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prediction. The nomogram was evaluated by bootstrap 
method with 1000 heavy samples.

2.6 | Functional enrichment analysis

The DEGs between high-  and low- risk groups were iden-
tified by the cutoff values of |log2 fold change (FC)| > 1 
and false discovery rate (FDR) < 0.05. The “limma” and 
“clusterProfiler” R package was used to conduct Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis to ex-
plore the underlying effect of the AHGs on the develop-
ment of BC.29 Biological process (BP), cellular component 
(CC), and molecular function (MF) were the three catego-
ries examined in the GO analysis.30 A relevant threshold 
for evaluating functional pathways was set at p < 0.05.

2.7 | Statistical analysis

All statistical analysis and charts were obtained using 
R (version 4.0.2) and Excel (Microsoft Corporation, 
California). To evaluate OS differences comparing high-  
and low- risk groups, KM curves, and log- rank tests were 
utilized. The hazard ratio (HR) and 95 percent confidence 
interval (CI) of prognostic variables were calculated in 
both univariate and multivariate Cox regression models 
to select independent prognostic factors. The chi- square 
test and Mann– Whitney U test were applied to assess the 
correlations between risk scores and clinicopathological 
variables as well as immune cells or pathways. The two- 
tailed tests were given a statistical significance of p < 0.05.

3  |  RESULTS

3.1 | Characteristics of BCpatients 
included in the study

Due to the missing values of OS and survival status, and the 
situation that one patient may has multiple samples, only 
1090 BC patients with transcriptome profiles and detailed 
clinicopathological parameters were selected for subse-
quent analysis from the TCGA database (Table  1). The 
average age of patients in the TCGA cohort was 58.6 years 
old, with an average follow- up of 3.4 years. Among them, 
800 patients were at AJCC stage I– II (74.98%), and 267 
patients were at stage III– IV (25.02%). We also included 
989 BC patients from the ICGC (BRCA- US) cohort to vali-
date our risk prognostic model. The average age of the pa-
tients in the validation group was 58.4 years, with a mean 
follow- up of 2.4 years, according to their survival data.

3.2 | Determination of differentially 
expressed AHGsin BCand normal samples

The expression of genes from 29 apoptosis-  and 49 hypoxia- 
related gene sets was estimated. The results showed that 
compared with the healthy control samples derived from 
TCGA database, there were 1805 downregulated and 1932 
upregulated AHGs in BC tissues (Table S1).

3.3 | Construction of the combined gene 
signature for prognosis prediction in BC

First, we obtained 113 prognostic genes (59 upregulated 
and 54 downregulated) in BC patients by univariate Cox 
regression analysis (Table  S2). Next, LASSO regression 
showed that the cross- validation error was the smallest 
when λ = −4.2, and the corresponding 31 genes entered 

T A B L E  1  Clinical pathological parameters of patients with BC

Clinical pathological 
parameters N %

Age(years)

<=65 771 70.73

>65 319 29.27

Gender

Female 1078 98.90

Male 12 1.10

T classification

T1- T2 910 83.72

T3- T4 177 16.28

N classification

N0 514 48.04

N1- N3 556 51.96

M classification

M0 907 97.63

M1 22 2.37

Pathological stage

Stage I- II 800 74.98

Stage III- IV 267 25.02

ER status

Negative 238 22.91

Positive 801 77.09

PR status

Negative 343 33.08

Positive 694 66.92

HER2 status

Negative 561 77.49

Positive 163 22.51
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the multivariate Cox regression analysis (Figure  1A,B). 
Finally, a 16- AHG signature was obtained to indepen-
dently estimate BC patients' prognosis.

