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The repertoire of T cell receptors encodes various types of immunological information.
Machine learning is indispensable for decoding such information from repertoire datasets
measured by next-generation sequencing (NGS). In particular, the classification of repertoires
is the most basic task, which is relevant for a variety of scientific and clinical problems.
Supported by the recent appearance of large datasets, efficient but data-expensive methods
have been proposed. However, it is unclear whether they can work efficiently when the
available sample size is severely restricted as in practical situations. In this study, we
demonstrate that their performances can be impaired substantially below critical sample
sizes. To complement this drawback, we propose MotifBoost, which exploits the information
of short k-mer motifs of TCRs. MotifBoost can perform the classification as efficiently as a
deep learning method on large datasets while providing more stable and reliable results on
small datasets. We tested MotifBoost on the four small datasets which consist of various
conditions such as Cytomegalovirus (CMV), HIV, a-chain, b-chain and it consistently
preserved the stability. We also clarify that the robustness of MotifBoost can be attributed
to the efficiency of k-mermotifs as representation features of repertoires. Finally, by comparing
the predictions of these methods, we show that the whole sequence identity and sequence
motifs encode partially different information and that a combination of such complementary
information is necessary for further development of repertoire analysis.

Keywords: TCR repertoire, repertoire classification, T-cell receptor, T-cell, k-mer, immunoinformatics, machine learning
INTRODUCTION

T and B lymphocytes play a central role in the adaptive immunity of vertebrates, including human
beings. Through the somatic recombination process called V(D)J recombination, T/B cells acquire
diversities of T/B cell receptors (TCR/BCR) (1). These diversities are called the TCR/BCR
repertoires. Clonal expansion of T/B cells, in response to infections of various pathogens, alters
the repertoires (2). In particular, T cells are integral as the control center of the immune system to
regulate other immune cells, including B cells. The development of next-generation sequencing
(NGS) enables quantitative measurements of the somatically recombined regions of T cells’ genome,
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which encode the TCR, from cells collected from a wide range of
tissues and conditions. NGS drives the progress of research on
TCR repertoire from various aspects (3).

In basic immunology, public TCRs, T-cell receptors with
identical or very close sequences shared across multiple
individuals, have been studied intensively (4, 5). Before NGS,
public TCRs were thought to be the result of multiple
recombination events converging on the same amino acid
sequences (6). However, recent studies based on NGS have
revealed that the selection of antigen-specific or self-reactive TCRs
may also contribute to the emergence of public TCRs (7–9). In
applied immunology, quantitative measurements of T cell repertoire
have already been employed for practical and clinical purposes. For
example, the FDA (U.S. Food and Drug Administration) approved
a test kit for micro residual disease, a type of leukemia (10).

On these backgrounds, the importance of bioinformatics and
machine learning methods in processing and analyzing the
sequenced repertoire data is increasing in both basic and
applied immunology. For bioinformatics applications, several
software tools(e.g., IMGT/HighV-QUEST (11), IgBLAST (12),
MiXCR (13), etc.) have been developed to extract quantitative
repertoire information from NGS data, and modeling of the
dynamics of T cellrepertoire generation and selection is also
being actively studied (14–17). For example, a mathematical
model of recombination successfully classifies public and private
TCRs (18).

Formachine learning applications, repertoire classification tasks
have been widely studied in the context of disease detection. As a
result, various methods were proposed and have gradually evolved
so as to exploitmore complex information in the repertoire dataset:
First, summary statistics of abundance distribution, such as
Shannon’s entropy, were used for classifying and clustering the
infection status and properties of repertoires. These statistics are
scalar-valued and can be calculated only from the abundance
distribution of sequences in a repertoire (19, 20). Similarly,
distance-based methods were employed (21, 22). These methods
classify or cluster repertoires based on distances between two
repertoire distributions defined by metrics like the Morisita-Horn
Similarity Index, which is frequently used in ecology. A new
similarity index tailored to TCR has also been proposed (23).

These methods can be interpreted as unsupervised learning
for the repertoire classification task, using only the abundance
information of sequences and ignoring the sequence itself. Since
these methods only use such summarized information, they can
produce relatively robust results regardless of the number of
samples. However, they abandon a large portion of potential
information in the repertoire. They consider sequences as just
independent labels regardless of their similarity. However,
similar TCRs are experimentally suggested to behave similarly
against antigens. Thus, analysis based on abundance alone
inevitably has limitations. In addition, methods reducing a
repertoire to a few parameters like those described above may
not capture the complex mechanism of generation and
maintenance of repertoires in vivo.

In order to address these problems, supervised learning
frameworks have recently been employed and the increase of
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available repertoire datasets also boosts their development.
Emerson et al. published the largest repertoire dataset
(hereafter called “Emerson dataset”) at that time from 766
Cytomegalovirus (CMV)-infected and uninfected individuals
(24). They employed the Fisher Exact Test to find the CMV-
related subset of TCRs that appeared significantly more in the
infected samples than in the non-infected ones. A binary
classifier is then constructed, which uses the number of
occurrences of the CMV-related TCRs in a given repertoire.
Although this method also refers only to abundance information
and discards sequence information, it achieves a high level of
accuracy because the dataset is large enough to identify the
significant fraction of TCRs. We call this method “the burden
test” by following the preceding literature (25).

Natural language Processing (NLP) methods have also been
applied to utilize receptor sequence information (26, 27). Among
them, Widrich et al. (25) focused on the repertoire classification
problem using one of the latest neural networks (NN)
architectures which are popularly used in NLP. Repertoire data
is essentially a collection of many short sequences for each
subject (typically, about 105-106 sequences are obtained for
each subject), and the repertoire classification problem is to
assign a label to each of these collections. The number of the
sequences being determinant of the label is few compared with
the whole sequences in the repertoire. Therefore, it is essential to
identify the determinant TCRs from a labeled training dataset.
This kind of problem is called “Multiple Instance Learning”
(MIL). In Widrich et al., NN is trained iteratively on small
subsampled repertoires to predict the label of the original
repertoire. The NN uses a technique called Attention to find
the patterns of sequences associated with the repertoire label.
Hereinafter, this method is referred to as “DeepRC.”

