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Clinical vignette
A 68-year-old male with a 16-year history of  Parkinson’s disease (PD) 

underwent bilateral globus pallidus internus (GPi) deep brain stimulation 
(DBS) at the University of  Florida. He was treated with DBS for the man-
agement of  motor fluctuations, levodopa-induced dyskinesia (LID), and 
dystonia. Surgery was performed with microelectrode recording (MER) 
guidance. During the initial postoperative monopolar threshold review 
(Table 1), he developed stimulation-induced dyskinesia (SID) in the right 
hemibody with monopolar activation of  the dorsal contacts (contacts 2 
and 3) of  the left GPi lead. No SID was noted with the stimulation of  the 
ventral contacts (contacts 0 and 1) of  the left GPi lead or with the stimula-
tion of  any of  the contacts of  the right GPi lead. Contact 1 stimulation on 
the left DBS lead provided benefit for tremor, bradykinesia, and rigidity. 

Contact 2 provided a more robust improvement in bradykinesia and rigid-
ity but the benefit was limited by SID.

Postoperative lead localization and three-dimensional (3D) mapping 
identified that both leads were appropriately placed in the postero- 
latero-ventral GPi (Figure 1). Contact 2 is located in the dorsal GPi/GPe 
area and contact 3 is located in the GPe area.

Clinical dilemma
This case represents dorsal GPi and GPe SID in a patient with PD. On 

the left GPi DBS lead, contacts 1 and 2 provided the best clinical benefit. 
Contact 1 monopolar stimulation improved the tremor but did not have a 
robust effect on bradykinesia and rigidity. Contact 2 stimulation on the 
other hand, improved tremor, rigidity, and bradykinesia, but the benefit 
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Abstract
Clinical vignette: A 68-year-old man with Parkinson’s disease (PD) had bilateral GPi DBS placed for management of  his motor fluctuations. He developed 

stimulation-induced dyskinesia (SID) with left dorsal GPi stimulation.

Clinical dilemma: What do we know about SID in PD patients with GPi DBS? What are the potential strategies used to maximize the DBS therapeutic benefit 

and minimize the side effects of  stimulation?

Clinical solution: Avoiding the contact implicated in SID and programming more ventral contacts, using lower voltage, frequency and pulse width and program-

ming in bipolar configuration all appear to help minimize the SID and provide appropriate symptomatic motor control.

Gap in knowledge: Little is known about SID in patients with PD who had GPi DBS therapy. More studies using volume of  tissue activated and diffusion tensor 

imaging MRI are needed to localize specific tracts in or around the GPi that may be implicated in SID.
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was limited by SID. The development of  SID in this case raises two 
important questions: First, what is known about the target-specific 
pathophysiology of  SID in DBS for PD? And second, what are the pro-
posed strategies to manage this stimulation-induced complication?

Clinical solution
To overcome the SID noted on contact 2, we considered two strate-

gies: (1) avoiding programs that involve either anodic or cathodic 
 stimulation of  contact 2; and (2) stimulation in a bipolar configuration 

using contact 2. Table 2 summarizes the programming attempts made. 
We chose a bipolar configuration with contact 2 as cathode and contact 
1 as anode. This configuration helped with the tremor, rigidity, and bra-
dykinesia, without the side effect of  SID (Table 2).

Gaps in knowledge
Pathophysiology of SID

Either STN or GPi stimulation shows comparable motor benefit in 
PD1,2 and the choice of  target is ideally made after a multidisciplinary 

Table 1. Summary of  the Monopolar Threshold Review of  the Right and Left GPi Leads, Indicating Therapeutic Effect and Side Effect 
Thresholds

Contact 
Number

Left GPI DBS Right GPI DBS

Therapeutic Benefit 
Threshold (in Volts)

Side Effect Threshold (in 
Volts)

Therapeutic Benefit 
Threshold (in Volts)

Side Effect Threshold (in Volts)

0 1 1.6 (right leg and neck muscle 
pulling, capsular side effect)

0.9 1.2 (left facial muscle pulling, 
capsular side effect)

1 1.1 2.7 (right neck muscle pulling, 
capsular side effect)

1 2.7 (left face and hand muscle 
pulling, capsular side effect)

2 0.9 1.3 (SID) 1.1 2.4 (left face and left hand muscle 
pulling, capsular side effect)

3 1 1.4 (SID) 1.2 3 (left face and left arm muscle 
pulling, capsular side effect)

Abbreviations: DBS, Deep Brain Stimulation, GPi, Globus Pallidus Interna, SID, Stimulation-Induced Dyskinesia.
Note: The Medtronic 3387 lead has four contacts numbered 0 to 3 (ventral to dorsal).

