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Strengths and limitations of this study

►► This study uses a novel auto-logistic regression ap-
proach to understanding the effects of an individu-
al’s social network on their vaccination status.

►► The auto-logistic regression approach to social net-
work analysis provides a unique quantitative frame-
work for comprehensively understanding social 
behaviours.

►► The application of the study findings may be limited 
because there are many factors that affect influenza 
vaccination decisions that could not be captured us-
ing the data collection methods.

►► Data were self-reported which may have introduced 
bias.

Abstract
Objectives  To evaluate the effect of social network 
influences on seasonal influenza vaccination uptake by 
healthcare workers.
Design  Cross-sectional, observational study.
Setting  A large secondary care NHS Trust which includes 
four hospital sites in Greater Manchester.
Participants  Foundation doctors (FDs) working at the 
Pennine Acute Hospitals NHS Trust during the study period. 
Data collection took place during compulsory weekly 
teaching sessions, and there were no exclusions. Of the 
200 eligible FDs, 138 (70%) provided complete data.
Primary outcome measures  Self-reported seasonal 
influenza vaccination status.
Results  Among participants, 100 (72%) reported that they 
had received a seasonal influenza vaccination. Statistical 
modelling demonstrated that having a higher proportion of 
vaccinated neighbours increased an individual’s likelihood 
of being vaccinated. The coefficient for γ, the social 
network parameter, was 0.965 (95% CI: 0.248 to 1.682; 
odds: 2.625 (95% CI: 1.281 to 5.376)), that is, a diffusion 
effect. Adjusting for year group, geographical area and sex 
did not account for this effect.
Conclusions  This population exhibited higher than 
expected vaccination coverage levels–providing protection 
both in the workplace and for vulnerable patients. The 
modelling approach allowed covariate effects to be 
incorporated into social network analysis which gave us 
a better understanding of the network structure. These 
techniques have a range of applications in understanding 
the role of social networks on health behaviours.

Introduction
Influenza affects millions of people each 
year—it causes considerable morbidity and 
is a primary or underlying cause of death 
for thousands of people worldwide.1 The 
General Medical Council’s (GMC) guidance 
on Good Medical Practice (2013), advises 
that healthcare workers (HCWs) in the 
UK receive immunisation against common 
serious communicable diseases, such as influ-
enza, in order to protect both patients and 
colleagues.2 Higher coverage of influenza 
vaccination within a hospital is believed 

to reduce patient mortality, staff absences 
and potential influenza epidemic size, thus 
protecting some of those at the greatest risk 
from influenza.3 Despite this, vaccination 
rates remain highly variable for HCWs and 
are below the government target of 75%. In 
2016/2017, around 63% of HCWs in England 
and Wales received a seasonal influenza vacci-
nation.4 5

There is increasing interest in the effects 
exerted by social networks on public health.6 
A social network is made up of nodes (indi-
viduals) connected via ties (relationships).7 
Disease dynamics within a network may 
be influenced by characteristics such as its 
density, how the individuals in the network 
interact and which individuals are vacci-
nated against, or susceptible to, the disease. 
For example, changes in the vaccination 
status of a few key individuals within a 
network may have a disproportional impact 
on disease spread.8 It has been shown that 
an individual’s behaviour may be influ-
enced by their peers—for example, research 
has found that smokers are more likely to 
befriend other smokers.9 The grouping 
of similar individuals within a population, 
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known as homophily, could have a considerable impact 
on behaviour as well as disease dynamics. For example, 
if clusters of non-vaccinated individuals exist within a 
network, a disease could rapidly spread through these 
groups, reducing the protective effects exerted by herd 
immunity.

HCWs’ vaccination behaviour may be influenced by the 
behaviour of their neighbours within their social network. 
Baron et al suggest that HCWs seem to be influenced by 
their co-workers’ vaccination practices.10 In this study, 
network analysis is used to study the characteristics of a 
social network of foundation doctors (FDs)—early career 
doctors in the first 2 years of postgraduate training in the 
UK—and related these to the distribution of seasonal 
influenza vaccination within the same population. This 
was extended by investigating how the probability of an 
individual receiving an influenza vaccine was influenced 
by the behaviour of his/her neighbours in the network.