Both the burden test and DeepRC achieve good performance
over the Emerson dataset of 766 subjects. However, the sample
sizes in typical repertoire measurements are about an order of
magnitude smaller than this dataset. In fact, according to TCRdb
(28) as of April 2021, the largest database of repertoire
sequencing data, 114 of 130 projects (88 %) have less than 100
samples (Supplementary Table S1). Whether these methods will
work on datasets smaller than the Emerson dataset or not has yet
to be tested. The burden test requires finding the TCRs observed
significantly more frequently in the CMV positives than in the
negatives via the Fisher Exact Test. When the sample size is
small, it becomes difficult to find significant differences by such
statistical tests. DeepRC employs a Transformer-like deep
learning architecture, whose performance is also believed to
depend significantly on the amount of available training
data (29).

In this study, by investigating how these preceding methods
behave in response to the change in the effective size of a dataset,
we show that the performance of both methods deteriorates
rapidly when the dataset size becomes smaller than a certain size.
In order to compensate for the drawbacks of these methods, we
also propose a new method (hereafter called “MotifBoost”) that
works robustly on smaller datasets. For small to medium-sized
datasets, a method is preferable to have a slow degradation in
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performance with respect to the decrease in data size.
Additionally, if the method can achieve high performance
comparable to the existing methods for sufficiently large
datasets, it can be widely used regardless of the size of the
datasets. We show that our proposed method satisfies both of
these properties. MotifBoost adopts a k-mer based feature, which
can exploit both sequence and abundance information without
relying on strong but data-expensive representation learning
conducted in deep learning (29, 30). We use Gradient Boosting
Decision Tree (GBDT) as a classifier (31), because of its
performance on small datasets (32, 33). We show that the
performance of MotifBoost depends loosely on the dataset size
and can achieve the comparative performance as DeepRC on the
large Emerson dataset. We also compared MotifBoost with other
previously proposed k-mer based methods, confirming that its
performance is consistently superior to the other methods across
the four different datasets. To further investigate why MotifBoost
performs so well despite its simplicity, we visualized and
examined the k-mer feature space. The result shows that
repertoire classification is possible in the k-mer feature space at
decent performance without any supervision, indicating that the
conventional k-mer feature representation encodes and
represents relevant information to the task. Finally, by
scrutinizing the label predictions by all the three methods, we
argue that there is a difference in the latent information of a
repertoire employed between the burden test and either DeepRC
or MotifBoost. This could hint at how we can integrate the best of
those for further development.

This paper is organized as follows: In Materials and Methods,
we provide an overview of our proposed method and the
framework of the performance benchmark with two preceding
methods. Then, in Results, we show how the performance of the
three methods changes as the sample size changes. We also
examine the stability of the performance with respect to
variations in the training datasets. Next, we investigate the
nature of the k-mer feature extraction to explain the low
variance of the performance of MotifBoost. Finally, after
mentioning a potential difference in the three methods, future
directions are discussed.
MATERIALS AND METHODS

MotifBoost
We propose a new repertoire classification method, MotifBoost,
which is summarized in Figure 1. MotifBoost is inspired by the
following two properties of TCRs. First, identical or similar TCRs
may exhibit similar immune responses to antigens even across
individuals. Various research supports this property. For
example, even though TCRs are generated by the highly
random V(D)J recombination process, there are public TCRs, a
subset of TCRs with identical or very close sequences shared
across multiple individuals (4, 5). It is reported that patients with
the same infection history have such public TCRs in common
(34). The success of the burden test, which uses the shared TCRs
across individuals, also evidences the relevance of public TCRs to
Frontiers in Immunology | www.frontiersin.org 3
infections. Second, the response of TCRs to antigens is
sometimes strongly influenced by “motifs,” short sequences of
a few amino-acid lengths (35). One possible explanation for this
property is that the presence of a particular motif affects the
structure of the TCR antigen-binding site (36, 37).

Based on these observations, we employed the k-mer abundance
distribution for the feature representation. All k consecutive amino
acids in the sequences of a repertoire are listed to calculate their
abundance distribution, which is to be used as the feature vector for
the repertoire. Compared to the burden test, our approach treats a
sequence as a set of motifs instead of a single sequence. This allows
us to exploit sequence similarity information through the
combinations of motifs. As our feature representation is a fixed-
sized vector for a specific value of k regardless of the number of
sequences or the sequence length, we can employ data-inexpensive
models for classification, instead of complex deep learning
architectures such as Transformer-like DeepRC (38). It should be
noted that k-mer based approaches have been employed for the
repertoire classification problem already. Sun et al. (39) adopted a
sparse model (LPBoost) for the k-mer representation (k=3);
Thomas et al. (40) employed k-mer representation and encoded
each k-mer to feature vectors using Atchley factors (41),
which represent the physicochemical properties of each amino
acid. K-means clustering and SVM are combined to generate final
predictions; Ostmeyer et al. (42) also formulated MIL by
transforming the k-mer representation (k=4) into Atchley factors
and performing linear regression and max-pooling operation on it.

As for the value of k, k=3 or k=4 has been widely used in
previous studies like those mentioned above. In the case of k=4,
the number of dimensions of the feature vector is about 160,000,
which is the number of patterns of four consecutive residues
composed of 20 human amino acids. This number is clearly too
large for the repertoire classification task, as their sample size is
102 at most. While Ostmeyer et al. adopted k=4, they also
performed a dimensionality reduction. Every amino acid is
represented as a five-dimensional biophysicochemical dense
FIGURE 1 | A schematic illustration of MotifBoost. MotifBoost employs k-mer
distribution as a feature vector of a sample and GBDT as a classifier.
July 2022 | Volume 13 | Article 797640
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vector and any k-mer pattern is represented as a combination of
those vectors. Therefore, we selected k=3 in this study. Each
sample is represented by a multinomial distribution of k-mer
abundance over 213=9,261 dimensions, as we have 20 human
amino acids and a symbol representing the edge.