Figure 1. Anatomical positions of  the right and left DBS electrodes. Images show coronal, axial, and sagittal MRI with superimposed modified 
Schaltenbrand- Bailey Atlas, and 3D rendering of  the measured electrode. The targeted red structure is the GPi, and the more dorsal green structure is the GPe. The 
dark red line traversing the image and the red X represent the lead trajectory and position. In the 3D rendering, the dark gray structure is the GPi, and the light gray 
structure is the GPe. The white regions of  the rendered DBS lead represent contacts numbered 0 to 3 and dark red represents insulation.
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team assessment and tailored to the individual needs of  the patient.3 
Balancing the potential improvement in motor symptoms against the 
risk of  SID is a particular challenge for clinicians and surgeons. GPI 
targeting is favored by some groups4 for the treatment of  disabling 
refractory levodopa-induced dyskinesia (LID) or as a rescue target in 
cases of  severe disabling STN DBS-induced dyskinesia.5 “Brittle dyski-
nesia” is a term used to describe cases of  SID in PD patients who were 
treated with STN DBS, drawing a parallel to brittle diabetes. In a series 
of  179 patients with STN DBS and 75 patients with GPi DBS, 4 expe-
rienced SID (all in the STN DBS group).5 It was then postulated that 
STN DBS carries a higher risk of  SID compared to GPi DBS. Classically, 
dyskinesia induced by subthalamic nucleus (STN) stimulation manifests 
as hemiballism, choreoathetosis, or dystonia6 and can occur immedi-
ately postoperatively (potentially due to a subthalamotomy effect7) or 
have a more delayed onset.8,9 Female sex, lower BMI, longer disease 
duration, and longer duration of  treatment with levodopa correlated 
with a higher risk of  SID with STN DBS.5

Previous studies examined the variable effects of  GPi DBS along a 
ventro-dorsal axis.10–12 The upper contacts in these studies were located 
in the dorsal GPi or GPe. Dorsal GPi/GPe stimulation improved par-
kinsonism but could cause SID that may mimic LID10; conversely, ven-
tral GPi stimulation suppressed LID but may potentially worsen 
hypokinesia.10,11 This was also observed in dystonia patients, in whom 
ventral GPi stimulation improved dystonia but induced hypokinesia.12–14 
This distinct effect of  ventral versus dorsal GPi/GPe stimulation has 
been attributed to the pallidothalamic tracts, which are GPi efferent 
fibers consisting of  the dorsally located fasciculus lenticularis and the 
ventrally located ansa lenticularis. 10 Moreover, diffusion tensor imaging 
(DTI) studies suggest that the ventral GPi has stronger connectivity to 
the primary sensorimotor cortex and supplementary motor area, 

whereas the dorsal GPi has stronger connectivity to the pre-supplemen-
tary motor area and premotor cortex.15,16 The mechanism of  SID after 
GPi DBS remains unclear; however, the distinct connectivity between 
ventral and dorsal GPi might explain why dyskinesia occurs more fre-
quently with dorsal stimulation in the GPi. Another compelling hypoth-
esis is that the dyskinesia occurs due to spread of  the current to the 
adjacent GPe or due to GPe stimulation. It is possible that the stimula-
tion of  the inhibitory efferent GPe axons or excitatory efferent STN 
axons is implicated in the dyskinesia.

Some insight can be possibly gleaned from the similar phenomenon 
of  LID. The classic model of  PD involves loss of  dopaminergic input to 
the striatum resulting in pathologically increased activity of  the STN 
and GPi, and increased inhibition of  thalamocortical circuitry. This 
produces the clinical syndrome of  bradykinesia and rigidity.17–21 Studies 
in parkinsonian primates and PD patients consistently show decreased 
activity of  the STN and GPi with LID.22–26 Additional animal studies 
have linked LID to alterations of  striatal projection neuron firing rates 
and D1 receptor sensitization.27–30 At a neurotransmitter level, dopa-
mine does not appear to be solely implicated in LID as more evidence 
suggests that glutamate may play a role; in a rodent model of  PD, high 
frequency stimulation of  the STN increased the expression of  the vesic-
ular glutamate transporters 1–3 (VGLUT 1–3) in the basal ganglia.31,32 
Moreover, glutamate receptor antagonists blocked dyskinesia in the 
same PD model. The serotonergic system has also been implicated in 
LID as shown by preclinical and clinical models.33 Selective serotonergic 
agonists have been shown to reduce LID in rodent34 and primate models 
of  PD.35 The mechanism by which the serotonergic neurons facilitate 
LID remains to be elucidated; some studies suggest that dopamine gets 
released as a “false” neurotransmitter from striatal serotonergic termi-
nals but more work is needed.36

Table 2. Different Programming Trials Used to Optimize Benefit and Minimize Side Effects

Contacts Used for  
Programming

Stimulation  
Configuration

Voltage  
(in Volts)

Frequency  
(in Hz)

Pulse Width  
(in µs)