Methods
Identifiable data were collected and subsequently anony-
mised before data entry and analysis, in line with accepted 
practice in social network analysis (SNA) studies of this 
type.

Participants
Data were collected during January/February 2015. All 
FDs working at the Pennine Acute Hospitals NHS Trust 
(PAT during that period were invited to participate. The 
foundation training programme at the PAT runs over 
2 years and across four different hospital sites in Greater 
Manchester, forming two geographically distinct axes, 
east and west. As part of their training, FDs are required 
to attend compulsory weekly teaching sessions. Data 
collection took place during several of these sessions to 
optimise response rates.

All participants will have been offered a free seasonal 
influenza vaccine before the point of data collection. The 
PAT actively encourages influenza vaccination for its staff, 
as does the GMC. Staff are given numerous opportunities 
to have the vaccine, there are often vaccination points 
established at mutually convenient locations (hospital 
entrances, cafeterias, etc) as well as travelling vaccina-
tion nurses who offer the vaccine ward-to-ward. We have 
assumed that all participants have had ample opportunity 
to vaccinate however, we have not collected data specifi-
cally regarding participant’s exposure to seasonal influ-
enza vaccination opportunities.

Patient and public involvement
This study involved early career doctors and no patients 
were involved. Initial findings were presented at the study 
setting as part of ongoing work; however, it is likely (due 
to staff turnover) that many participants will not have had 
access to the findings of this work prior to its publication.

Data collection
Each participant completed a paper-based questionnaire. 
Participants self-reported their seasonal influenza vacci-
nation status for winter 2014/2015, alongside basic demo-
graphic information.

Participants were then asked how often they had contact 
with every other person on the foundation training 
programme using a six-point scale: 0, I have never met 
this person; 1, I recognise this person’s name but wouldn’t 
see them regularly; 2, I occasionally see this person for 
very short periods of time; 3, I see this person briefly at 
irregular intervals; 4, I see this person on most shifts/4 or 
more days a week; 5, I see this person on almost every shift 
for long time periods/live with them.

The relational data were then transferred into a 
numerical adjacency matrix, from which a network was 
constructed. Prior to analysis, the data were dichotomised 
at level 4, ‘I see this person on most shifts/4 or more days 
a week’ and above, in line with previous research.8 Where 
one person declared a relationship with another at this 
level, this was assumed to be reciprocal. There may be 
cases in which neither person declared any relationship, 
although one was present, this was treated as missing data 
and excluded. This produced an un-weighted (relation-
ships were binary) and undirected (reciprocal ties were 
assumed) network.

Social network analysis
The FDs’ influenza vaccination status was evaluated as 
a node attribute on the social network. Individual-level 
network characteristics, such as a doctor’s degree score 
(the number of ties an individual possesses), were exam-
ined along with global measures such as overall network 
density, and density in different groups within the network 
(the number of ties throughout the network in relation to 
the number of individuals within the network).

The assortativity coefficient was calculated to assess 
whether or not vaccination status showed homophily 
within the FD population. The assortativity coefficient 
is a standard network measure originally defined by 
Newman.11 The coefficient can range from −1 to 1, where 
−1 suggests negative assortativity (opposites attract) and 1 
implies positive assortativity (like attracts like). With the 
assortativity coefficient we provide a tolerance interval 
for a random network by calculating the range of assor-
tativity values expected from multiple generated random 
networks. We generated a reference distribution using 
permutation. Multiple networks (n=1000) were gener-
ated with the same topological structure, but with vacci-
nation status (yes/no) permutated randomly among the 
participants The assortativity value for each was then 
calculated—this provided the range of assortativity values 
we would expect under random permutation. Similar 
techniques are outlined by Barclay et al.12

Auto-logistic regression
The auto-logistic model was used to further investigate 
the effect of an individual’s social connections on their 
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Table 1  Seasonal influenza vaccination uptake by the 
foundation doctors stratified by their demographic factors

Number 
vaccinated Total

Vaccination 
coverage (%)

Sex

 � Female 51 68 75.00

 � Male 49 70 70.00

Year

 � 1 55 76 72.37

 � 2 45 62 72.58

Axis

 � East 47 69 68.12

 � West 53 69 76.81

influenza vaccination decision.13 This model allows an 
individual’s vaccination behaviour to be modelled as 
a function of their demographic information and the 
behaviour of their neighbours in the social network. The 
specification of the auto-logistic model is given in equa-
tion 1.