The studies mentioned above have selected classification
algorithms, which enable not only classification but also
identification of important motifs. However, there is generally
a tradeoff between interpretability and performance of methods.
As we do not impose such a restriction in this study, we can
adopt a more flexible algorithm. To achieve high classification
performance, we chose GBDT (Gradient Boosting Decision
Tree). GBDT is a kind of tree-based ensemble classifier that
makes a final prediction by aggregating predictions of decision
trees. It is much harder to interpret the output of tree-based
models since they are ensembles of decision trees (31), but it can
handle nonlinear correlations of motifs. Unlike other tree-based
ensemble methods such as RandomForest, where decision trees
are created independently, GBDT adds decision trees sequentially
tominimize the error on training. GBDT is popularly used in data
science competitions such as Kaggle (43). For its data efficiency is
comparable to complex deep learning architectures in a
considerable portion of tasks, it is widely used for tasks with
limited data (32, 33). In addition, tree-based ensemble methods
have been successfully utilized for relatively small size datasets in
bioinformatics (44). For example, early gene expression analysis
was conducted on 101-102 samples for 103 genes to which tree-
based ensemble methods have been employed (45). This sample
size and number of dimensionality is very similar to those of the
repertoire classification problem. This property is important
because the repertoire classification problem is also severely
data-limited as we saw earlier.

To improve the performance, we additionally employed the
following techniques. First, we applied a data augmentation
technique to increase the robustness of the model when it is
trained on a small amount of data. Data augmentation is a
common technique employed in data science to increase the
effective amount of training data. For example, in the object
detection task, we can crop, rotate, and reverse a picture to create
similar pictures with the same object in it. In this study, we used
sampling to create another repertoire from the existing one.
Observed repertoire sequences from a subject can be seen as a
sampling trial from the subject’s in vivo TCR distribution. By
resampling the sequences from the observed data, we can
simulate this sampling process and generate pseudo training
data, which may contribute to the model’s ability to deal with the
variance of the dataset. Second, hyperparameter tuning is
performed, since the performance of GBDT is known to
depend strongly on the hyperparameters. Hyperparameters are
the parameters selected before training. In GBDT, for example,
learning rate can be changed and we do not know the best value
beforehand. Therefore, hyperparameter tuning is conducted by
repeating the training for different values of the hyperparameters
to see which set of values is best. In this process, only
training data should be used. The details of the tuning are
described later.
Frontiers in Immunology | www.frontiersin.org 4
Performance Measurement
We compare the performance of our proposed MotifBoost and two
previously proposed supervised learning basedmethods, burden test
and DeepRC. We use the Emerson dataset introduced earlier
because the dataset is the one on which the latter two methods
were validated and also because it is still one of the largest datasets
being publicly available. To investigate the relationship between the
dataset size and the performance of each method, we repeatedly
sampled subsets of the dataset in different sizes and trained each
method on each sampled subset. Then we performed a binary
classification on the CMV infection status for each method. By
following both papers of burden test and DeepRC, we measured the
correctness of the classification result by ROC-AUC. This index is
measured by the size of the Area Under the Curve (AUC) of
Receiver Operator Characteristic (ROC) curve and used for
evaluating a binary classifier, whose output is a scalar value. For
such a classifier, we can determine a threshold and if a prediction
score of a sample is above the threshold, the sample is predicted as
positive by the classifier. ROC curve plots the False Positive Rate
(FPR) for X-axis and True Positive Rate (TPR) for Y-axis by
changing the threshold of the classifier. Therefore, the AUC of
the ROC curve (ROC-AUC) is larger if the classifier has a lower FPR
while retaining a higher TPR. The maximum ROC-AUC is 1.0,
where the classifier can predict the scores of all the positive samples
larger than those of all the negative samples. For such a classifier, we
can set a threshold with which the classifier can predict all the
samples correctly. Therefore, a larger ROC-AUC value is better.

The Emerson dataset consists of two cohorts, “Cohort 1” and
“Cohort 2”, sampled in different medical facilities. They include 640
samples (CMV+: 289, CMV-: 351) and 120 samples (CMV+: 51,
CMV-: 69), respectively. Cohort 1 in the original paper included 666
samples, but we excluded 25 samples with missing CMV infection
status and one sample being unavailable in the published data.

In this study, Cohort 1 was used for training the models, and
Cohort 2 was used for testing them. Hyperparameter tuning was
also performed using only Cohort 1. This cohort-based train/test
split is to avoid an undesired behavior called “shortcut learning,”
in which a model learns to exploit undesirable information in
data to predict the label (46). Because Cohorts 1 and 2 are
sampled at different medical facilities, such undesirable
information like batch effects may not be shared between
them. Therefore, the possibility of “shortcut learning” is
reduced under our setup compared to the mixed setup used in
the original paper of DeepRC. Emerson et al. also employed the
same setup as ours, and the setup is generally considered more
appropriate for evaluating disease detection tasks than random
train/test split of the mixed dataset (47).

By performing subsampling on this dataset, we can simulate
small datasets. Hereinafter, repertoire sequence data from a
single subject is referred to as a “sample,” and the entire 640
samples of Cohort 1 are referred to as the “full training dataset.”
Subsampling is conducted as follows:

For a given dataset size N, we select N samples randomly
without replacement from the 640 samples of the full training
dataset. Because of no replacement, the subsampled dataset with
N=640 is identical to the full training set. To maintain the
July 2022 | Volume 13 | Article 797640
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comparability of the performance assessment, stratified sampling
was performed so that the proportions of CMV positive/negative
samples of subsampled datasets match that of the full training
dataset as closely as possible. This is also a realistic setup. In the
original training data, the proportions of positive and negative
samples are controlled to be comparable. This level of control
also can be expected even for other experimental situations
with smaller sample sizes. A subset of the full training dataset
generated by the above procedure is referred to as a “subsampled
training dataset.”