Among them, BTBD6, ERRFI1, IRF2, JAK1, MAP2K6, 
NFKBIA, NFKBIZ, RCL1, and SGCE were protective genes, 
which were underexpressed in tumor tissues (Figure S2A– 
I). However, AGPAT1, EIF4EBP1, FAM114A1, GRIP1, 
MCTS1, NUP43, and PGK1 were risk genes that were 
highly expressed in tumor tissues (Figure S2J- P). On the 
basis of the median risk score, all patients were split into 
high-  and low- risk groups (Figure 2A). Heatmap revealed 
the expression patterns of 16 AHGs between two different 
risk groups. (Figure 2B). According to the scatter plot, the 
death proportion in the high- risk group was higher than 
in the low- risk group (Figure 2C). The KM survival curve 
data revealed that the OS of the high- risk group was sig-
nificantly poorer (p < 0.001, Figure 2D). In the TCGA co-
hort, the AUCs for 1- , 3- , and 5- year OS were 0.798, 0.792, 
and 0.780, respectively. This suggests that this 16- AHG 
signature may robustly assesss the BC patients' prognosis 
(Figure 2E).

3.4 | Validation of the 16- AHGin 
an ICGCcohort

To verify the ability of the 16- AHG signature to predict 
BC prognosis, we selected an external cohort from ICGC. 
The risk model estimated the risk scores of all selected pa-
tients and classified them as high- risk (n = 495) or low- 
risk (n  =  494) patients, respectively. Survival analysis 

showed that the survival rates of the two risk groups were 
markedly different (Figure S3A). The AUCs of the 1- , 3- , 
and 5- year OS of the gene signature in the ICGC valida-
tion cohort respectively were 0.841, 0.814, and 0.811 
(Figure S3B).

3.5 | Relationship between risk 
score and clinicopathological parameters

A higher risk score was notably connected to an 
age > 65 years old, AJCC stage III– IV, distant metastasis, 
and positive HER2 status (Figure 3A,B,E,H). There was, 
however, no link between risk score and T and N stage, as 
well as with ER and PR receptor status (Figure 3C,D,F,G).

3.6 | The predictive reliability of the 
16- AHGsignature

To determine whether the 16- AHG signature could predict 
the outcome of BC patients independent of clinicopatho-
logical features, we performed univariate and multivariate 
regression analyses with gene signature, age, stage, and 
the status of the ER, PR, and HER2 receptors as covariates. 
Age (HR = 1.036, 95% CI: 1.004– 1.068, p = 0.025), stage 
(HR  =  4.386, 95% CI: 2.431– 7.912, p < 0.001), and risk 
score (HR  =  1.334, 95% CI: 1.197– 1.487, p < 0.001) were 
all found to be associated to BC OS in univariate regres-
sion analysis (Figure  4A). Multivariate analysis showed 
that age (HR  =  1.042, 95% CI: 1.007– 1.079, p  =  0.018), 

F I G U R E  1  LASSO regression analysis based on differentially expressed genes. (A) Ten- fold cross- validation for the coefficients. (B) 
Parameter selection of the 31 selected AHGs in LASSO regression (λ = −4.2)
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stage (HR  =  3.837, 95% CI: 2.037– 7.229, p < 0.001), and 
risk score (HR  =  1.171, 95% CI: 1.034– 1.327, p < 0.001) 
were independent prognostic variables for BC patients 
(Figure 4B). Patients over 65 years old, AJCC stage III– IV, 
T3– 4, lymph node metastasis, and distant metastases had 
a worse outcome, according to the KM survival curves 
(Figure 5A– E). Meanwhile, there were no significant cor-
relations between the ER, PR, and HER2 receptor status 
and the prognosis of BC patients (Figure 5F– H). We then 
conducted separate analyses to test the predictive ability 
of the gene signature in subgroups with different clinical 
characteristics. In age, T stage, N stage, ER status, and PR 
status stratification, lower risk scores were associated with 
improved survival rates (Figure  6A– H, K– N). However, 
the gene signature played different roles in distant metas-
tasis and HER2 status. In patients without distant metas-
tasis, the low- risk group had better OS (Figure 6I), while 
in patients with distant metastasis, there was no difference 

in the OS between the two risk groups (Figure  6J). In 
HER2- negative patients, the higher risk was significantly 
associated with worse OS (Figure 6O), while there was no 
substantial variation in the OS between the different risk 
categories in the HER2- positive subgroup (Figure 6P).

