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Blood pressure homeostasis is maintained by several mechanisms regulating cardiac

output, vascular resistances, and blood volume. At cellular levels, reactive oxygen

species (ROS) signaling is involved in multiple molecular mechanisms controlling blood

pressure. Among ROS producing systems, NADPH oxidases (NOXs), expressed in

different cells of the cardiovascular system, are the most important enzymes clearly

linked to the development of hypertension. NOXs exert a central role in cardiac

mechanosensing, endothelium-dependent relaxation, and Angiotensin-II (Ang-II) redox

signaling regulating vascular tone. The central role of NOXs in redox-dependent

cardiovascular cell functions renders these enzymes a promising pharmacological

target for the treatment of cardiovascular diseases, including hypertension. The aim

of the present review is to focus on the physiological role of the cardiovascular

NOX-generating ROS in the molecular and cellular mechanisms affecting blood

pressure.

Keywords: NOX, blood pressure, reactive oxygen species, redox signaling, cardiomyocytes, endothelial cells,

vascular smooth muscle cells, Ang II signaling

Blood Pressure Regulation

Blood pressure is regulated by a dynamic equilibrium of different complex mechanisms
(Opie, 2004; Raven and Chapleau, 2014). The main factor determining the systemic blood
pressure is the blood arterial volume that, in turn, depends on the cardiac output and
vascular resistances. In addition to the nervous and chemical factors, the cardiac output, is
affected by mechanical factors ensuring the adjustment of cardiac output to the venous return
and afterload. On the other hand, vascular resistance depends in part on the characteristics
of the blood (viscosity) and on the diameter of the vascular lumen. Smooth muscle cell
layer of the resistance arteries may contract or relax resulting in a parallel increase or
decrease of blood pressure, respectively. Several mechanisms regulate vascular tone. Adrenergic
sympathetic fibers exert a vasoconstrictory effect through the activation of alfa1-adrenergic
receptors of the vascular smooth muscle cells (VSMCs). In addition, paracrine, hormonal and
mechanical mechanisms contribute to the fine regulation of vascular tone modulating blood
pressure.
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NOX Isoforms

NOXs Structure and Activation
NOX enzymes are membrane NADPH oxidases with the unique
role of producing superoxide anions by one electron reduction of
oxygen using NAD(P)H as electron donor (Bedard and Krause,
2007).

NADPH oxidase, first discovered in phagocytes (Segal and
Jones, 1978) is a multicomponent complex comprising two
integral membrane proteins, the catalytic subunit gp91phox (now
referred to as NOX2) and p22phox, and the cytosolic components
p47phox, p67phox, p40phox, and Rac1 or 2 (Dinauer et al.,
1987; Knaus et al., 1991; Babior et al., 2002). Upon stimulation,
cytosolic subunits translocate to the membrane activating the
enzyme.

Up to now, in mammalian, seven different NOX genes (NOX1
to 5 and DUOX1 and 2) have been identified (Lambeth, 2004)
(Figure 1). Like NOX2, also NOX1, NOX3, and NOX4 are
associated with p22phox, but the mechanisms of activation are
different. NOX1 is activated by membrane translocation of the
cytosolic subunits NOXO1, NOXA1, and Rac 1or 2, while NOX3
requires NOXO1 but is still uncertain the role of the other
cytosolic subunits. NOX4, NOX5, DUOX 1, and 2 activity is not
modulated by cytosolic subunits. DUOX 1 and 2 terminate at
N-terminus with an extracellular peroxidase-homology domain
(PHD) (Donko et al., 2005) and together with NOX5, are
modulated by calcium. NOX4 and DUOX1 and 2 produce
hydrogen peroxide instead of superoxide anion (Martin et al.,
2006).

NOXs Functions
ROS have been for long time considered as toxic byproducts of
the chemical utilization of oxygen within the cells and oxidative
stress has been linked to the pathogenesis of many disorders (Sies,
1991; Cuda et al., 2002; Sabbatini et al., 2006; Ruocco et al., 2007;
Bertoni et al., 2011). It was the discovery of NOX enzymes, that
deliberately produce ROS, to highlight the physiological role of
ROS (Santillo et al., 2001; Schieber and Chandel, 2014). Many
redox-dependent biological processes are controlled through
the fine regulation of ROS-producing systems and antioxidant
enzymes like glutathione peroxidase, catalase and superoxide
dismutases (Mondola et al., 2004; Santillo et al., 2007; Secondo
et al., 2008; Cassano et al., 2010; Damiano et al., 2013; Terrazzano
et al., 2014).