Subsampled training datasets are created for N=25, 50, 100, 250,
and 400. The performance of each method can depend on a certain
choice of the subsampled samples, which mimics the situation that
we happen to have a good or bad set of samples in an actual
experiment. To evaluate the sample-dependent statistical variation
of performance of the methods, for each N, we generated 50
independent subsampled training datasets. Then each method
was statistically evaluated by measuring its performance with
these 50 different subsampled datasets for each N. Training a
method on one of the 50 subsampled datasets and measuring its
ROC-AUC score is hereafter referred to as a “learning trial.” Thus,
we performed 50 learning trials for each method and for each N.

All samples in Cohort 2 are used as the test dataset regardless
of the training dataset size and of the classification method. All
methods have no access to Cohort 2 samples during training.

To further validate the performance on the smaller datasets, the
comparison is also performed on other datasets. We employed
another CMV dataset (25 samples) from Huth et al. (48) and an
HIV dataset (26 samples) from Heather et al. (20). These datasets
are taken from the TCRdb (28) to satisfy the following conditions:
the dataset has less than 100 samples; the dataset contains healthy
samples (to avoid shortcut learning); the dataset is prepossessed
by the authors (to validate the performance on various protocols).
As these datasets consist of a single cohort, we employed cross-
validation to test the performance.

Additionally, we compare Motifboost with two k-mer based
repertoire classification methods introduced earlier to validate the
superiority of the combination of the k-mer and GBDT. The first
method is from Thomas et al. (40), which we call k-mer/SVM. The
other method is from Ostmeyer et al. (42), which adopts linear
regression based MIL. We call it k-mer/MIL. These methods are
chosen by their popularity and the availability of implementation.

Detailed implementation and the parameters of each model
are as follows: For MotifBoost, we employed LightGBM (49) as
an implementation of GBDT and optimized its hyperparameters
with the Bayesian optimization library Optuna (50). Optuna was
run by its default parameters. The hyperparameter search was
performed for each learning trial based on the cross-validated
ROC-AUC score.

Data augmentation was also performed as follows: First, we
randomly selected sequences from a sample with replacement to
create an augmented sample. This is repeated until the number of
sequences in the augmented sample becomes half of the original
one. Note that the sampling probability for each sequence is
weighted by its observation count to utilize abundance
information. Second, this sampling was repeated five times for
every training sample.
Frontiers in Immunology | www.frontiersin.org 5
For the burden test, we implemented its algorithm by ourselves
because the code is not available. The hyperparameter tuning is
also performed as in the original paper, but we conducted a
broader search than the original paper (Supplementary Table S2).
The hyperparameter search was performed for each learning trial
based on the cross-validated ROC-AUC score. The Fisher’s exact
test is implemented based on SciPy and compiled by the JIT
compiler library Numba for faster execution. The classifier is
implemented based on immuneML (51).

For DeepRC, we adopted the author’s implementation and its
default hyperparameters. In the original paper, the performance
measurements were performed on a mixed Cohort dataset. We
have patched the implementation so as to train it on Cohort 1
and test it on Cohort 2.

For k-mer/SVM, we employed the author’s code and
parameters from the publication. For k-mer/MIL, we employed
the implementation of immuneML. Although this method is
sensitive to the parameters according to the original paper, its
high computational cost did not allow us to conduct parameter
search. Therefore, we adopted the best parameter set used in
the publication.

Servers equipped with Intel CPU and operated by Ubuntu
were used for numerical experiments. An NVIDIA RTX2080Ti
GPU was used to run DeepRC. All experiments of MotifBoost,
burden test, and the other k-mer based methods were conducted
with Python 3.8.5, LightGBM 3.2.1.99, immuneML 1.2.1, Optuna
2.8.0, SciPy 1.6.2, NumPy 1.20.2, and Numba 0.50.1. Those of
DeepRC were conducted with Python 3.6.9 and PyTorch 1.3.1,
the same environment as that of the original paper.

Visualization of the Feature Space
To investigate the feature space of MotifBoost, we employed an
unsupervised dimensionality reduction algorithm called
Gaussian Process Latent Variable Model (GPLVM) to visualize
the feature vectors (52). GPy 1.9.9 (https://github.com/
SheffieldML/GPy) was used to implement the model.
RESULTS

The Performance of the Previously
Proposed Methods Deteriorates Below
Certain Sample Sizes
We measured the classification performance of the three
methods by ROC-AUC score with varying N, the number of
training samples (Figure 2).

Being trained on the full training dataset (640 samples), the
burden test achieved the best performance with the mean ROC-
AUC score of 0.889 (as we will see later, the burden test is
deterministic, therefore we do not show confidence intervals.). On
the other hand, the mean ROC-AUC score of DeepRC is 0.80 ± 0.03
and that of MotifBoost is 0.78 ± 0.01. As the sample size N was
reduced to N=400, the mean ROC-AUC score of the burden test
decreased with a large variance of the scores among learning trials.
When N=250 or less, the burden test can no longer learn. The
performance of DeepRC was maintained even when the sample size
N was reduced to 400. However, the same instability and rapid
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deterioration of performance were observed when N=250. DeepRC
also cannot learn at N=100 or less.

MotifBoost Performs Better Than the
Other Methods at Small Sample Sizes
Trained on the full training dataset, MotifBoost achieved the
equivalent level of the mean ROC-AUC score to DeepRC, with a
difference of only 0.012, which falls within the confidence
interval of DeepRC’s score. The performance of MotifBoost
declines slowly as the sample size N decreases (Figure 2).
However, the performance degrades only by 0.069 even if N is
reduced to 25, i.e., the sample size is reduced by 96 % from the
full training dataset (640 samples). When the sample size is 640
or 400, DeepRC shows slightly higher performance on average
than MotifBoost. However, as discussed below, DeepRC has a
large variance in performance. The mean performance difference
between MotifBoost and DeepRC falls within this variation. The
average performance of the three methods can be summarized as
follows: Trained on the full training dataset (640 samples), the
burden test shows the best performance, and the DeepRC and
MotifBoost work equivalently. When the sample size is 400, they
outperform the burden test because of its catastrophic
breakdown. When the sample size is reduced further below
250, only MotifBoost could maintain the performance stably.