3.7 | Immune infiltration differences 
between high-  and low- risk groups based 
on the 16- AHGsignature

The infiltration of 22 immune cell categories and seven 
immune- related pathways in all BC patients was inves-
tigated using the ssGSEA technique. In low- risk indi-
viduals, the heatmap revealed high levels of immune 
infiltration (Figure  7A). Risk score was shown to be 
inversely connected with stromal, immune, and corre-
sponding estimate scores, but favorably correlated with 

F I G U R E  2  Prognostic analysis of the 16- AHG risk model in TCGA cohort. (A) Distribution and median of the risk scores. (B) 
Expression heatmap of 16 AHGs in high-  and low- risk groups. (C) Survival status. (D) Kaplan– Meier curves of OS in high-  and low- risk 
patients. (E) Time- dependent ROC curves of prognostic prediction performance of gene signature
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tumor purity using the “estimate” algorithm and un-
supervised consensus cluster analysis (Figure 7B). The 
“CIBERSORT” algorithm was applied to estimate the 
infiltration difference among the 22 immune cell sub-
sets in these two risk groups. The high- risk group had 
a larger proportion of M0 (non- polarized) and M2 mac-
rophage infiltration and a lower fraction of monocytes, 
naïve B, plasma, resting CD4 memory T, CD8 T, resting 
NK, and resting dendritic cells (Figure  7C). Moreover, 
we found that the immune checkpoints expression 
differed significantly between the two risk groups 
(Figure 7D). The expression of 14 immune checkpoints 
(BTLA, CD27, CD28, CTLA4, IDO1, KIR3DL1, LAG3, 
PDCD1, PDCD1LG2, PD- L1, TNFRSF4, TNFRSF18, 
TNFSF14, and VSIR) was notably higher in the low- risk 
group, suggesting that they had a stronger immune phe-
notype (Figure 8). The 16- AHG signature was shown to 

identify low- risk patients who might be candidates for 
immune checkpoint inhibitors (ICIs).

3.8 | Establishment of a 
predictive nomogram model based 
on the combined apoptosis and hypoxia 
gene signature

The nomogram model was developed using independ-
ent prognostic markers (gene signature, age, and stage) 
resulting from univariate and multivariate regression 
studies for quantitative prediction of the 1- , 3- , and 5- year 
survival rates of BC patients (Figure  9A). Patients were 
separated into high-  and low- risk categories depending on 
the nomogram's median score. Patients in the high- risk 
group had a worse OS than those from the low- risk group 

F I G U R E  3  Correlation between risk score and clinicopathological factors. (A) Age. (B) Pathological stage. (C) T stage. (D) N stage. (E) 
M stage. (F) ER status. (G) PR status. (H) HER2 status

F I G U R E  4  The 16- AHG signature is an independent prognostic factor for BC patients. (A) Univariate Cox regression analysis. (B) 
Multivariate Cox regression analysis
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(Figure 9Bp < 0.001). The AUC of the nomogram's predic-
tion accuracy was 0.879, 0.831, and 0.796 for 1- , 3- , and 
5- year OS, correspondingly (Figure 9C). The value of the 
C- index was 0.790. The nomogram performed similarly 
to the ideal model in 3-  and 5- year calibration diagrams 
(Figure 9D,E).