Effect on Symptoms Compared to Baseline  
OFF Medication Exam. Presence of  SID in Right 
Hemibody

1 Monopolar (1-;C+) 2.4 130 90 Decreased tremor, minimal effects on rigidity and 
bradykinesia

2 Monopolar (2-;C+) 2.0 130 90 Decreased tremor and rigidity but minimal effect 
on bradykinesia. Benefit limited by SID in right 
hemibody when voltage increased more than 2V

2 Monopolar (2-;C+) 1.8 180 90 Decreased tremor and rigidity. The higher frequency 
was used in an attempt to better control the tremor. 
Minimal effect on bradykinesia. SID in right 
hemibody occurring at lower threshold and are more 
pronounced

1;2 Bipolar (1-;2+) 2.5 130 90 Decreased tremors, but minimal effect on 
bradykinesia and rigidity. No SID

1;2 Double monopolar 
(1-2-;C+)

2.5 130 90 Decreased tremors and rigidity but minimal effect on 
bradykinesia. SID at 3V

1;2 Bipolar (2-;1+) 2.5 130 90 Decreased tremors, rigidity and bradykinesia. No SID

Abbreviation: SID, Stimulation-Induced Dyskinesia.
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Management of SID

The management of  SID can be particularly challenging for clini-
cians as finding the appropriate balance to improve motor symptoms 
while avoiding SID may not be easily achieved. The recommendations 
for the management of  SID in GPi-DBS are limited to expert opinion, 
with scarce evidence-based recommendations for SID in STN-DBS. 
Initial management approaches for STN DBS patients with SID include 
decreasing the volume of  tissue activated around the optimal contact 
(e.g., by decreasing the voltage or pulse width of  the stimulation), pro-
gramming alternative contacts (e.g., more dorsal contacts in the poste-
rior STN may have a direct anti-dyskinetic effect 37,38), and programming 
alternative stimulation configurations (e.g., bipolar, double monopolar 
or interleaved configurations 6). Additionally, increasing the amplitude 
of  stimulation by smaller increments, and with longer durations of  time 
between changes 6,39 may also limit SID. Finally, modifying the patient’s 
medication regimen (e.g., decreasing the levodopa equivalent dose or 
changing levodopa to an extended release formulation) should always be 
considered in the management of  dyskinesia in patients with STN DBS. 
We would propose applying similar principles to SID due to GPi DBS 
with the only difference that the more ventral stimulation minimizes the 
SID. Based on the experience with our patient, we were successful in 
providing adequate clinical benefit by using a bipolar configuration. 
Larger cohorts are needed in the future to draw a potential algorithm or 
guideline for the management of  SID in GPI PD patients.

In addition to adjustments in medications and programming strate-
gies, it is important to confirm lead and contact placement as the litera-
ture describes a higher risk of  SID associated with stimulation of  
contacts located in or near the globus pallidus externus (GPe).40–43 In our 
case, contact 2 is located at the GPi/GPe border and contact 3 is in the 
GPe. A contribution of  GPe in the pathophysiology of  SID in this case 
and in other published GPi DBS-induced SID cases is possible. In our 
patient, a Medtronic 3387 DBS lead was used. Implanting a Medtronic 
3389 DBS lead could potentially limit the spread of  the current and 
avoid SID. One can also see the benefit of  a directional lead in cases of  
SID with GPi DBS as stimulation away from the GPe can be helpful in 
cases where the GPe is determined to be the source of  the SID. Further 
evaluation using DTI studies and calculation of  volume of  tissue acti-
vated around the implicated contact may be needed to further under-
stand the pathophysiology of  the SID with GPi DBS.

Expert Commentary: This case highlights a common challenge for 
the DBS programmer: the induction of  dyskinesia by stimulation. When 
programming patients with STN DBS, dyskinesia is typically the sign of  
a well-placed lead and can be managed with an appropriate reduction 
in medication. Programming strategies to compensate for dyskinesia in 
STN DBS (e.g., stimulation of  cZi) are also commonly known. Similarly, 
the functional anatomy of  the GPi often guides programming decisions 
for active contact selection. However, objective data confirming this 
practical experience are limited. As DBS is utilized in greater numbers, 
standardizing the approach to the patient with SID will be necessary to 
maximize outcomes. As novel stimulating technologies and program-
ming platforms emerge, with corresponding increasingly complex pro-
gramming options, the need for evidence-based standardization will 

become ever more important. At the same time, programming plat-
forms that utilize patient-specific anatomic-based models to identify the 
volume of  tissue activated may help clarify the role that target func-
tional anatomy plays in causing SID. Adaptive DBS systems which can 
reliably detect cortical biomarkers of  dyskinesia and adjust stimulation 
to compensate may eventually help to reduce or eliminate the challenge 
of  troubleshooting SID patients.
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