This result is also consistent with those on three additional
datasets with small sample sizes (N=25 or N=26) listed in
Table 1. They include one dataset from CMV patients and two
datasets from HIV patients, each of which corresponds to a and
b chain repertoires. We also create a dataset with N=25 from the
Emerson data by subsampling. On all four datasets, MotifBoost
shows better performance than other methods.

In addition, the experiment of CMV (b, N=25)/Emerson et al.
of Table 1 is trained and tested on the different datasets (Cohort 1
Frontiers in Immunology | www.frontiersin.org 6
and 2). This means that the performance of MotifBoost on small
datasets stays high even if the training and test datasets are
different. It is important to evaluate the method’s ability to
mitigate the batch effects. To check the ability, we further
conducted two experiments (Table 2). We employed the
datasets of Emerson et al. and Huth et al., both of which are
studying human T-cell receptor b-chain with CMV infection.
First, the ROC-AUC score of all methods was measured using the
Emerson et al. (Cohort 2) dataset as the training dataset and the
Huth et al. dataset as the test dataset. Then, the role of the datasets
were swapped, and the same measurement was conducted. The
results show that the ROC-AUC score of MotifBoost is
consistently high compared to the other methods. Out of five
methods, the ROC-AUC score of MotifBoost is tied for first when
trained on the Emerson et al. dataset and is 2nd place when trained
on the Huth et al. dataset. On the other hand, the performance of
DeepRC is volatile. DeepRC is ranked first in the ROC-AUC score
when trained on the Huth et al. dataset but fifth when trained on
the Emerson et al. dataset. The burden test and k-mer/MIL do not
perform well in either experiment. k-mer/SVM performs as well as
MotifBoost when trained on the Emerson et al. dataset. However,
when trained on Huth et al. dataset, its performance is below that
of DeepRC and MotifBoost.

Nevertheless, the difference in the performance between the
experiment of Table 1 and the experiment of Table 2
demonstrates that the batch effect still affects the methods. The
methods that scored high performance in the former experiment,
such as MotifBoost and burden test, drop the score in the latter
experiment. However, MotifBoost still keeps the highest score
among all methods. Therefore, MotifBoost can be evaluated as
relatively immune to the batch effect.

To further validate the superiority of MotifBoost to other k-mer
based methods, we compared it with k-mer/SVM and k-mer/MIL.
All methods were trained on the full dataset (N=640), and their
performances were measured in the same way as Figure 2.
MotifBoost again shows better performance than the others in
this setting (Table 3). For the datasets with small sample sizes, this
trend was invariant as in Table 1.

Moreover, MotifBoost can perform stably even if the number
of sequences involved in a repertoire is small. In Table 4, we tested
MotifBoost and burden test on the dataset created by trimming the
sequences included in each sample of the Emerson data (N=640).
MotifBoost can still keep its performance at 0.1% of the number of
sequences of the Emerson dataset. For such a lower number of
sequences, the burden test reduces its performance more greatly.

Computationally, MotifBoost requires less powerful hardware
than the other methods. DeepRC uses deep learning and requires
dedicated hardware such as GPUs. The burden test repeats the
computationally expensive Fisher exact test, which is further
burdened by the hyperparameter search. It also has to store the
counts of all sequences in all the samples, which consumes a bigger
RAM space in a naive implementation, but an efficient
implementation has not yet been available. In our implementation
and Python environment, DeepRC on GPU took 1.5 hours to train
the full training dataset; the burden test with parameter search on
CPU took about six hours using about 100GB of memory; k-mer/
FIGURE 2 | Performance change of each method in response to the change
in the sample size of the training dataset. The box-and-whisker plot shows
the median and lower and upper quartile of the ROC-AUC of each method.
Note that the subsampling procedure is not performed for N = 640. Thus, the
variance for N = 640 is not attributed to the randomness from subsampling. It
is derived from the randomness of the methods themselves such as the
choice of initial values. As the burden test is deterministic, its score for N =
640 is shown as a bar without any variance.
July 2022 | Volume 13 | Article 797640
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SVM also took about six hours; k-mer/MIL took more than a week.
By contrast, MotifBoost on CPU took about three hours using about
50GB ofmemory. Note thatMotifBoost can be further accelerated by
using GPUs.

MotifBoost Gives Reproducible Results for
Different Datasets if its Size is Comparable
In Figure 2, the average performance of MotifBoost gradually
increases with the increase in the number of samples, which is
accompanied by a steady decrease in the performance variance.
This property manifests the stability of learning. In contrast, for
the other methods, the performance jumps abruptly at certain
sample size, at which the variance also increases significantly. In
addition, DeepRC shows a greater variance than MotifBoost in
performance even beyond the critical sample size. This suggests
that the results of the burden test and DeepRC can vary
Frontiers in Immunology | www.frontiersin.org 7
depending on the differences of the samples involved in the
training dataset or on the stochastic nature of the method,
especially near the critical sample size.

To further investigate the sources of variances, for each dataset
used for the first trial, we conducted the second learning trial on the
same training dataset. For this experiment, we chose the
subsampled training datasets of 250 samples on which the
variance of DeepRC was the largest (Figure 2). We performed
the second learning trial of each method on each of the 50
subsampled datasets (The first learning trials are those shown in
Figure 2). Then we compared the results of the first and the second
learning trials of each subsampled dataset as shown in Figure 3.

The burden test showed no variation in the ROC-AUC score
between the two learning trials because its algorithm is almost
deterministic except for the choice of the initial value of the
Newton method. To choose the initial value, we employed a
TABLE 1 | Comparison of the mean ROC-AUC score on additional small datasets among all methods.