3.9 | Functional enrichment analysis of 
DEGsbetween high-  and low- risk groups

To explore the relevant biological functions and path-
ways of different risk groups based on the gene model, 
GO and KEGG pathway enrichment analyses of DEGs 
in high-  and low- risk groups were performed. The re-
sults showed that 217 DEGs were identified between 
the high-  group and low- risk groups, of which 193 genes 
were upregulated in the low- risk group and 24 genes 
were upregulated in the high- risk group (Table  S3). 
GO enrichment analysis showed that DEGs were sig-
nificantly enriched in immune- related molecular func-
tions and pathways, such as humoral immune response, 
adaptive immune response based on somatic recombi-
nation of immune receptors built from immunoglobulin 
superfamily domains, immune response activating cell 
surface receptor signaling pathway, lymphocyte-  me-
diated immunity, production of molecular mediator of 
immune response, etc. (Figure 10A). Besides, KEGG en-
richment analysis showed that DEGs were also closely 
related to some immune- related signaling pathways, 
such as cytokine−cytokine receptor interaction, IL − 17 
signaling pathway, etc. (Figure 10B).

4  |  DISCUSSION

As a complex heterogeneous tumor, BC is underpinned 
by several molecular mechanisms which have not been 
clarified. Thus, there are limitations to its early diagno-
sis and treatment. Clinicopathological features including 
pathological stage and ER, PR, and HER2 receptor status 
are now crucial in the diagnosis and prognostication of 
BC but are insufficient for effective clinical management. 
Nowadays, with the support of high- throughput sequenc-
ing technology and bioinformatics, several molecular 
markers have been developed. These have been applied 
in clinical trials and practices of molecular diagnosis to 
individualize treatment and predict BC survival.31– 34 
For example, the 21- gene recurrence scoring method 
(Oncotype DX, Genomic Health) is used to develop per-
sonalized treatment plans for BC patients who are ER or 
PR- positive, HER2- negative, and lymph node negative 
by assessing the possibility of recurrence, the potential 
benefits of chemotherapy, and whether hormone therapy 
alone can be effective.35,36 However, previous studies did 
not identify apoptosis- related gene markers. They often 
analyzed a single gene set, ignoring the important role 
of hypoxia and the immunologic microenvironment in 
tumor gene expression. Under severe or prolonged hy-
poxia, some cancer cells may adapt to escape apoptosis 
and necrosis, thereby promoting their uncontrolled prolif-
eration.37 These anti- hypoxia- induced apoptosis cells may 
have stronger invasive phenotypes and poorer responses 
to anticancer treatments.38 At present, most anticancer 
therapies, including chemotherapy, radiotherapy, and 
immunotherapy, work primarily through stimulating cell 

F I G U R E  5  Kaplan– Meier survival analysis for predicting survival in BC patients with different clinical features. (A) Age. (B) 
Pathological stage. (C) T stage. (D) N stage. (E) M stage. (F) ER status. (G) PR status. (H) HER2 status
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death pathways.39 Recent studies have shown that new 
anticancer drugs targeting apoptosis pathways have roles 
in treating cancers of the breast, lung, pancreas, colon 
and rectum, prostate, head and neck, and blood.40– 47 
Nowadays, the influence of apoptosis and hypoxia on the 
prognosis of BC is still unclear. Combined analysis of the 
relationship between AHGs and BC prognosis can better 
illustrate the effect of regulating hypoxia on cell apopto-
sis in solid tumors and provide more specific methods for 
treating solid tumors.

This research examined the predictive power of 
AHGs for OS in BC patients. We applied univariate Cox 
regression, LASSO, and multivariate Cox regression 

analyses to obtain a 16- gene risk model significantly 
linked to prognosis (AGPAT1, BTBD6, EIF4EBP1, 
ERRFI1, FAM114A1, GRIP1, IRF2, JAK1, MAP2K6, 
MCTS1, NFKBIA, NFKBIZ, NUP43, PGK1, RCL1, and 
SGCE). According to the survival study, the high- risk 
group's OS was considerably shorter. The validation of 
the ROC curves and ICGC cohort confirmed that the risk 
model had an excellent forecasting effect on BC prog-
nosis. Clinically, BC is often divided into different sub-
types depending on the expression of ER, PR, and HER2 
receptors; they are important indicators for the selec-
tion of treatment methods, evaluation of malignancy, 
and prediction of prognosis.48 In our study, the 16- AHG 

