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Red blood cell (RBC) transfusion exposes recipients to hundreds of unmatched minor
RBC antigens. This exposure can lead to production of alloantibodies that promote
clinically significant hemolytic events. Multiple studies have reported an increased
frequency of RBC alloimmunization in patients with autoimmunity. However, cellular
and molecular mechanisms that underlie autoimmunity-induced alloimmunization have
not been reported. Patients with systemic lupus erythematosus (SLE) have a high
frequency of alloimmunization and express a type 1 interferon (IFNα/β) gene signature.
Thus, we utilized the pristane-induced lupus mouse model to test the hypothesis
that inflammation in lupus promotes RBC alloimmunization, and to examine the
potential role of IFNα/β. Intraperitoneal injection of pristane, a hydrocarbon oil, led
to autoantibody production, glomerulonephritis, and pulmonary hemorrhage in wild
type (WT) mice. Pristane treatment significantly induced serum IFNα and expression
of multiple interferon-stimulated genes (ISGs) in peripheral blood and peritoneal fluid
cells, including inflammatory macrophages. Following transfusion with allogeneic RBCs
expressing the KEL glycoprotein, pristane-treated WT mice produced significantly
elevated levels of anti-KEL IgM and anti-KEL IgG, compared to untreated mice. Pristane
induced comparable levels of inflammatory cells and cytokines in mice lacking the
IFNα/β receptor (IFNAR1−/−) or the IFNα/β-inducing transcriptions factors (IRF3/7−/−),
compared to WT mice. However, pristane-treated IFNAR1−/− and IRF3/7−/− mice
failed to produce ISGs and produced significantly lower levels of transfusion-induced
anti-KEL IgG, compared to WT mice. Thus, pristane induction of a lupus-like phenotype
promoted alloimmunization to the KEL RBC antigen in an IFNα/β-dependent manner.
To our knowledge, this is the first examination of molecular mechanisms contributing
to RBC alloimmunization in a model of autoimmunity. These results warrant further
investigation of the role of IFNα/β in alloimmunization to other RBC antigens and the
contribution of the IFNα/β gene signature to the elevated frequency of alloimmunization
in patients with SLE.
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INTRODUCTION

Red blood cell (RBC) transfusion exposes recipients to hundreds
of non-ABO RBC antigens that are not routinely matched
between donors and recipients. This exposure can lead to
production of anti-RBC alloantibodies that promote clinically
significant hemolytic events, including potentially fatal hemolytic
transfusion reactions, hemolytic disease of the newborn, and
rejection of renal allografts expressing allo-antigens also
expressed on RBCs (1–4). Additionally, RBC alloimmunization
against multiple RBC antigens can prohibit the availability of
compatible RBC units, leading to anemia-associated morbidity
and mortality (5, 6). Identifying factors that promote RBC
alloantibody responses would allow for identification of
at-risk patients who may benefit from interventions that
inhibit alloimmunization.

One such factor is the state of inflammation in the transfused
recipient. In 1995, Ramsey and Smietana reported that women
with autoimmune disease have a high incidence of RBC
alloimmunization (7). Subsequent studies showed increased
alloimmunization in patients with various autoimmune diseases,
including inflammatory bowel disease, rheumatoid arthritis,
autoimmune hepatitis, and systemic lupus erythematosus (SLE)
(8–10). For example, while 3–5% of all transfused patients
form RBC alloantibodies, (11, 12) more than 20% of transfused
patients with SLE produce such alloantibodies, representing
the second highest incidence, compared to other studied
disease populations (8). However, the cellular and molecular
mechanisms underlying the elevated incidence in patients with
SLE or other chronic autoimmune diseases, including the role of
inflammatory pathways, have not been investigated.

A pathway shown to promote autoantibody production and
disease severity in SLE is type 1 interferon (IFNα/β) production
and signaling. While IFNα/β was discovered for its critical role
in anti-viral immunity (13), more recent studies have implicated
IFNα/β in the pathogenesis of autoimmune diseases, including
rheumatoid arthritis, myositis, Sjögren’s syndrome (SS), systemic
sclerosis and SLE (14–18). Approximately two-thirds of adult
patients, and nearly all children, with SLE express an IFNα/β
gene signature, defined as the expression of multiple interferon-
stimulated genes (ISGs) (19–23). In addition, more than 50% of
SLE-associated genetic variants have been linked to the IFNα/β
pathway (24).