Multiple physiological functions have been so far attributed
to NOX enzymes. DUOX1 and 2 enzymes, first discovered in
thyroid with a role in thyroid hormones synthesis (De Deken
et al., 2000), are involved also in the innate immunity and cell
signaling (Harper et al., 2005; der Vliet, 2008; Bae et al., 2010).
NOXs-generated ROS modulate several physiological processes
such as cell growth and differentiation or mucin expression and
secretion (Ris-Stalpers, 2006; Chan et al., 2009; Damiano et al.,
2015).

NOXs are activated by growth factor receptors such as
platelet-derived growth factor receptor (Svegliati et al., 2005;
Baroni et al., 2006; Gabrielli et al., 2008; Damiano et al.,
2012), epidermal growth factor receptor (Damiano et al., 2015)

cholinergic receptors (Seru et al., 2004) and many others
(Petry et al., 2010). NOX-dependent ROS, in turn, regulate
phosphorylation levels of multiple proteins modulated by
redox-sensitive kinases and/or protein phosphatase (Brown and
Griendling, 2009).

An interesting feature of NOXs biology is that ROS generated
by NOXs can act downstream on other ROS generating systems
(Lassègue et al., 2012). For example, in endothelial cells, oxidative
stress associated with oscillatory shear stress is mediated by
NOX-dependent xanthine oxidase activation (McNally et al.,
2003). Moreover, there are evidences of a cross talk among NOX
homologs. As an example, platelet-derived growth factor induces
DUOX1-2 levels in human neuroblastoma cells through NOX2-
derived ROS (Damiano et al., 2012). Therefore, the activation
of NOXs results in a ROS-induced ROS release that can lead
to oxidative stress and associated diseases. In human coronary
arteries a correlation between NOXs mRNA expression and
severity of atherosclerotic lesions has been shown (Sorescu et al.,
2002).

NOXs in the Cardiovascular System

NOXs are expressed in cardiomyocytes and in all cells of the
vascular wall including endothelial cells (ECs), vascular smooth
muscle cells (VSMCs), and adventitial fibroblasts.

Endothelial NOXs
ECs express NOX1, NOX2, NOX4, and NOX5 (Jones et al.,
1996; Damico et al., 2012). They regulate cell differentiation,
proliferation, migration, angiogenesis and vascular tone.
NOX2 has been clearly linked to the reduced bioavailability
of endothelium-derived NO (Görlach et al., 2000); NOX1
mediates cell growth, while NOX4 growth suppression, probably
depending on their different subcellular localization or agonist
stimulation. However, the specific role of the different NOX
homologs should be better clarified. NOXs in ECs are in
part localized at plasma membrane producing extracellular
superoxide with a paracrine function (Barbacanne et al., 2000),
and in part preassembled in intracellular compartments also with
a perinuclear distribution (Li and Shah, 2002). Their functions
are crucial for of ECs activation by different stimuli that rely on
redox sensitive signaling molecules. Among the main targets of
NOX-derived ROS in ECs there are the transcriptional factors
NF-kB, Activated protein-1, hypoxia-inducible factor-1 or p53
that regulate gene expression. Endothelial NOXs also activates
signaling cascades acting on protein kinases, (p38 and c-Jun
N-terminal kinase, protein kinase B and Src), and/or protein
phosphatases, including protein tyrosine phosphatase (Damico
et al., 2012).

NOXs in VSMCs
NOX2 is the main isoform of VSMCs of resistance arteries, while
its expression is very low in VSMCs of large vessels (Lassegue and
Clempus, 2003). NOX1 and NOX4 are expressed in VSMCs of
large arteries with distinct subcellular localization and functions.
NOX1, less abundant respect to NOX4, is localized at caveolae
and mediates cell proliferation, while NOX4, that induces cell
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FIGURE 1 | NOX isoforms and regulatory subunits. NOX1-4 are associated to the membrane subunit p22phox. NOX4, NOX5, and DUOX1 and 2 do not require

cytosolic subunits for their activity. NOX5 and DUOX1 and 2 activation requires Ca2+ binding to their EF-hand domains.

differentiation, is mainly localized at focal adhesions, the sites of
tyrosine kinase signaling (Hilenski et al., 2004). Human aortic
VSMCs also express NOX5 (Jay et al., 2008). In addition to
NOX2, resistance arteries express NOX4, while the expression of
NOX1 has not been so far clearly demonstrated.

