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We propose a novel method that predicts binding of G-protein coupled receptors (GPCRs) and ligands. The proposed method
uses hub and cycle structures of ligands and amino acid motif sequences of GPCRs, rather than the 3D structure of a receptor or
similarity of receptors or ligands.The experimental results show that these new features can be effective in predicting GPCR-ligand
binding (average area under the curve [AUC] of 0.944), because they are thought to include hidden properties of good ligand-
receptor binding. Using the proposed method, we were able to identify novel ligand-GPCR bindings, some of which are supported
by several studies.

1. Introduction

G-protein coupled receptors (GPCRs) play an important
role that involves detecting molecules or ligands from the
outside of a cell and activating internal signal transduction
pathways and cellular responses. Because the binding of
an external ligand and a GPCR induces the coupling of a
GPCR and G-proteins, which is followed by various forms of
signal transduction, GPCRs have been extensively studied as
important drug targets.

An important step for studying GPCRs as a drug target
is the identification of drugs or ligands that bind to specific
GPCR proteins. Naturally, many biochemistry or bioinfor-
matics approaches to identification of drug-receptor binding
have been proposed. Many of these approaches focus on
calculating protein-ligand binding affinity [1–3]. However,
because those methods rely on 3D structures of proteins or
ligands, they cannot be used if the 3D structures of proteins
or ligands are not known.

In the other class of protein-ligand identification meth-
ods, several features are extracted from proteins and ligands,
andmachine learningmethods, such as SVM(SupportVector

Machine) [4–6] or neural network [7], are applied to those
features. The key principle of these approaches is that they
make use of the similarities between proteins or targets. Jacob
and Vert proposed a method that exploits the availability of
known ligands for similar targets [6]. Geppert et al. clustered
proteases into several groups andused SVMtopredict ligands
of proteins that have no known binding ligand [4]. Several
network-based approaches have also been proposed. Iacucci
et al. viewed the issue of protein-ligand binding identification
as a protein-protein interaction (PPI) prediction problem
[5], while Cheng et al. developed a network-based inference
method to identify protein-ligand bindings [8].

In the present study, we propose a novel protein-ligand
binding prediction method, which makes use of the local
and global structure of a ligand and amino acid motif
sequence of a GPCR. The proposed approach is not depen-
dent on the 3D structure of a receptor. Instead, it infers
hidden properties of good ligand-receptor bindings, which
are encoded as a random forest classifier. We performed
extensive testing of various combinations of feature sets of
receptor and ligand and found various machine learning
algorithms that were effective. The proposed method shows
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Figure 1: Examples of hub and cycles and how they are encoded.

a high average area under the curve (AUC) of 0.944, which
indicates that local and global structures of ligands and motif
sequences of GPCR are good features for prediction of strong
binding.

2. Methods

2.1. Data Sources and Preprocessing. We downloaded data
for 3055 GPCRs, 276,324 ligands, and 811,601 GPCR-ligand
bindings from the GLASS database [9]. Among these, we
included in the analysis only 213,918 ligands with a molecular
weight greater than 150 and less than 500, since ligands that
are too light or too heavy are likely to be ions or proteins,
respectively. Accordingly, the number of final GPCR-ligand
bindings was reduced to 303,587.

To obtain classification features from GPCRs, we first
measure 1-amino frequencies (total 20) and 2-amino frequen-
cies (total 400) for each GPCR. We also count the motif
frequency of each GPCR. The motifs are small amino acid
sequences that are specific to GPCRs and not observed in
non-GPCRs. We use the MEME Suite [10] to obtain these
motifs.We then excludemotifs with frequencies in all GPCRs
of 1, resulting in a number of final unique motifs of 1,929.
After counting the frequencies of 1,929 motifs, we have a
vector with a length of 2,529 (=20 + 400 + 1,929), for each
GPCR.

To obtain features from ligands, we first use fourmeasure-
ments: molecular weight, XlogP (a measure of the molecule’s
lipophilicity and solubility), hydrogen bond donors, and
hydrogen bond acceptors.We name these fourmeasurements
as 4chars. We also use a canonical simplified molecular-input
line-entry system (SMILES) of a ligand, which can be parsed
into a graph of which nodes and edges represent atoms and
bonding, respectively.