While the contribution of an autoimmune gene signature
to RBC alloimmunization has not been examined in humans
or animal models, treatment of murine transfusion recipients
with specific inflammatory stimuli has been shown to induce or
enhance RBC alloimmune responses (11, 25, 26). Co-transfusion
with CpG DNA or pre-treatment with polyinosinic:polycytidylic
acid [poly(I:C)], a mimetic of viral double stranded RNA, has
been shown to induce alloimmunization to a human RBC antigen
expressed on mouse RBCs (25–27). Accordingly, polyoma and
influenza viral infections in mice enhance the alloimmune
response to transfused RBCs (28, 29). Prior studies have also
shown that transfusion of pro-inflammatory stored RBCs induces
alloimmunization (30–32). Arneja et al. demonstrated that IL-6 is
critical for T follicular helper cell promotion of RBC alloimmune

responses to stored RBCs (33). Finally, it is noteworthy that not
all inflammatory stimuli promote alloimmunization, as gram-
negative bacteria and lipopolysaccharide have been shown to
inhibit alloimmunization (34, 35). Thus, activation of specific
inflammatory pathways in certain conditions can promote or
inhibit RBC alloimmunization.

Compared to viral infection and acute stimuli, inflammatory
pathways in SLE and other autoimmune diseases differ in
strength and chronicity. In patients with chronic autoimmunity,
the role of IFNα/β and other cytokine-mediated inflammatory
pathways in RBC alloantibody responses is poorly understood.
Here, given the increased frequency of alloimmunization in
patients with SLE, we examine the degree to which inflammation
in a lupus mouse model influences RBC alloimmunization. Use
of the pristane-induced lupus model, which exhibits a strong
IFNα/β signature (36), also allows examination of the role of
IFNα/β in alloimmunization in an autoimmune model.

MATERIALS AND METHODS

Mice
C57BL/6 and IFNAR1−/− mice were purchased from Jackson
Laboratories (Bar Harbor, ME, United States). IFNAR1−/−,
IRF3−/−, IRF7−/−, and K1 RBC transgenic mice were previously
described (37–39). K1 mice express the KEL glycoprotein,
containing the KEL1 antigen, on RBCs. Appropriate gene-
deficient mice were bred to produce IRF3/7−/− double knockout
mice. All mice were 8–12 weeks of age and had been
backcrossed to the C57BL/6 background for more than 8
generations. All pristane-treated mice were female mice injected
intraperitoneally with one dose of 0.5 mL pristane (2,6,10,14-
tetramethylpentadecane). All animal protocols were approved by
the Cedars-Sinai Institutional Animal Care and Use Committee.

RBC Transfusion
Peripheral blood of K1 mice was collected in 12% Citrate
Phosphate Dextrose Adenine (CPDA-1, Jorgensen Labs, Melville,
NY, United States) by retro-orbital bleeding and leuko-reduced
with a Pall (East Hills, NY, United States) syringe filter.
Recipient mice were transfused i.v. with 75 µL of leuko-reduced
packed RBCs, which is the approximate mouse equivalent of 1
unit of human RBCs.

Clearance Assay
For post-transfusion recovery experiments, mice previously
transfused with K1 RBCs received a second transfusion of
fluorescently labeled K1 and C57BL/6 RBCs 35 days after the
first transfusion. K1 and C57BL/6 RBCs were labeled with
DiI (1,1’-Dioctadecyl-3,3,3’,3’-Tetramethylindocarbocyanine
Perchlorate) and DiO (3,3’-Dioctadecyloxacarbocyanine
Perchlorate) lipophilic dyes (Life Technologies, Camarillo,
CA, United States), respectively, according to manufacturer’s
instructions. A 2:1 ratio of K1 to C57BL/6 RBCs was mixed
and transfused into previously transfused recipients and K1
transgenic mice, which served as a negative control. Mice were
bled 10 min, 1, 2, and 4 days after transfusion, and the ratio of
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K1 to C57BL/6 RBCs remaining in circulation was measured
by flow cytometry. The percentage of K1 RBCs remaining in
circulation, compared to C57BL/6 RBCs remaining, was plotted
as post-transfusion recovery.