Condition (Chain, Sample Size)/Source MotifBoost DeepRC burden test k-mer/SVM k-mer/MIL

HIV (a, N=26) /Heather et al. 1.00 0.57 0.51 0.99 0.58
HIV (b, N=26) /Heather et al. 1.00 0.50 0.38 0.93 0.93
CMV (b, N=25) /Huth et al. 0.93 0.35 0.90 0.63 0.47
CMV (b, N=25(subsampled)) /Emerson et al. 0.71 0.48 0.49 0.51 0.59
Ju
ly 2022 | Volume 13 | Ar
The first three datasets are from Heather et al. (20) and Huth et al. (48), the former of which includes repertoires of a and b chains. The last dataset is created from the Emerson dataset. For
the datasets from Heather et al. and Huth et al., 5-fold CV was conducted three times. For the dataset from Emerson et al., the same setup used in Figure 2 at N = 25 was used. Therefore,
the models are trained on the Cohort 1 dataset and the scores are measured on the Cohort 2 dataset 50 times. The best results are shown in bold.
TABLE 2 | Comparison of the mean ROC-AUC score of all methods trained and tested on different datasets.

Training data Test data MotifBoost DeepRC burden test k-mer/SVM k-mer/MIL

Emerson et al. Huth et al. 0.66 0.38 0.53 0.66 0.53
(N = 120) (N = 25)
Huth et al. Emerson et al. 0.72 0.82 0.45 0.63 0.51
(N = 25) (N = 120)
Datasets of Cohort 2 of Emerson et al. and Huth et al. for human T cell receptor b-chain with the CMV infection status are emplyed. One dataset is used as the training dataset, and the
other is used as the test dataset. The models were trained to distinguish the CMV infection status. Two experiments were conducted by swapping the role of datasets. Each method was
trained three times for each experiment, and the mean ROC-AUC score was measured. The best result for each experiment is shown in bold.
TABLE 3 | Comparison of the mean ROC-AUC score on the large datasets among three k-mer based methods.

Condition (Chain, Sample Size)/Source MotifBoost k-mer/SVM k-mer/MIL

CMV (b, N=640)/Emerson et al. 0.78 0.52 0.71
The same setup as in Figure 2 at N=640 was used. Therefore, the score of MotifBoost was taken from Figure 2. k-mer/SVM and k-mer/MIL were trained on the full training dataset and
the scores were measured on Cohort2 dataset three times. The best result is shown in bold.
TABLE 4 | Comparison of the mean ROC-AUC score among all methods trained on datasets with different average numbers of sequences in each sample.

Average number of sequences

(Sampling ratio) MotifBoost DeepRC burden test k-mer/SVM k-mer/MIL

3.9 x 105 (10%) 0.80 0.71 0.79 0.55 0.72
3.9 x 104 (1%) 0.80 0.71 0.67 0.55 0.73
3.9 x 103 (0.1%) 0.78 0.71 0.61 0.51 0.67
The same setup as in Figure 2 at N=640 for the Emerson dataset was used, except the average number of sequences in the training dataset (Cohort 1) was decreased by subsampling.
The average number of sequences in the test dataset (Cohort 2) was 3.0×105, and no subsampling was performed on it. The number in parenthesis denotes the sampling ratio. All
methods were trained on the three independently subsampled datasets for each sampling ratio. The best results are shown in bold.
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commonly used algorithm, the method of moments, in which the
initial value is deterministically obtained based on the average
and variance of the training samples. Because a pair of the first
and second learning trials use the same subsampled dataset (one
out of the 50 subsampled sets), the burden test is completely
deterministic in this study. This indicates that, for the burden
test, the large variation of the ROC-AUC score at N=400 in
Figure 2 is exclusively attributed to the difference of samples
involved in each subsampled training dataset.

In contrast, Figure 3 shows that the performance of DeepRC
can vary greatly compared to the other methods between the
learning trials even if being trained on the same subsampled
training dataset. The training process of DeepRC includes
repeated random samplings of sequences in the training
samples. The variability of performance indicated in Figure 3
is due to this stochastic nature of DeepRC.

In addition, we found that the ROC-AUC scores of DeepRC are
almost always low for some samples, which suggests the sample-
dependent variation of performance. To confirm that, we
performed another three learning trials on the four subsampled
training datasets for which the ROC-AUC score of DeepRCwas less
than 0.6 in both the first and the second learning trials. For the two
samples, the ROC-AUC score was less than 0.5 five times in a row.
This implies that even though the size of the datasets is the same, the
performance of DeepRC can also vary greatly, like the burden test,
due to the difference of samples involved in the training dataset.

The potential instability of learning, originating from either
sample dependence or stochasticity of training, is not desirable for
practical use because it hampers us to derive a statistically confident
conclusion from data, especially when the prediction from the
methods cannot be validated in some other way (we could spot
the instability in this investigation because the test dataset is labeled
by CMV infection, but this is not the case in the usual situation of
infection prediction). Compared with the other two methods,
MotifBoost is also stochastic as it employs data augmentation and
GBDT, but it balances high performance and small variance between
trials (Figure 3).
Frontiers in Immunology | www.frontiersin.org 8
In addition, the performance is also less sensitive to the
differences of samples in the dataset (Figure 2), and it achieves
the maximum ROC-AUC score of over 0.7 for any subsampled
training dataset. Thus, MotifBoost has desirable reproducibility
and stability to all the variations from samples, training
processes, and the size of samples.

Strong Feature Extraction of k-mer
Representation
We observed the stability and data efficiency of MotifBoost.
However, their source is still elusive. One possibility is that the
k-mer representation itself is already a good feature for the
repertoire classification task. To investigate the feature space of
MotifBoost, we employed Gaussian Process Latent Variable Model
(GPLVM) (52), an unsupervised dimensionality reduction
method, to visualize the k-mer feature vectors of the Emerson
dataset in the two-dimensional space (Figure 4). GPLVM is a kind
of PCA extended with a probabilistic model and kernel method to
deal with non-linear correlations. Therefore, the two axes in the
figure are similar to the principal components in PCA. We found
that it is possible to classify repertoires by the Cohort and by the
CMV infection status using only the k-mer features without any
supervised learning (Table 5).