	﻿‍
For, Yi =

[
0: not vaccinated

1: vaccinated

]

‍�
(1)

	﻿‍
log
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(
Yi=1| all other yi

)
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Where j~i indicates contact between individuals i and 
j, ﻿‍α‍ indicates the intercept and ‍xi‍ is a vector of covariates 
associated with individual i.

The parameters β describe how the covariates affect 
the likelihood of an individual being vaccinated, while 
the parameter γ describes how this likelihood is modified 
by the behaviour of the individual’s social contacts in the 
network.

In the specification above the network effect (γ) is 
based on the total number of vaccinated neighbours an 
individual possess, however, this is highly correlated with 
the number of neighbours an individual possess. There-
fore, the model was re-parameterised so that the network 
effect (γ) was based on the proportion of an individual’s 
neighbours who were vaccinated, and the total number 
of neighbours an individual possessed was included as 
covariate information (see equation 2).
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Where ‍ni‍ is the number of neighbours in the individ-
ual’s immediate network. Covariate information was 
included as additional ‍βs‍.

To fit the model, we used Monte Carlo likelihood infer-
ence,14 using numerical optimisation with initial values 
of β derived by fitting a standard logistic regression and 
initial value of γ=0 (see the online supplementary material 
for additional details). The logistic regression model is a 
sub-model of the auto-logistic model when γ=0, which was 
used to give initial parameter estimates for α and β, but 
not for formal inference. The logistic regression model 
can be used to make inferences about a response (y) from 
covariate information (x). However, standard logistic 
regression techniques are unable to make inferences 
based on information from responses (y). This is prob-
lematic in cases such as spatial or network data, in which 
we might hypothesise that responses are correlated, for 
example, based on some arbitrary measure of distance. 
The auto-logistic model specified by Besag13 and outlined 
here is an extension of the logistic regression model, and 
is able to account for information from responses (y) in 
the right-hand side of the equation.

Confidence intervals for the parameters were gener-
ated from SEs derived from the hessian matrix. Hypoth-
esis testing was performed using a Wald test. Parameter 

estimates 
‍
θ̂ =

{
α̂, β̂, γ̂

}
‍
 were assumed to follow a multi-

variate normal distribution ‍θ̂ MVN
(
θ, V

)
‍, where V is the 

variance-covariance matrix, derived from the hessian 
matrix. The vector C was defined as a binary vector, 
used for parameter testing, which gives ‍φ ≡ Cθ‍ and 

‍̂φ MVN
(
φ, CVC′)

‍. A Wald test was performed using a χ2 
distribution.

The auto-logistic model does not assume that an indi-
vidual yi is independent of their neighbour’s neighbours. 
In this model, the individual is conditionally independent 
of their neighbours (by the inclusion of γ). This is also 
true for the neighbours of the individual (and so on). 
Therefore, formally, the model accounts for informa-
tion from indirect contacts through this mechanism—by 
accounting for neighbours the model implicitly accounts 
for information passed from indirect contacts through 
the network.

Results
One hundred and thirty-eight of the 200 FDs invited to 
take part provided complete data (sex, year of training, 
axis and vaccination status). Among respondents, 100 
(72%) were vaccinated (table 1).

Figure 1 shows the FDs’ social network, along with their 
influenza vaccination status (n=138). The assortativity 
coefficient for the entire FD social network was −0.034 
with a tolerance interval of (−0.12, 0.10).

The social network structure of the FDs varied between 
geographical areas and year-groups (figure  2). For 
example, among second-year doctors, the network density 
is higher in the east than in the west axis, with 223 ties 
among the n=31 doctors in the east axis compared with 
73 ties among the same number in the west axis.