Measurement of Anti-KEL Alloantibodies
Serum anti-KEL IgM, IgG, IgG1, IgG2b, IgG2c, and IgG3
were measured by flow cytometric crossmatch. Anti-KEL IgM
was measured 5 days after transfusion, and anti-KEL IgG
was measured 7, 14, 21, and 28 days after transfusion as
previously described (40). Briefly, serum from transfused mice
was incubated with K1 or C57BL/6 RBCs and subsequently
stained for RBC-bound IgM or IgG (goat anti-mouse IgM
FITC or goat anti-mouse IgG APC). Secondary antibodies for
IgG subsets included goat anti-mouse IgG1 PE, goat anti-
mouse IgG2c APC, goat anti-mouse IgG2b FITC, and goat-anti
mouse IgG3 BV421 (Jackson ImmunoResearch, West Grove, PA,
United States). The adjusted MFI was calculated by subtracting
the reactivity of serum with syngeneic C57BL/6 RBCs from
the reactivity of serum with K1 RBCs. Graphed anti-KEL
IgG data represents the peak antibody response, 21–28 days
following transfusion. Flow cytometry of RBCs was performed
using a SONY SA 3800 (San Jose, CA, United States) or a
Cytek Northern Lights 3000 spectral analyzer (Fremont, CA,
United States) and analyzed using FlowJo software (Tree Star,
Ashland, OR, United States).

Flow Cytometric Analysis of Leukocytes
Single cell suspensions of peripheral blood leukocytes and
splenocytes were analyzed following RBC lysis. Peritoneal fluid
cells were collected by flushing the peritoneal cavity with media.
Spleens were minced with a razor blade prior to cell filtration
with a 70 µM nylon mesh. Suspensions were incubated with
Fc receptor block, TruStain FcX, from Biolegend (San Diego,
CA, United States) and stained with fluorescently conjugated
antibodies specific for cell surface markers, including CD11c
(clone N418), B220 (RA3-6B2), F4/80 (BM8), CD11b (M1/70),
Ly6C (HK1.4), Ly6G (1A8), Siglec-1 (3D6.112), TCRβ (H57-597),
and I-A/I-E (MHC II, M5/114.15.2) from Biolegend. Zombie-Red
and Zombie-NIR (Biolegend) were used to exclude dead cells.
Cells were acquired with a Cytek Northern Lights 3000 or a LSRII
flow cytometer (Becton Dickinson, San Jose, CA, United States)
and analyzed using FlowJo.

Quantitative PCR
RNA was isolated from peritoneal fluid and peripheral blood
leukocytes using the Qiagen RNeasy mini-kit (Hilden, Germany)
and converted to cDNA with the Maxima H Minus cDNA
Synthesis Master (Thermo Fisher Scientific, Waltham, MA,
United States). The amount of GADPH, Mx1, ISG15, and
IRF7 cDNA was measured by a QuantStudio 5 Real-Time
PCR System using PowerUp SYBR Green master mix (Thermo
Fisher Scientific). Primer sequences are listed in Supplementary
Table 1. Thermo Fisher Scientific Connect software was
used to determine the relative expression of target genes,
compared to GAPDH.

ELISAs, Creatinine, and Hematocrit
Serum autoantibodies and urine albumin were measured
by ELISA using the mouse anti-SSA (RO-52) ELISA
kit (Signosis, Inc., Santa Clara, CA, United States), the
mouse anti-dsDNA IgG ELISA Kit (Alpha Diagnostic
International, San Antonio, TX, United States), and the
Albuwell M ELISA kit (Ethos Biosciences Inc., Philadelphia,
PA, United States). Urine creatinine was measured using
a Creatinine Liquicolor kit (Stanbio Laboratory, Boerne,
TX, United States). Hematocrit was measured using the
HemaTrue R© Veterinary Hematology Analyzer (Heska, Loveland,
CA, United States).

Histology
Lungs and kidneys were fixed in 10% buffered formalin (Medical
Chemical Corporation, Torrance, CA, United States). Slides were
cut from paraffin-embedded blocks by the Cedars-Sinai histology
lab and stained with hematoxylin and eosin for lungs and periodic
acid-Schiff for kidneys. Lung and renal histology slides were
scored by a renal pathologist (M.Y.).

Cytokine Measurement
Serum was collected by retro-orbital bleeding and centrifugation,
and cytokine measurement and analysis were performed with the
LEGENDplex mouse anti-virus response panel multiplex assay
(Biolegend) according to manufacturer’s instructions.

Statistics
Statistical analysis was performed using Graph Pad Prism
software (San Diego, CA, United States). Statistical significance
between two groups was determined using an unpaired
Student’s t-test or Mann Whitney U test for parametric
and non-parametric data, respectively. Significance between
three groups of non-parametric data was determined using
a Kruskal-Wallis test with a Dunn’s post-test. Anti-KEL
antibody levels and cytokine data are non-parametric.
Data bars represent the mean. Error bars represent the
standard error of the mean. White circles indicate data from
individual mice.