NOXs in Cardiomyocytes
NOX2 and NOX4 are the most abundantly expressed isoforms in
cardiomyocytes. NOX2 is localized in plasma membrane and is
modulated by stretch or Ang II (Byrne et al., 2003) (see NOXs
in the cardiomyocyte force development). NOX4, involved in cell
differentiation (Murray et al., 2013), is constitutively active and
is mainly localized in intracellular compartments (Zhang et al.,
2010).

NOXs in Ang II Signaling

Ang II, the major bioactive peptide of the Renin-Angiotensin
System (RAS), is involved in many vascular processes including
vasoconstriction, fibrosis, hypertrophy, inflammation, and aging

(Mehta and Griendling, 2007). These effects are mediated by the
interaction of Ang II with AT-1 receptor, while AT-2 receptor
activation results in opposite vasodilatatory and antiproliferative
effects. Vascular NOXs, including NOX1, NOX2, NOX4, and
NOX5, are all regulated by Ang II (Nguyen Dinh Cat et al., 2013)
that promotes an increase in blood pressure. The Ang II effects
aremainlymediated by NOX-derived ROS signaling (Montezano
et al., 2014). In addition to a direct effect on VSMCs, Ang
II strengthens the sympathetic vasoconstriction increasing the
synthesis and the release of the neurotransmitter at adrenergic
varicosities. It has been also demonstrated that NOX-dependent
ROS, in turn, activate AT-1 receptor thereby potentiating cell

signaling with an auto amplificatory effect (Nishida et al., 2011).
Ang II induces activation of the enzymatic activity and

increases expression of NOXs both in cultured VSMCs and
intact arteries (Virdis et al., 2004). ROS produced thereby,
activate multiple redox sensitive molecule including mitogen-
activated protein, non-receptor tyrosine kinases, protein
tyrosine phosphatases, calcium channels, and redox-sensitive
transcription factors. In addition, Ang II activates tyrosine
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kinase receptors by transactivation (Cruzado et al., 2005; Li
et al., 2010). Activation of these signaling pathways modulates
different cellular processes in VSMCs, including contraction
that relies on an increase of intracellular calcium levels and on
the activation of the RhoA/Rho kinase pathway (Touyz and
Schiffrin, 2000; Touyz et al., 2005), leading to an increase of
myosin light chain phosphorylation. AT-1 receptor signaling
activated by Ang II have an hypertrophic and fibrotic effect
on the cardiac cells, mediated in part by endothelin-1 (ET-1)
release (Weng et al., 2015). Moreover, Ang II redox signaling
in cardiomyocytes is also involved in the Anrep effect (see
NOXs in the cardiomyocyte force development). For the role of
NOX-dependent Ang II signaling in the endothelium see NOXs
in the endothelium-dependent relaxation.

NOXs in the Endothelium-dependent
Relaxation

NOX signaling have a role in endothelium dependent
vasorelaxation that is mainly mediated by nitric oxide (NO)
generated by endothelial nitric oxide synthase (eNOS). The
liposolubile NO diffuses across the membranes reaching
VSMCs, where it increases cGMP levels by activating the soluble
guanylate cyclase; the subsequent activation of cGMP-dependent
kinases leads to a decrease of intracellular calcium levels and
relaxation. Superoxide anions produced by NOXs react with
NO to produce peroxynitrite (Beckman et al., 1990; Görlach
et al., 2000), leading to reduced bioavailability of NO and
vasoconstriction. In addition, it has been shown that in aortas
of mice with deoxycorticosterone acetate–salt (DOCA-salt)
hypertension, ROS produced by NOXs oxidize the eNOS
cofactor tetrahydrobiopterin, leading to the uncoupling of eNOS
that produces superoxide rather than NO (Landmesser et al.,
2003). This mechanism can cooperate with the scavenging
effects of superoxide ions, leading to a reduced NO levels and
impairment of endothelium-dependent vasorelaxation. This
evidence has been also demonstrated in vivo using NOX1
overexpressing mice. In these animals subjected to Ang II
induced hypertension, endothelium-dependent relaxation
was impaired and bioavailable NO was markedly decreased
(Dikalova et al., 2010). In ECs, Ang II activates all NOXs
expressed in these cells including NOX5. Ang II-dependent
extracellular signaling regulated kinase1/2 activation that
mediate growth and inflammation, relies on NOX5 superoxide
production. However, unlike the other NOX homologs, NOX5
overexpression increases eNOS activity even if, due to its
NO antagonistic action, the overall effect is an impairing of
endothelium-dependent relaxation, similarly to the other NOX
homologs (Zhang et al., 2008).