F I G U R E  6  Kaplan– Meier subgroup analysis based on the 16- AHG signature in BC patients stratified by clinical characteristics. (A) 
Age < =65y. (B) Age > 65y. (C) Early stage (Stage I- II). (D) Advanced stage (Stage III- IV). (E) T1- 2. (F) T3- 4. (G) N0. (H) N1- 3. (I) Patients 
without distant metastasis. (J) patients with distant metastasis metastasis. (K) ER- Negative. (L) ER- Positive. (M) PR- Negative. (N) PR- 
Positive. (O) HER2- Negative. (P) HER2- Positive
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signature, age, and pathological stage can independently 
predict the prognosis. In addition, through subgroup 
survival analysis of clinical factors, the risk model was 
found to be effective in assessing the survival of all other 
clinical subgroups (age, pathological stage, stage of T, N, 
status of ER, and PR), except for the HER2- positive and 
distant metastatic subgroup. This conclusion still needs 
to be verified by larger queries, and the possible mech-
anisms behind it need to be explored. Moreover, the 
validation of the C- index, ROC curves, and calibration 
curves revealed that the nomogram constructed with 
independent prognostic factors may more accurately 
and quantitatively predict the future of BC. The AUC of 
the nomogram in estimating OS in 1, 3, and 5 years was 
greater than that of the gene signature, indicating that 
the combination of clinical features was more effective 
in predicting OS than the gene signature alone. These 
findings suggested that the 16- gene risk model is useful 
not just for prognosis but also for developing personal-
ized therapy approaches for BC patients.

As for the impact of the risk gene model on immune 
infiltration, the results showed high tumor purity and low 
immune scores in the high- risk group. This was opposite 
to that of the low- risk group, demonstrating that the im-
munological state of the two risk groups varies markedly. 
Fractions of M0 and M2 macrophages in the high- risk 
group were significantly upregulated, a finding related 
to poor prognosis. Macrophages stimulate tumor growth 
by promoting angiogenesis and chemotherapy resistance 
in tumor cells, as well as by inducing immune dysfunc-
tion through interacting with other immune cells in the 
TME, resulting in tumor cell immune escape.49,50 Given 
the key functions of macrophages in supporting tumor 
development in TME, they have become promising tar-
gets for immunotherapy.51 In contrast, the infiltration of 
B naive cells, plasma cells, CD4 memory resting T cells, 
CD8 T cells, resting NK cells, resting dendritic cells, and 
monocytes in the high- risk group was considerably lower 
than that in the low- risk group, implying that the high- 
risk group had immune deficiency. It is reported that in 

F I G U R E  7  The difference in immune infiltration at high-  and low- risk groups based on the 16- AHG signature. (A) The infiltration of 
22 immune cell subtypes and seven immune- related pathways in high-  and low- risk groups was analyzed by ssGSEA. (B) The relationship 
between risk score and tumor purity, immune score, stromal score, and corresponding estimated score. (C) Difference in infiltration 
fractions of 22 immune cell subsets in high-  and low- risk groups. (D) The expression levels of 14 immune checkpoint genes in different risk 
subgroups. (*p < 0.05, **p < 0.01, and ***p < 0.001)
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many different types of tumors, strong lymphocyte in-
filtration indicates good clinical outcomes; this is seen 
in melanomas, as well as cancers of the head and neck, 
breast, bladder, urothelium, and ovary.52– 57 Therefore, we 
infer that insufficient immune infiltration can lead to a 
poor prognosis. Considering the difference in the fractions 
of immune cell infiltration compared high-  and low- risk 
populations, these findings are expected to improve the 
accuracy of immunotherapy with immune cells as the 
target.