RESULTS

Pristane-Induced Autoimmune
Pathology
We utilized the previously described pristane-induced lupus
model (41) to assess the effect of lupus-like inflammation on
RBC alloantibody responses. Pristane is a hydrocarbon oil that,
when injected intraperitoneally, leads to a lupus-like phenotype
by a toll-like receptor 7 (TLR7)-dependent mechanism (42).
In accordance with prior studies using C57BL/6 mice, the
mortality caused by pristane treatment was 0–20% for all
experiments (data not shown) (43). Compared to untreated
wild type (WT) mice, pristane-treated WT mice produced
elevated levels of lupus-associated autoantibodies, including anti-
Sjögren’s syndrome related antigen A (SSA) and anti-dsDNA
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IgG (Supplementary Figures 1A,B). Eight months following
pristane treatment of WT C57BL/6 mice, glomeruli exhibited
mild mesangial expansion and hypercellularity (Supplementary
Figures 1C,D), as previously reported (44). However, pristane-
induced glomerular changes did not consistently lead to
a significant increase in the urine albumin:creatinine ratio,
compared to untreated WT mice (Supplementary Figure 1E).
Also consistent with prior studies in C57BL/6 WT mice,
pristane-treated mice developed diffuse pulmonary hemorrhage
(Supplementary Figures 1F–H) and anemia (Supplementary
Figure 1I) two weeks following pristane treatment (44, 45).

We examined the degree to which pristane induced anti-
RBC autoantibodies by performing direct antiglobulin tests
(DATs), which detect RBC-bound IgG. Two weeks after
pristane treatment, none of the WT mice had positive DATs
(data not shown). After 8 months, the results were highly
variable. On occasion, pristane-treated WT mice had positive
DATs (Supplementary Figure 2A), but collectively, there
was no significant difference in the percent of RBCs with
bound IgG, between pristane-treated and untreated WT mice
(Supplementary Figure 2B).

Induction of Anti-KEL Alloimmunization
in Pristane-Induced Lupus Mice
To examine RBC alloimmunization in pristane-induced lupus
mice, we utilized the previously described mouse transfusion
model, in which RBCs from transgenic mice expressing the
KEL glycoprotein (K1 RBCs) are transfused into allogeneic
recipients (37). Leuko-reduced K1 RBCs were transfused
into WT mice treated without or with pristane 2, 14, or
48 days prior to transfusion, and anti-KEL IgM and IgG
antibody levels were measured by flow cytometric crossmatch.
Consistent with prior studies (29, 37), transfused untreated
mice produced low levels of anti-KEL IgM, and produced
nearly undetectable levels of anti-KEL IgG. Transfusion 2 days
after pristane treatment did not induce elevated alloantibody
production, compared to untreated mice. However, recipients
treated 14 or 48 days prior to transfusion produced significantly
higher levels of anti-KEL IgM and anti-KEL IgG, compared
to untreated WT mice (Figures 1A–C). There was no
significant difference in anti-KEL IgG produced in mice
treated 14 or 48 days before transfusion (Figure 1B and
Supplementary Figure 3). Thus, further analysis was completed
in mice treated with pristane 14 days prior to transfusion,
unless otherwise specified. Anti-KEL IgG in pristane-induced
lupus mice included all IgG subclasses made in C57BL/6
mice (Figure 1D).

To test the clinical significance of anti-KEL antibodies in
pristane-induced lupus mice, we examined the ability of anti-
KEL antibodies to clear K1 RBCs from circulation. Previously
transfused pristane-treated and untreated mice received a
second transfusion of a mixture of fluorescently labeled K1
RBCs (DiI+) and WT RBCs (DiO+) 35 days after the first
transfusion. K1 mice were also transfused to serve as a negative
control. The ratio of K1 RBCs to WT RBCs remaining
in circulation was measured by flow cytometry. Compared

to K1 and untreated WT recipients, pristane-treated mice
preferentially cleared K1 RBCS within 4 days following the
second transfusion (Figure 1E).

Pristane-Induced Inflammation in the
Peri-Transfusion Period
Prior studies using K1 mice indicate that inflammation at
the time of transfusion influences alloimmunization (29, 37).
Thus, given the elevated alloantibody responses and clearance
in pristane-induced lupus mice, we examined markers of
inflammation at the time of transfusion. While there were no
significant differences in the number of B and T cells between
groups, Ly6G+ neutrophils and Ly6G− Ly6C+ monocytes
were significantly elevated in the peripheral blood of pristane-
treated WT mice (Figures 2A–C). Additionally, levels of spleen
neutrophils, monocytes, CD11b+ F4/80+ macrophages, and
CD11chi MHCII+ conventional dendritic cells were elevated in
pristane-treated mice (Supplementary Figure 4).