NOXs in the Cardiomyocyte Force
Development

NOX-generating ROS contribute to the positive inotropic
response to mechanical stretch in cardiomyocytes. Physiological
stretch triggers a microtubule-mediated activation of NOX2

localized at t-tubule membranes. This mechanism referred by
Prosser et al. (2011) as X-ROS signaling, produces ROS that
can diffuse across the membrane to oxidize the RyR2 Ca2+

release channels, located at junctional sarcoplasmic reticulum
(J-SR) close to NOX2. Then, ryanodine receptors-2 activation
leads to an increase of local cytosolic Ca2+ concentration and
force development (Prosser et al., 2011, 2013; Sag et al., 2013). It
has been also demonstrated that a cycling cardiomyocyte stretch
in vitro results in an increase of ROS levels correlated with the
amplitude and the frequency of stretch (Prosser et al., 2013).
This mechanism could be of relevant physiological significance
in vivo during the normal cyclic stretching and shortening of
cardiomyocytes at each heartbeat, where the Ca2+ spark can be
dynamically modulated by ROS in dependence of pre-load and
heart frequency.

NOX2 is also involved in the slow enhanced increase in
intracellular Ca2+ concentration and myocardial contractility
due to mechanical stretch, known as Anrep effect. This
slow response follows within 1–2min an increase of the
afterload reaching a maximum after 10–15min. In this case,
NOX2-derived ROS mediates Ang II dependent ET-1 release.
In cardiomyocytes, Ang II released by mechanical stretch
(Sadoshima et al., 1993) induces NOX2 activating auto-AT1
receptors, and induces ET-1 release (Ito et al., 1993). ET-1
signaling activates Na+/H+ exchanger-1 (Akram et al., 2006),
that results in an increase of intracellular Na+, inhibition of
Na+/Ca2+ exchanger, increase of cytosolic calcium concentration
and contraction.

The role of NOXs in cardiomyocytes are not limited
to mechanosensing. ROS produced by NOXs and by other
sources such as mitochondria, are able to modulate different
kinases phosphorylating proteins involved in calcium signaling;
sarco/endoplasmic reticulum Ca2+-ATPase, plasma membrane
Ca2+ ATPase, L-Type Ca2+ channels and Nav are some examples
of molecular target of ROS leading to modulation of intracellular
Ca2+ levels linked to myocyte contractility (Sag et al., 2013).

NOXs in Hypertension

The role of ROS in hypertension has been well documented (Lee
and Griendling, 2008; Sirker et al., 2011).

Numerous studies using ROS scavengers or more specific
NOX inhibitors, were aimed at evaluating the role of NOXs in
the elevation of blood pressure in hypertensive animals (Lassègue
et al., 2012). More recently, the involvement of different NOX
homologs and of their regulatory subunits in the pathogenesis of
hypertension have been investigated using transgenic knockout
and overexpressing animal models. These studies evidenced that
NOX homologs exert different effects on hypertension.