From a graph of a ligand, we obtain two important
features: a hub and a cycle. We define a hub as a node that has
connection to more than 3 nodes. A hub structure is encoded
as “hub node–A=B≡C. . .,” where hub node is a hub node, 𝐴
is the satellite node first in alphabetical order, “–” is one of
the bonding types between a hub node and A, B is located
next to 𝐴 in clockwise order, “=” is one of the bonding types

between a hub node and B, C is located next to 𝐵 in clockwise
order, and so on. Figure 1 shows 8 hub structures in the ligand
(CHEMBL314213) and how they are encoded.

Cycles are mostly various kinds of benzene rings. Depth-
first search (DFS) is used to search cycles from a graph. A
cycle is encoded as “A–B=C . . .,” where 𝐴 is the node first in
alphabetical order, “–” is one of the bonding types between𝐴
and B, B is located next to 𝐴 in clockwise order, “=” is one of
the bonding types between𝐵 andC, and so on. Figure 1 shows
3 cycles in CHEMBL314213 and how they are encoded.

We were able to obtain 1,031 unique hub structures and
1,741 unique cycle structures from 213,919 ligands. We then
count the frequencies of those hubs and cycles for each ligand,
so each ligand has a vector with a length of 2,776 (=1,031 +
1,741 + 4).

Each GPCR-ligand binding has two vectors, one from a
GPCR and the other from a ligand, and we concatenate those
two vectors. Therefore, each GPCR-ligand binding now has
one vector with a length of 5,306 (=2,529 + 2,776).

2.2. Training Procedure. To obtain training data, we first
randomly select 10,000GPCR-ligand bindings and label them
as positive. However, to train a classification model that
distinguishes binding and nonbinding, we also need negative
samples, which means nonbinding GPCR-ligand pairs. We
used Algorithm 1 to generate 10,000 negative samples.

3. Results

We created 10 datasets, each of which consists of 10,000 pos-
itive and 10,000 negative samples, using all the attributes, all
GPCR features and cycle, hub, and 4chars for ligand features.
To select a classification algorithm, we compared 10-fold
cross-validation results using various algorithms including
SVM [11], näıve Bayesian [12], classification and regression
tree (CART) decision tree [13], random forest [14], and
neural network [15], all of which are implemented in scikit-
learn [16]. We can see that random forest shows the best
classification accuracy.

Next we performed 10-fold cross-validation for 10
datasets using all combinations of feature sets, as shown
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For each GPCR X from positive samples,
Step 1. Randomly select GPCR Y from one of the positive samples;
Step 2. If𝑋 and 𝑌 have common binding ligand(s), go to Step 1.

Otherwise, randomly select one ligand 𝑍 among ligands that bind to 𝑌,
and make a negative sample with “𝑋-𝑍”

Step 3. If negative samples already have “X-Z”, go to Step 1.

Algorithm 1: Algorithm for generating negative samples.

Table 1: Feature sets.

GPCR feature sets Ligand feature sets
MF (motif frequency) 4chars
1AAF (1 amino acid frequency) Hub
2AAF (2 amino acid frequency) Cycle
MF & 1AAF 4chars & Hub
MF & 2AAF 4chars & Cycle
1AAF & 2AAF Hub & Cycle
All All

AU
C

SVM Naive
Bayes

Decision
tree

Random
forest

Neural
network
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Figure 2: Classification results for various algorithms.

in Table 1. We used random forest, as it shows the best
performance in Figure 2. Figure 3 shows the classification
results.

Figure 3 shows that using all ligand feature sets results in
the highest accuracy for all cases. Among ligand features, hub
seems to be most important, since “Hub,” “Hub & 4chars,”
and “Cycle & Hub” are ranked 4, 3, and 2, respectively. Using
“Cycle” was also relatively effective compared to “4char”
which showed worst classification accuracy. These results
show that structural data regarding ligands are key features.