Serum cytokine analysis showed that TNFα, IL-1b, IL-6,
and IFNα were significantly elevated in pristane-treated mice,
compared to untreated mice, in 3 of 3 experiments (Figure 2D).
IFNβ was significantly elevated in 1 of 3 experiments (data
not shown). In addition, the interferon stimulated genes (ISGs),
CCL2 and CXCL10, were elevated in serum of pristane-treated
mice (Figure 2E). To determine the chronicity of pristane-
induced cytokine production, we quantified serum cytokine and
ISG levels in mice treated with or without pristane 2 days,
14 days, or 8 months prior to analysis. Two days after pristane
treatment, TNFα, IL-1b, IL-6, IFNα, CCL2, and CXCL10 were
not elevated compared to untreated mice. In addition, there was
no significant difference in cytokine or ISG levels between mice
treated 14 days or 8 months prior (Supplementary Figure 5).
This indicates that cytokines and ISGs are chronically produced
from 2 weeks to 8 months after pristane treatment. It is also
notable that cytokine and ISG production significantly elevated
14 days, but not 2 days, after pristane treatment coincided with
transfusion-induced anti-KEL IgM and IgG production.

Prior studies have shown that pristane induces chronic
inflammation in the peritoneum (41). Thus, peritoneal fluid was
evaluated at the time of transfusion, and CCL2 and CXCL10
were found to be significantly elevated in pristane-treated
mice (Figure 3A). CCL2 and CXCL10 are chemokines that
recruit inflammatory macrophages, monocytes, and neutrophils
to sites of inflammation. These cell subsets were elevated
in the peritoneal fluid of pristane-treated mice (Figure 3B).
Consistent with other models of peritoneal inflammation (46),
pristane treatment led to a reduction of CD11b+ F4/80hi

resident macrophages, present in untreated mice, and an increase
in inflammatory CD11b+ F4/80int inflammatory macrophages
(Figure 3C). Given the elevated levels of IFNα and ISGs in
peripheral blood, ISG expression was measured in peritoneal
fluid cells. Siglec-1 was previously shown to be upregulated on
monocytes following IFNα/β signaling (47). Accordingly, Ly6C+
monocytes and CD11b+ F4/80int inflammatory macrophages
expressed elevated levels of Siglec-1 (Figures 3C–F). In addition,
collectively, peritoneal fluid cells expressed elevated levels of
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FIGURE 1 | Pristane induces anti-KEL alloantibodies. Recipient WT mice were transfused with K1 RBCs. (A,B) Serum anti-KEL IgM and IgG in untreated mice and
mice treated with pristane 2, 14, or 48 days prior to transfusion, measured by flow cytometric crossmatch. The adjusted MFI was calculated by subtracting the MFI
of serum incubated with WT RBCs from the MFI of serum incubated with K1 RBCs, shown in (C). (C) Representative histograms of flow cytometric crossmatch, in
which post-transfusion serum was incubated with K1 or WT RBCs. (D) Anti-KEL IgG subtypes in mice treated with or without pristane 14 days prior to transfusion.
(A–D) Anti-KEL IgM was measured 4–5 days after transfusion. Anti-KEL IgG and subtypes represent the peak IgG response 21–28 days after transfusion. (E) WT
mice treated with or without pristane 14 days prior to transfusion were re-transfused with a 2:1 mixture of labeled K1 and WT RBCs 35 days after the first
transfusion. Control K1 recipients are negative controls. Ratios of recovered K1 and WT RBCs are calculated as percent of K1 RBCs remaining 1, 2, and 4 days after
transfusion. (A–E) Representative of 3 independent experiments, 5–10 mice per group. *p < 0.05, **p < 0.01, ***p < 0.001 by Mann-Whitney U test (D) or
Kruskal-Wallis test with a Dunn’s post-test (A,B,E).
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FIGURE 2 | Pristane-induced inflammation in peripheral blood. WT mice were treated with or without pristane 14 days prior to analysis. (A) Representative flow
cytometric analysis of Ly6C+ monocytes and Ly6G+ neutrophils gated on live cells. Numbers on plots indicate percentage within drawn gates. (B) Quantification of
neutrophils and monocytes gated in (A). (C) Quantification of B220+ B cells and TCRβ+ T cells. (A–C) Cells are gated on Zombie negative live cells. (D,E) Serum
cytokine levels measured by multiplex array. Representative of 3 independent experiments with 5 mice per group. *p < 0.05, **p < 0.01, by student’s t-test (B,C) or
Mann-Whitney U test (D,E).

other ISGs, including Mx1, ISG15, and TLR7 compared to
untreated mice (Figure 3G).