The immune checkpoint pathway has immunosup-
pressive functions and is involved in immune evasion 
and progression of tumor cells.58 ICIs can relieve this 
inhibitory effect, activate the antitumor immune re-
sponse, and eliminate tumor cells. As such, these have 
gradually become the first- line treatment for a variety 
of cancers.59 However, certain tumors often respond 
poorly to ICIs due to factors such as insufficient lym-
phocyte infiltration in the TME, tumor heterogeneity, 
and hypoxia- induced T cell apoptosis; therefore, only 
some patients can benefit from this therapy.60– 62 Our 
study found that 14 immune checkpoints were strongly 
expressed in low- risk patients, revealing that low- risk 
patients will be more responsive to ICIs than high- risk 
patients. Previous studies suggested that tumors with 

abundant immune infiltration had better response to 
ICIs and better prognosis.63 In addition, evidence sug-
gested that high levels of infiltrating lymphocytes in 
BC patients were associated with PD- L1 expression and 
better prognosis.64,65 Some clinical trials have shown 
that the higher the positive rate of PD- L1, the better 
the clinical benefit and OS of patients with metastatic 
TNBC treated with ICI alone or combined chemother-
apy.66,67 Consistently, GO pathway enrichment analysis 
reveled that DEGs between different risk groups were 
obviously enriched in a series of immune- related bio-
logical processes and pathways, indicating that our risk 
model was closely related to tumor immunity. Some 
studies suggested that tumor cells may participate in 
immune escape by resisting apoptosis.19 Apoptosis re-
sistance may not only be related to tumorigenesis and 
chemotherapy resistance, but also affect immune mon-
itoring and immunotherapy. Hypoxia regulates tumor 
cell metabolism and inhibits tumor cell apoptosis, 
which not only promotes angiogenesis, tumor cell inva-
sion, and metastasis, but also affects the activation and 
response of the immune system, drives tumor immune 
escape, and leads to drug resistance of patients to im-
munotherapy.9,20 KEGG pathway enrichment analysis 
showed that DEGs in high-  and low- risk groups were 

F I G U R E  8  Correlation between expression of 14 immune checkpoints and risk score based on the 16- AHG signature. (A) BTLA. (B) 
CD27. (C) CD28. (D) CTLA4. (E) IDO1. (F) KIR3DL1. (G) LAG3. (H) PDCD1. (I) PDCD1LG2. (J) PD- L1. (K) TNFRSF4. (L) TNFRSF18. (M) 
TNFSF14. (N) VSIR
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also significantly enriched in immune- related signal-
ing pathways, such as cytokine- cytokine receptor in-
teraction. Twelve DEGs were enriched in this pathway, 
including CCL17/ CCL19/ CCL21/ CXCL1/ CXCL2/ 
CXCL13/ IL6/ IL7R/ IL33/ NGFR/ LEP/ LTB. The main 
components of the set of genes contain many chemo-
kines, such as CC chemokines and CXC chemokines. 
Chemokines are small molecule secretory peptide, 
which bind to the G protein- coupled receptors ex-
pressed on the cell surface to induce the targeted ag-
gregation and movement of chemotactic immune cells, 
thus participating in the immune response, inflamma-
tory response, tumor formation and metastasis, and 

other physiological and pathological processes.68,69 The 
role of chemokines in tumor immunotherapy has re-
ceived extensive attention. Many studies have used their 
chemotaxis characteristics to improve the efficacy of 
tumor immunotherapy.70,71 For example, recent study 
has shown that anti- PD- 1 immunotherapy can enhance 
the efficacy of the adoptive cell transfer therapy by in-
creasing the expression of CXCL10 in tumors.70 Totally, 
immunotherapy guided by the 16- AHG signature in 
our study is expected to become a promising antitumor 
treatment.