We first fitted the re-parameterised auto-logistic model 
without covariates (equation 2). Figure  3 describes the 
maximum likelihood surface for auto-logistic model 1, 

https://dx.doi.org/10.1136/bmjopen-2018-026997
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Figure 1  The foundation doctor social network sociogram 
for those who returned complete data, dichotomised at ≥4 (‘I 
see this person on most shifts/ 4 or more days a week’), and 
coloured according to individual vaccination status.

Figure 2  A sociogram depicting the foundation doctor 
network (n=138), coloured by sub-groups: year and axis.

and Monte Carlo log-likelihood functions are shown in 
figure 4. The coefficient for γ, the social network param-
eter, was 0.965, with 95% CI (0.248 to 1.682), that is, a 
diffusion effect—individuals were more likely to act 
in agreement with the behaviour of their neighbours 
(table  2). However, this effect was somewhat altered by 
the negative effect from total number of neighbours 

which was near to statistical significance. The model-
based approach is more efficient than the assortativity 
coefficient, leading in this instance to a statistically signifi-
cant departure from γ=0. For model 1, an additional Wald 
test was conducted for the null hypothesis which returned 
a χ2 value of 7.091 and p value of 0.029.

We then added covariate effects for year, axis and sex. 
The maximal model allowed us to perform Wald tests for 
the inclusion of each covariate (model 2, table 2). The 
covariates did not account for the social network effect on 
likelihood of vaccination.

Discussion
After excluding missing data, the FDs’ self-reported vacci-
nation coverage of 72% (100 vaccinated out of 138, with 
possible range 50%–81% dependent on the vaccination 
status of non-respondents), was higher than the national 
average of 55%.15 The statistical analysis suggests that the 
individual’s social network has potential to exert both 
positive and negative effects on likelihood to vaccinate. 
The higher the proportion of vaccinated neighbours in 
an individual’s network the more likely they were to be 
themselves vaccinated.

The auto-logistic model has allowed us to assess which 
areas of the population are the less likely to vaccinate, 
taking into account their social network structure. For 
example, we hypothesised that year group or axis may 
affect an individual’s likelihood of receiving the vacci-
nation. However, the confidence intervals for all demo-
graphic factors in the auto-logistic model included zero. 
This suggests that the effects of network structure on 
vaccination cannot be accounted for by the demographic 
information. Using this statistical modelling approach 
has provided a better understanding of the social network 
structure on vaccination uptake than could be obtained 
using only the assortativity coefficient, both through its 
greater statistical efficiency and its ability to investigate 
whether, and if so to what extent, measured covariates can 
explain the network structure.

Our analysis of the FD population suggests that as the 
proportion of neighbours who vaccinate increases, the 
individual’s likelihood of vaccination increases—similar 
to the usual diffusion of behaviour observed in social 
networks.16 However, this may be offset if having more 
neighbours reduces the individual’s probability of being 
vaccinated—this effect was close to statistical significant 
and requires further investigation (table 2). This suggests 
that social networks may exert both repulsion and diffu-
sion effects on vaccination behaviours. This combination 
makes social networks vital to understanding vaccination 
dynamics within a population.

We observed other differences in the network structure 
among the four sub-groups defined by year and geograph-
ical axis. Second-year FDs on the west axis of the Trust had 
a much sparser social network than the other year/axis 
groups. In sparse social networks, the potential for informa-
tion transfer (behaviour adoption, infectious disease spread, 
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Figure 3  Contour plot showing the likelihood surface for auto-logistic model 1.

etc) is fundamentally diminished by social distancing.16 
However, Shirley and Rushton suggest that even when 
network density is equivalent, network topology may still 
have an effect on diffusion of information.17 The analysis 
of the FD data suggests that demographic covariates were 
unable to account for the social network effects on vacci-
nation. However, only a limited number of covariates were 
available. More research would be needed to identify other 
factors that may affect the transfer of vaccination attitudes 
among friends. Interventions aimed at improving vaccina-
tion uptake need to be sensitive to the differences between 
sub-groups within the relevant population and may need to 
be targeted at specific demographic sub-groups. Network 
effects on behaviour are complex, but the auto-logistic 
model provides an effective way of assessing behaviour on 
a real social network in the presence of other variables that 
affect individuals’ responses.