IFNα/β-Independent Inflammatory Cell
and Cytokine Responses
Given the pristane-induced production of IFNα and ISGs,
we examined inflammation in mice lacking the receptor for
IFNα/β (IFNAR1−/−) and mice lacking the transcription factors,
interferon response factor (IRF) 3 and IRF7, required for
IFNα/β production (IRF3/7−/−). As expected, compared to
pristane-treated WT mice, pristane-treated IRF3/7−/− mice
produced significantly lower levels of IFNα, whereas pristane-
treated IFNAR1−/− and WT mice made comparable levels
(Figure 4A). Serum levels of the ISG, CXCL10, were significantly
reduced in pristane-treated IRF3/7−/− mice and trended to a
non-significant reduction in pristane-treated IFNAR1−/− mice,
compared to treated WT mice (Figure 4B). Siglec-1 expression by
CD11b+ F4/80int inflammatory macrophages was also reduced
in pristane-treated IRF3/7−/− and IFNAR1−/− mice, compared
to WT treated mice (Figures 4C–E). In addition, levels of Mx1,
ISG15, and IRF7 were significantly reduced in total peritoneal
fluid cells of IFNAR1−/− and IRF3/7−/− treated mice, compared

to WT treated controls (Figure 4F). A complete absence of IRF7
mRNA confirmed its genetic deficiency in IRF3/7−/− mice.

Despite the reduction in IFNα/β and ISG production in
IFNAR1−/− and IRF3/7−/− treated mice, peritoneal infiltration
by monocytes, neutrophils, and inflammatory macrophages was
comparable in pristane-treated IFNAR1−/−, IRF3/7−/− and
WT mice (Figures 5A, 4C). Compared to untreated WT mice,
pristane also resulted in significantly elevated levels of spleen
CD11b+ F4/80+ macrophages in IFNAR1−/− and IRF3/7−/−

mice, increased levels of spleen Ly6C+ monocytes and Ly6G+
neutrophils in IRF3/7−/− mice, and trends toward increased
levels in IFNAR1−/− mice (Supplementary Figure 6).

Additionally, all pristane-treated groups produced
comparable levels of non-IFNα/β cytokines, including TNFα and
IL-6 (Figure 5B). Thus, pristane-induced peritoneal and spleen
inflammation is promoted by IFNα/β-independent mechanisms.

IFNα/β-Dependent Anti-KEL RBC
Alloimmunization
Finally, given the elevated production of anti-KEL antibodies
following K1 RBC transfusion, we examined the role of IFNα/β
production and IFNAR1 signaling in K1 RBC alloimmunization.
Following transfusion of K1 RBCs, all pristane-treated mice
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FIGURE 3 | Inflammatory cells in peritoneal fluid express ISGs at the time of transfusion. WT mice were treated with or without pristane 14 days prior to analysis.
(A) CCL2 and CXCL10 levels in peritoneal lavage fluid measured by multiplex array. (B) Quantification of peritoneal fluid neutrophils, monocytes, and inflammatory
macrophages gated in (C,E). (C,E) Representative flow cytometric analysis of CD11b+F4/80int inflammatory macrophages (gated on live non-lymphocytes, Zombie-

TCRβ- B220-), Ly6C+ monocytes and Ly6G+ neutrophils in peritoneal fluid, gated on Zombie negative live cells. (D,F) Representative histograms (left) and
quantification (right) of Siglec-1 expression by CD11b+F4/80int inflammatory macrophages and Ly6C+ monocytes gated in (C,E). (G) Relative expression of Mx1,
ISG15, and IRF7, compared to GAPDH, by all peritoneal fluid cells, measured by quantitative real-time PCR. Representative of 3 independent experiments.
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 by student’s t-test (B,D,F) or Mann-Whitney U test (A,G).
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FIGURE 4 | Abrogated ISG expression in pristane-treated IFNAR1-/- and IRF3/7-/- mice. WT, IFNAR1-/-, and IRF3/7-/- mice were treated with pristane 14 days
prior to analysis. Untreated WT mice were included as controls. (A,B) Serum IFNα and CXCL10 levels measured by multiplex array. (C) Representative flow
cytometric plots of CD11b+ F4/80int inflammatory macrophages, gated on live non-lymphocytes (Zombie- TCRβ- B220-) cells. Numbers on plots indicate percent of
cells within drawn gates. (D) Histogram overlays and (E) quantification of Siglec-1 expression by inflammatory macrophages gated in (C). (F) Relative expression of
Mx1, ISG15, and IRF7, compared to GAPDH, by all peritoneal fluid cells, measured by quantitative real-time PCR. Representative of 3 independent experiments.
*p < 0.05, **p < 0.01, ***p < 0.001 by Kruskal-Wallis test with a Dunn’s post-test.