The 16- AHG signature contained AGPAT1, BTBD6, 
EIF4EBP1, ERRFI1, FAM114A1, GRIP1, IRF2, JAK1, 

F I G U R E  9  Establishment and verification of a predictive nomogram model based on the 16- AHG signature. (A) The sum of the scores 
of each item on the nomogram predicted the probability of survival in 3 and 5 years. (B) Kaplan– Meier survival analysis of BC patients in 
high-  and low- risk groups based on nomogram. (C) AUC of 1- , 3- , and 5- year predictive power of nomogram. (D) The calibration curve of 
nomogram for predicting 3- year survival. (E) The calibration curve of nomogram for predicting 5- year survival

F I G U R E  1 0  Representative results of GO (A) and KEGG analysis (B)
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MAP2K6, MCTS1, NFKBIA, NFKBIZ, NUP43, PGK1, 
RCL1, and SGCE, and the relationship between some 
genes and BC has been explored in previous studies. 
Eukaryotic translation initiation factor 4E- binding 
protein 1 (EIF4EBP1), as an inhibitor of EIF4E, syner-
gistically induces the expression of c- MYC and Cyclin 
D1 with eukaryotic elongation factor- 2 kinase (eEF2K) 
inhibitor to suppress the growth of TNBC cells.72 ErbB 
receptor feedback inhibitor 1 (ERRFI1) is a negative 
regulator of cell proliferation proteins. The loss of 
ERFFI1 expression may be related to the development 
of invasive BC.73 Interferon regulatory factor 2 (IRF2) 
has been considered a potential tumor protein, which 
may alter the IFN- γ/Jak/Stat/IRF pathway through en-
dogenous IFN- γ, allowing cells to escape growth con-
trol mechanisms and promoting stronger invasiveness 
and faster tumor growth.74 Multiple copies of t- cell ma-
lignancy 1 (MCTS1) encode a ribosomal binding pro-
tein which regulates the ribosomal cycle, translation 
restart, and tissue growth.75 It was found that the over-
expression of MCTS1 in invasive TNBC cells predicted 
poor prognosis and promoted progression of tumors.76 
Nuclear factor κ- β inhibitor α (NFKBIA) regulates the 
expression of genes involved in cell multiplication, 
transdifferentiation, apoptosis, and metastasis, and 
its variation may affect the development of tumors.77 
However, few studies on this gene polymorphism and 
BC risk have not observed a significant relationship.78 
Nuclear pore 43 (NUP43) encodes the Nup107- 160 
complex, which is located at the centromere in mitosis 
and regulates mitosis and chromosome separation.79 
In luminal A and HER2- positive BC, the overexpres-
sion of NUP43 was significantly associated with poorer 
OS.80 Phosphoglycerate kinase 1 (PGK1) controls ATP 
production by limiting glycolysis.81 PGK1 is a risk gene 
for the survival of BC, and forms a positive feedforward 
loop with HIF- 1α to stimulate the progression and me-
tastasis of BC.82 A member of the ε subtype of the sar-
coglycan family, SGCE has recently been discovered 
to be overexpressed in BC stem cells (BCSC). It plays 
important roles in self- renewal, tumorigenesis and me-
tastasis, chemotherapy resistance, extracellular matrix 
deposition, and remodeling of BCSC, and was thus 
associated with poor prognosis.83 However, there are 
few studies on the mechanism of action of AGPAT1, 
BTBD6, FAM114A1, GRIP1, JAK1, MAP2K6, NFKBIZ, 
and RCL1 in BC, which is worthy of further study.

Our current research has several limitations. First, the 
16- AHG signature based on the TCGA database was only 
verified in the ICGC cohort, and it requires large- scale 
multicenter prospective queries for further verification. 
Second, further basic tests are necessary to ensure the bio-
informatics results and explore the internal mechanisms 

of the gene signature. This also provides ideas for us to 
continue to study this project.

In conclusion, we identified an effective and accurate 
signature of AHGs in BC. This risk model can not only be 
utilized to predict prognosis in BC patients and improve 
clinical management, but also to evaluate the immune 
microenvironment and identify appropriate patients for 
immunotherapy.
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