In Figure 4, the infection status of CMV was correlated mainly
with Axis 1, whereas the Cohort was correlated moderately with
Axis 2 and weakly with Axis 1. We also found that the ROC-AUC
score of 0.75 for CMV classification could be achieved by a linear
separation on the dimensionality-reduced k-mer feature space
(Tables 5, 6). These results indicate that various information, at
FIGURE 3 | The variation of the ROC-AUC score between two learning trials
trained on each subsampled dataset. The ROC-AUC scores of the two trials
(circles) are plotted against the index of the 50 subsampled datasets. The
index is sorted by the maximum ROC-AUC score of MotifBoost.
FIGURE 4 | A scatter plot of samples in the Emerson dataset shown in the
two-dimensional latent space of the 3-mer feature vectors (9,261 dimensions)
obtained by an unsupervised learning method, GPLVM. Axis 1 and 2
correspond to the two principal axes of the latent space learned by GPLVM.
Each point represents a sample color-coded by its CMV infection status and
by the label whether it belongs to either Cohort 1 or 2. The probability
distributions shown on each axis represent the projections of data points of
each class onto each axis.
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least being relevant to the repertoire classification task, is
appropriately embedded and represented in the k-mer-based
features. Thus, the stability of MotifBoost may be attributed to the
effectiveness of k-mer representation of a repertoire.

Ablation Study of MotifBoost
We observed desirable properties of k-mer representation.
However, MotifBoost also consists of other components such
as GBDT, hyperparameter search (HS), and data augmentation
(DA). To investigate the contributions of these components, we
conducted an ablation study (Table 7). We compared the ROC-
AUC scores of multiple experimental conditions in which one or
more of the three components (GBDT, HS, DA) were removed
or modified. When N is small, vanilla GBDTmodels can perform
only as well as Logistic Regression (LR) models. Being combined
with both HS and DA, the performance is uplifted. On the other
hand, when N is large, the choice of GBDT plays a dominant role
in the performance. The result suggests that all three components
actually contribute to the performance in different ways.

Analysis of the Latent Information
Employed by Each Method
Finally, we compared the prediction profiles of the three methods to
examine the similarities and differences in the latent information used
by themethods. The profiles in Figure 5 show that the predictions by
MotifBoost and DeepRC are similar (p=0.74), whereas that of the
burden test differs from the others (p=0.33 and p=0.38).

The similar prediction profiles and ROC-AUC scores of
MotifBoost and DeepRC suggest that the two methods employ
similar information despite the differences of the underlying
algorithms. DeepRC might be learning the features from scratch
that contain similar information to the k-mer features, and its
failure might be related to the collapse of the representation
learning at the critical sample size.

On the other hand, the prediction profile of the burden test
deviates from those of MotifBoost and DeepRC: some samples are
successfully predicted only by the burden test, while others are
Frontiers in Immunology | www.frontiersin.org 9
successfully predicted only by MotifBoost or DeepRC. Moreover,
the correlation between the burden test and either MotifBoost or
DeepRC is lower than that betweenMotifBoost andDeepRC.This is
remarkable because the profiles were created at N=640 where the
ROC-AUC score of DeepRC andMotifBoost (around 0.8) is lower
than that of the burden test (around 0.89). The correlation between
two prediction profiles with high ROC-AUC tends to be high.
Nonetheless, the burden test has lower correlations with the other
two. This result implies that the burden test exploits different
information from MotifBoost or DeepRC at least partially and
that the gap between their average performances at N=640 might
stem fromthisdifference.Further improvement,whichbalances the
best of all the methods, may be possible by scrutinizing such
differences in the exploited latent information rather than just by
focusing on their performance scores alone.
DISCUSSION

In this study, we have systematically investigated the performance of
the repertoire classification methods with different principles, by
focusing on the impact of the dataset size. We evaluated three
methods: the burden test comprehensively tests the significance of
each sequence based on its frequency in CMV positive and negative
samples and uses only the significant sequences as features for
classification; DeepRC uses a Transformer-like deep learning
architecture to learn both relevant features and classification from
data; MotifBoost proposed in this work employs the k-mer feature
representation and GBDT for classification. We also compared
MotifBoost and two k-mer based methods (k-mer/SMV and k-
mer/MIL), each of which combines k-mer representation with
different classification algorithm, i.e., GBDT, SVM, and linear
regression model, respectively.

We found that the burden test and DeepRC can suffer from
learning instability and the resultant sudden performance
degradation when the number of samples drops below a certain
critical size. In contrast, MotifBoost not only performs as well as
TABLE 5 | The correlation between the features of samples (CMV infection status and Cohort) and the two axes of Figure 4 measured by the ROC-AUC score.

Axis 1 Axis 2

CMV Classification 0.68 0.53
Cohort Classification 0.70 0.87
July 2022 | Volume 13 | Article 7
To compute the scores, each axis is treated as a binary classifier by the following procedures: 1) Each point representing a sample is projected onto the axis. 2) The projected coordinate on
the axis is used as the prediction for the sample. ROC-AUC scores of such linear classifiers derived by the axes are shown. The bold ROC-AUC scores are significant (p < 0.05) in the sense
of Spearman correlation coefficient. Note that the ROC-AUC scores were calculated using both Cohort 1 and 2 to show the separability of the k-mer latent space for both conditions of the
CMV and Cohort classification. Therefore, these ROC-AUC scores cannot be directly compared with those of other Figures and Tables in which the scores are computed only using
Cohort 2 after training on Cohort1. See Table 6 for the comparable score.
TABLE 6 | The best ROC-AUC score of the CMV classification task by a linear classifier on the two-dimensional latent space of Figure 4.