Frontiers in Immunology | www.frontiersin.org 8 September 2020 | Volume 11 | Article 584254

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-584254 September 25, 2020 Time: 18:11 # 9

Lee et al. RBC Alloimmunization in Lupus Mice

FIGURE 5 | IFNα/β production and signaling promote K1 RBC alloimmunization. WT, IFNAR1−/−, and IRF3/7−/− mice were treated with pristane 14 days prior to
analysis (A,B) or transfusion (C,D). Untreated WT mice were included as controls. (A) Quantification of Ly6G+ neutrophils, Ly6C+ monocytes, and CD11b+F4/80int

inflammatory macrophages in peritoneal fluid; gated on Zombie-negative live cells. Inflammatory macrophages were also gated on TCRβ−B220− non-lymphocytes.
(B) TNFα and IL-6 cytokine levels measured by multiplex array. Representative of 3 independent experiments with 5 mice per group. (C,D) Fourteen days after
pristane-treatment, WT, IFNAR1−/−, and IRF3/7−/− mice were transfused with K1 RBCs. (C) Anti-KEL IgM was measured 4–5 days after transfusion. (D) Anti-KEL
IgG data represent the peak IgG response 21–28 days after transfusion. 7–8 mice per group. Representative of 3 independent experiments. ∗p < 0.05 by
Kruskal-Wallis test with a Dunn’s post-test.
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produced anti-KEL IgM at comparable levels (Figure 5C).
However, despite the comparable levels of inflammation in
all pristane-treated groups, IFNAR1−/− and IRF3/7−/− mice
produced significantly lower anti-KEL IgG antibodies, compared
to WT treated controls (Figure 5D). Thus, IFNα/β production
and signaling promote K1 RBC alloimmunization in pristane-
induced lupus mice.

DISCUSSION

Multiple studies have reported an increased frequency
of RBC alloimmunization in patients with autoimmune
diseases, including SLE (7–10). However, cellular and
molecular mechanisms that underlie autoimmunity-
induced alloimmunization have not been reported. Here,
we report that IFNα/β production and signaling promote
RBC alloimmunization in a lupus mouse model. To our
knowledge, this is the first examination of molecular
mechanisms contributing to RBC alloimmunization in a
model of autoimmunity.

Two-thirds of patients with SLE express an IFNα/β gene
signature that correlates with autoantibody production and
disease severity. Thus, we utilized the well described pristane-
induced lupus model, in which IFNα/β production and signaling
have been shown to promote autoantibody production and
subsequent renal pathology (41). While transient inflammation
induced by viral stimuli has previously been shown to
promote RBC alloimmunization (27–29), it was unclear whether
chronic inflammation in autoimmune models would also
induce alloimmunization. Further, in addition to IFNα, pristane
induces production of numerous NFκB-induced cytokines,
including IL-6, IL-1b, and TNFα, which contribute to other
manifestations of lupus. For example, neutrophil invasion
of the bone marrow produces TNFα, which perturbs RBC
progenitor development, resulting in anemia (45). Thus, it was
unclear which pristane-induced inflammatory pathways induced
RBC alloimmunization.

While results reported here do not rule out a contributory role
for other cytokine pathways, diminished transfusion-induced
anti-KEL IgG production in pristane-treated IFNAR1−/−

and IRF3/7−/− mice indicates a significant role for IFNα/β
production and IFNAR1 signaling in K1 RBC alloimmunization.
Of note, a lack of IFNα/β production or signaling did
not impact markers of inflammation, including inflammatory
cell infiltration in the peritoneal cavity and the spleen, nor
did it impact the production of NFκB-induced inflammatory
cytokines. Thus, the lack of anti-KEL IgG production in
IFNAR1−/− and IRF3/7−/− mice was not due to reduced
IFNα/β-independent inflammation.