NOX2 elevation is correlated with hypertension. Indeed,
in transgenic mice with endothelial-specific overexpression of
NOX2, Ang II causes a greater increase in ROS production
and attenuated acetylcholine-induced vasorelaxation compared
to wild-type (Murdoch et al., 2011). On the other hand,
NOX2 knockout mice show baseline and Ang II-induced
blood pressure values significantly lower than that of wild-
type animals, even if the increase in blood pressure related
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to baseline is comparable in the two strains (Wang et al.,
2001). Similar results were obtained in p47phox knockout
animals in which the lack of Ang II hypertensive response was
associated with a strong decrease of Ang II-dependent superoxide
production in ECs and VSMCs (Landmesser et al., 2002).
Unlike NOX2, cardiomyocyte-targeted NOX4 have protective
effects facilitating cardiac adaptation to chronic cardiac pressure
overload (Zhang et al., 2010; Schröder et al., 2012). Also
endothelial NOX4 exerts beneficial effects. Transgenic mice with
endothelium-targeted NOX4 overexpression show enhanced
acetylcholine- or histamine-induced vasodilatation than wild-
type animals. It is noteworthy to remind that NOX4 produces
hydrogen peroxide instead of superoxide so preserving NO
bioavailability (Ray et al., 2011). Moreover, when in hypertension
or atherosclerosis eNOS was uncoupled to produce superoxide
rather than NO (Landmesser et al., 2003), endothelial NOX4-
derived H2O2 could mediate compensatory relaxation acting
as an endothelium-derived hyperpolarizing factor (Yada et al.,
2003).

Human studies aimed at linking NOX dysfunction with
hypertension, have shown that some polymorphisms in the
gene encoding p22 phox and affecting enzymatic activity, are

associated with hypertension (Zalba et al., 2005). Moreover, it
has been demonstrated that in human arteries Ang II increases
superoxide levels and that this effect, mediated by NOX, is
inhibited by AT1 receptor antagonists (Berry et al., 2000).
However, results with AT1 antagonists are more convincing in
patients with coronary artery disease (Hornig et al., 2001) rather
than with hypertensive subjects (Ghiadoni et al., 2000).

Finally, another interesting aspect of NOX involvement
in blood pressure homeostasis impairment is related to
cigarette smoke, a risk factor of hypertension. Cigarette smoke
condensate exposures have been correlated with ROS production,
downregulation of enzymatic antioxidant cellular systems and
cell toxicity (Russo et al., 2011). NOX2 activation by cigarette
smoke have been demonstrated in isolated blood vessels and
cultured ECs and VSMCs, suggesting a role of NOX-derived ROS
in endothelial dysfunction associated with hypertension (Kim
et al., 2014).

Homolog-specific NOXs Inhibitors

NOXs are now being considered as target of pharmacological
intervention in patients with hypertension (Cai et al., 2003).

FIGURE 2 | Scheme of the main NOXs-dependent cardiovascular

mechanisms involved in the control of blood pressure. RyR2,

Ryanodine Receptor type 2; ET-1, endothelin-1; NA, noradrenaline; AT1r,

Angiotensin I type 1 receptor; ET1, endothelin 1; ETAR, Endothelin type A

receptor; NHE-1, Na+/H+ exchanger-1; NCX, Na+/Ca2+ exchanger;

e-NOS, endothelial nitric oxide synthase.
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Homolog-specific NOX inhibitors have been recently developed.
This class of drugs opens the possibility to affect ROS production
without altering ROS beneficial effects. The peptide-based
inhibitors like NOX2ds-TAT (Csányi et al., 2011) and the NOX1
targeting inhibitor, NOXA1ds (Ranayhossaini et al., 2013) are the
most reliable in in vitro experiments. However, due to the low
bio-availability, peptide inhibitors are not promising therapeutic
tools.

A number of small molecule NOXs selective inhibitors have
been developed. Among them there are NOX1 and NOX 4
selective inhibitors like GKT137831, GKT136901, and GKT901
(Takac et al., 2012). The first one is in a phase 2 trial in patients
with diabetic nephropathy and is also subjected to a series of
preclinical studies for its application in different disease including
cardiovascular disease.

Conclusions

Multiple molecular mechanisms regulating blood pressure
involve NOX signaling. Of great importance is the central role
of NOXs in angiotensin signaling, in the availability of NO and
in the cardiac mechanosensing. A general scheme of the main
overall effects of NOX-mediated signaling in the cells of the
cardiovascular system leading to blood pressure modulation are
shown in Figure 2.

The current challenge in the NOX biology research
field is represented by the better understanding of
the mechanisms by which NOX isoforms exert their
differential biological effects leading to the development of
substances able to modulate specific redox-dependent cell
functions.
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