Additionally, we can observe that the classification results
using GPCRmotifs only (first group) were themost accurate.
This finding implies that motif sequences of GPCRs may
play a role in ligand binding, and motif information can
hold global structural information of GPCRs. We suspect

that the amino acid frequency information may mask the
motif information, since the classification results with GPCR
motifs only show higher AUC than other cases. We can
see that “MF & 1AAF” shows next best performance and
“1AAF” shows better performance than “2AFF.”Those results
imply that 1AAF is more important than 2AAF. When only
“4chars” are used, “MF & 1AAF” show much higher AUC
than other cases, which means 1AAF can be supportive when
ligand information is not enough. From those results, we can
conclude that GPCR motifs are more efficient features than
amino acid frequencies in prediction of binding.

We compared the prediction performance of the pro-
posed approach with Cyscore [1]. Since Cyscore requires 3D
structure of the receptors, we generated GPCR with known
3D structure from PDB (http://www.rcsb.org) [17] and their
interacting ligand pairs of which number is 110,186.The same
number of negative samples was also generated according
to Algorithm 1. Then we randomly selected three training
datasets which is composed of 10,000 positive and 10,000
negative samples. The results of Cyscore are affinity scores of
GPCR-ligand pairs, so we can figure out TPR (True Positive
Rate) and FPR (False Positive Rate) values varying the affinity
thresholds, draw ROC curve, and calculate AUC. Figure 4
shows that our AUC values of the proposed approach are
much better than those of Cyscore.

Lastly, we randomly selected 100 GPCRs that do not
have binding ligands provided in the GLASS database and
predicted ligands that may bind to them (provided in the
Supplementary Materials (available here)). To measure the
prediction accuracy, we downloaded protein-ligand bindings
from BindingDB [18]. We selected 9 GPCRs which are com-
mon in BindingDB, Cyscore, and the proposed bindings and
counted the number of predictions found in the BindingDB.
To count true negatives (which is not predicted by methods
and also not in BindingDB), we define them as 𝑋 − (true
positives + false positives + false negatives), where 𝑋 is a
set of all possible bindings of 9 GPCRs and ligands which
are bound by more than one of 9 GPCRs in BindingDB.
Figure 5 shows ROC curves for the predicted bindings of the
proposed method and Cyscore, and we can see that AUC of
the proposed method is much higher than that of Cyscore.

Among our predictions which were not found in Bind-
ingDB, we were able to identify some interesting bindings,
one of which is “psychosine receptor (Q8IYL9), quercetin.”
Studies have suggested that quercetin may have therapeu-
tic benefit in cardiovascular diseases [19]. The psychosine
receptor is a receptor for the glycosphingolipid psychosine
(PSY) and several related glycosphingolipids. Interestingly,

http://www.rcsb.org
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Figure 3: Classification results for all combinations of feature sets.
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Figure 4: Comparison of prediction performance.

we were able to determine that GPR65 is associated with
cardiovascular diseases [20]. Our prediction that quercetin
binds to the psychosine receptor may assist in elucidating
the role of GPCR65 in the cardiovascular diseases. Another
interesting binding is “Frizzled-2 (Q14332), garcinone E.”
Frizzled-2 is a receptor for Wnt proteins and has been
reported to be elevated in metastatic liver, lung, colon, and
breast cancer cell lines [21]. We found that garcinone E has
already been proposed as a potential drug to treat certain
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Figure 5: ROC curves for the predicted bindings.

types of cancer [22]. Our prediction that garcinone E binds
to Frizzled-2 supports the rationale behind this suggestion
and further suggests the hypothesis that Frizzled-2 may be
inhibited by binding of garcinone E and may thus have a
therapeutic effect in these types of cancer cells.

4. Discussion

In this paper, we propose a novel protein-ligand binding
prediction method. The first step in this method is the
extraction of local and global features from ligands andGPCR
protein sequences. These features include hub and cycle
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structures of ligands and amino acid motifs of GPCRs. Our
experimental results show that these new features were effec-
tive in predicting GPCR-ligand binding, and these features
have the potential to enable us to discover hidden properties
of good ligand-receptor bindings. Ourmethod showedmuch
higher AUC than Cyscore, and the suspected reason of low
AUC of Cyscore is that it is not optimized for prediction of
GPCR-ligand binding. Using the proposed method, we were
able to identify novel ligand-GPCR bindings, some of which
are supported by several previous studies.
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