ROC-AUC Optimized axis

CMV Classification 0.75 y = 0.25x
The best classifier is chosen by the following numerical optimization procedures: 1) Calculate the ROC-AUC scores for various values of slopes of the axis by following the same procedure
as Table 5 but using only the Cohort 1 dataset. 2) Select the best slope that yields the best ROC-AUC score for the Cohort 1 dataset. After the optimization, the ROC-AUC score shown in
the table was calculated by using only the Cohort 2 dataset to follow the same train/test split setup as in other Figures and Tables. x and y in the equation shown in the table denote the
coordinate on each of Axis 1 and 2 respectively.
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DeepRC on average when trained on a large dataset, but also
achieves stable learning with small performance degradation even
when being trained on a small dataset. Moreover, MotifBoost
performed better than the other two k-mer methods. Across all
the four additional small datasets, MotifBoost consistently shows
superior performance to the othermethods. Moreover, MotifBoost
can sustain its performance even if each sample contains only a
much smaller number of sequences.
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MotifBoost is Useful as a First
Step in Tackling the Repertoire
Classification Problem
In academic research of repertoires, as discussed in Introduction,
datasets with less than 100 samples account for 88% of all datasets.
Moreover, the number of sequences in a sample is sometimes severely
limited.Forexample, thatofHuthetal. (48) is1.7x103.MotifBoostcan
work stably and efficiently even under this small to medium sample
TABLE 7 | Ablation study of MotifBoost. The mean ROC-AUC scores of ablated models for the small and large datasets are shown.

Conditions ROC-AUC

(lr)1-3 (lr)4-5 Classifier HS DA N = 25 N = 640

GBDT + + 0.71 0.78 Original MotifBoost
GBDT + 0.63 0.77 Hyperparameter Search (HS) is removed
GBDT + 0.65 0.78 Data Augmentation (DA) is removed
GBDT 0.50 0.77 Both DA and HS are removed
LR n.a. + 0.55 0.64 GBDT is replaced with Logistic Regression (LR)
The performance of ablated models is measured five times by the same setup as Figure 2 (N = 25, N = 640). The performance of the original MotifBoost is taken from Figure 2. For Logistic
Regression (LR) classifier, hyperparameter search (HS) is not applicable.
FIGURE 5 | Visualization of the correlations of the prediction profiles between the three methods trained on the full training dataset. In the off-diagonal plots, each
axis represents the normalized rank of prediction scores of all test samples (Cohort 2) by the designated method. If a sample is located at 1.0/0.0 on an axis, the
method corresponding to the axis gives the sample the highest/lowest prediction score of CMV positiveness. The color of each point indicates the CMV status of
that point: positive (red) or negative (green). The p on the panels indicates the Spearman correlation. All correlations were significant (p < 0.05). Each diagonal plot
shows the histograms of the normalized predicted score for CMV positive (red) and negative (green) samples obtained by each method.
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size conditions. Therefore,MotifBoost ismore versatile and applicable
to a wider range of problems than the burden test and DeepRC.

In the Emerson dataset, the burden test outperforms DeepRC
andMotifBoost in the repertoire classification task if being fed with
all the 640 samples for training. However, the sufficient number of
samples for training may depend strongly on the difficulty of the
classification task and on the quality of the data, which is not easy to
estimate in advance when designing an experiment. In addition, as
shown inFigure 3, the performance of the data-expensivemethods
is highly volatile if sufficient data is not supplied. Therefore, it is
risky to rely only on these unstable methods for practical use.

On the other hand, the performance and variance of MotifBoost
depend weakly on data size even if it is lower than 100. Moreover, this
performance stability is validated on the four different datasets
(Table 5). Therefore, it is always beneficial to use MotifBoost together
with the data-expensive ones to avoid the case that we fail to detect the
potential information in repertoires due to failure of learning.

A stable method like MotifBoost is also preferable from the
viewpoint of reproducibility because the performance is relatively
steady even if the sample size of the datasets is changed. The other
methods, especially the burden test, have a larger variance in the
performance. For example, the ROC-AUC score spans from below
0.5 to around 0.8 at N=400 in Figure 2. Note that any of the two
subsampled datasets at N=400 share at least 160 samples, because
both are subsampled from the full training dataset (640 samples).
Even trained on such similar datasets, the performance of the
burden method varies greatly. This implies that, if the samples are
obtained independently by another experiment to reproduce the
reported result, the performance could vary even more. In addition,
MotifBoost does not require high-end hardware. Even for the full
training dataset ofN=640, the computation takes about 3 hours on a
consumer CPU (Core i7 8700) with about 50GB RAM. MotifBoost
balances prediction performance and computation cost.

In conclusion, our proposed MotifBoost can be used as a
complementary method to the data-expensive ones for the
repertoire classification task because of the following three points:
1) high performance on the small samples; 2) low variance in results
and high reproducibility; 3) low hardware requirements. We
released a library on GitHub to apply this method easily on the
existing RepSeq data formats (https://github.com/hmirin/
MotifBoost). Our implementation will be a drop-in replacement
for the implementation of the other methods.

Potential Information Encoded in
Repertoire and Its Representations
We also showed that the feature extraction by k-mer and
unsupervised learning alone can separate CMV infection status
to some extent. This suggests that the k-mer representation has
suitable properties for extracting important features of repertoires.

Even though deep learning methods trained on large-scale
datasets attract a surge of interest these days, as demonstrated in
this work, they do not necessarily replace the conventional ones
developed based on biological domain knowledge. If a relevant data
representation like k-mer features is known beforehand, there is
little need to acquire a similar representation through representation
learning. One possible explanation of the performance discrepancy
on small datasets between MotifBoost and DeepRC is that DeepRC
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must perform an extra step of learning the (k-mer like)
representation, which fails at a small data size.

On the other hand, the existence of a performance gap
between the burden test and the others trained on a sufficiently
large dataset (640 samples) indicates that the full-length
sequence identity, which is utilized only in the burden test, has
some special information, which neither DeepRC nor
MotifBoost could capture. This possibility is also supported by
the fact that the burden test alone succeeded in classification for
some samples. However, at the same time, there are also other
samples that the burden test could not correctly classify while the
others could. Therefore, these methods may focus on, at least
partially, different latent information of the repertoires.

The next computational challenge in the repertoire
classification task would be the integration of the full-length
sequence identity information and the sequence motif
information to improve and balance the performance on large
datasets and the stability on small ones. Such an attempt would
also deepen our biological understanding of how various
immunological information is encoded in repertoires.
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