Pristane-induced production and expansion of inflammatory
cells, including neutrophils, monocytes and macrophages,
likely contributed to RBC alloimmunization. These cells can
phagocytose RBCs, transport antigen, and promote antigen
presentation to T cells. In addition, Ly6C+ monocytes in
the peritoneum are the primary producers of IFNα/β (48).

Inflammatory macrophages in the peritoneum of pristane-
treated mice expressed high levels of the ISG, Siglec-1, which
was first identified as an erythrocyte binding receptor (49).
It was later found to be induced by IFNα/β in patients
with systemic sclerosis (47). Siglec-1+ macrophages are located
in areas exposed to body fluids, including the peritoneum
and the marginal zone of the spleen. They have been
shown to capture and transfer antigen to dendritic cells and
B cells for antigen presentation (50). Thus, although not
tested here, Siglec-1+ macrophages may contribute to RBC
alloantibody production.

In this transfusion model, anti-KEL IgG is clinically
significant, in that it clears KEL-expressing RBCs and can
induce hemolytic events, including hemolytic transfusion
reactions (40). In addition to anti-KEL IgG, pristane also
enhanced anti-KEL IgM production following K1 RBC
transfusion. Notably, in the pristane model, enhancement
of anti-KEL IgM was also present in IFNAR1−/− and
IRF3/7−/− mice. Thus, IFNα/β is dispensable for anti-KEL
IgM, but not anti-KEL IgG production. This observation
indicates that IFNα/β may promote a critical process in
antibody class switching. IFNα/β has been shown to promote
differentiation of germinal center and antibody-producing
plasma cells (51, 52). However, it also activates antigen
presentation by dendritic cells, and can activate T cells directly
(53). Thus, further studies are needed to determine the
mechanism of IFNα/β-induced IgG class switching during
RBC alloimmunization.

This report builds upon prior data implicating the IFNα/β
pathway in RBC alloimmunization following acute viral
infection or poly(I:C) treatment. Poly(I:C), injected 3 hr prior
to transfusion, induces profoundly high transient levels
of serum IFNα that diminish within 24 hr of injection
(37). Consequently, K1 RBC transfusion 24 hr before or
after poly(I:C) treatment does not induce anti-KEL IgG
(37). In contrast, in the current study, pristane treatment
resulted in chronic inflammation, IFNα production, and
ISG expression that promoted RBC alloimmunization 2
to 6 weeks after pristane treatment. Pristane is thought
to induce IFNα/β production by causing the infiltration
of inflammatory cells that phagocytose pristane, undergo
cell death, and release RNA that binds and activates
TLR7 in endosomes (41). In contrast, poly(I:C) is a TLR3
agonist (54) and has been shown to bind the cytosolic
receptor melanoma differentiation-associated protein 5
(MDA5), leading to activation of mitochondrial antiviral-
signaling protein (MAVS) prior to IFNα/β production,
which promotes RBC alloantibody production (37).
Activation of disparate pathways may underly differences
in quantity and chronicity of IFNα/β production. While
TLR7 has been shown to be required for pristane-induced
autoantibody production, other pathways warranting
further investigation may promote IFNα/β-induced
RBC alloimmunization.

It is noteworthy that autoantibody production induced by
pristane occurs months after treatment. However, inflammation
and IFNAR1 signaling within two weeks of treatment are
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required for later autoantibody production (41); and data
presented here indicate that IFNα/β-mediated inflammation
is required for RBC alloantibody production in this model.
Future studies are needed to determine whether autoantibody
production and autoantibody-mediated pathology promote RBC
alloimmunization by IFNα/β-independent mechanisms. Such
studies will have the challenge of separating the role of
autoimmunity-induced alloimmunization and IFNα/β-induced
alloimmunization, as autoantibody production is abrogated in
IRF3/7−/− and IFNAR1−/− mice (41). Thus, examination
of RBC alloimmunization in other lupus models with less
dependence on IFNα/β may be needed.

In summary, we report that inflammation in a lupus mouse
model promotes alloimmunization to the KEL RBC antigen in
an IFNα/β-dependent manner. These results warrant further
investigation of the role of IFNα/β in alloimmunization to other
RBC antigens and of the contribution of the IFNα/β gene
signature to the increased frequency of alloimmunization in
patients with SLE. If these findings extend to human studies,
SLE patients with an IFNα/β gene signature may benefit from
personalized transfusion protocols.
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