Vaccination is a complex behaviour in which there 
is a cost to taking the vaccination (pain of injection, 
perceived side effects, etc) to be weighed against the 
benefits of vaccinating (prevention of disease), within a 
social setting in which individuals both conform/dissent 
with social norms. It may be the case that the mispercep-
tions surrounding the influenza vaccination are more 
commonly discussed than the benefits within this popu-
lation.18 Vaccinated individuals may be more likely to 
provide a favourable assessment of the vaccination to 
their peers. This may have an effect on their neighbour’s 
assessment of the costs/benefits associated with receiving 
the influenza vaccination. Spread of vaccination informa-
tion through a network is complex—previous work has 
shown that sharing factual corrections about controver-
sial issues relating to vaccinations may have the counterin-
tuitive result of decreasing intent to vaccinate.19 It is also 
possible that individual’s with a larger network are more 
exposed to varying influences regarding vaccination, 

where negative assessments are given greater weight. The 
behaviour of others directly affects the individual—if 
more people are vaccinated the risk of infection is lower 
for all.20 The data presented here was collected from a 
workplace environment and explores an occupational 
social network, which may be formed somewhat arti-
ficially; in this case, members of the same social group 
may have dissimilar demographic characteristics. Better 
understanding of the role social relationships play in 
establishing the vaccination behaviour of HCWs in the 
workplace is necessary to inform vaccination campaigns, 
whose ultimate goal is to improve occupational health 
and patient well-being.

Similarities or dis-similarities in behaviour between social 
contacts could arise due to an endogenous effect or an 
exogenous effect (via correlation or causation)—known 
as the reflection problem.21 The data presented here are 
cross-sectional; there is no way to explore how the observed 
behaviour arose—the direction of the causal relationship 
between social networks and vaccination status cannot be 
determined. The casual relationship may be explored using 
longitudinal data. Simulation studies have suggested that 
the influence of ‘stubborn’ individuals (those who do not 
change their vaccination behaviour) on others in a network 
greatly depends on their proportion within a popula-
tion.22 Future work might include longitudinal studies to 
explore the mechanisms that lead to observed vaccination 
behaviour in a social network.

We have outlined a novel methodological approach to 
understanding behaviour in a network. We also fit the 
auto-logistic regression model as given in Besag’s orig-
inal specification (without the re-parameterisation of γ, 
equation 1), this produced a negative γ term, suggesting 
that vaccination likelihood was negatively associated with 
number of vaccinated neighbours, however this is highly 
correlated with overall neighbourhood size. The model 
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Figure 4  Monte Carlo log-likelihood functions for model 
1, ‍θ0 =

(
α,β, γ

)
=

(
0.984,−0.105, 0.965

)
‍ and 10 000 

simulations per log-likelihood evaluation (﻿‍α‍ shown in A, ‍β‍ 
shown in B, ‍γ‍ shown in C).

presented above is better suited to exploring diffusion of 
behaviour as these two elements (overall neighbourhood 
size and proportion of vaccinated neighbours) are sepa-
rated. It is clear that there is much potential for the future 
use of this class of model, but that it may need adjust-
ments (such as those shown here) to suitably address 
questions of interest when considering social networks. 
Furthermore, although the approach has been successful 
in fitting a parsimonious model to this relatively small 
dataset, attempts to fit more complex models quickly lead 
to large SEs and, consequently, low power to detect more 
complex network structure.

We dichotomised the social network at level 4, ‘I see this 
person on most shifts/4 or more days a week’ and above. 
We assumed that this represented a strong relationship 
due to the high amount of contact—it also provides an 
unambiguous definition of close contact. However, this 
simplification of intensity and direction of social ties is 
a limitation of this work and one commonplace in social 
network analyses. A larger dataset would enable more 
complex models to be fitted and more precise inferences.

An inherent limitation of our data is that they were self-re-
ported, and therefore potentially subject to reporter bias. 
Given the size of the dataset there is no way to empirically 
check for responder bias. We have made the assumption that 
the data collected was a fair representation of the population. 
We believe this assumption is plausible. Data collection took 
place during teaching sessions where a large proportion of 
the population were expected to attend, irrespective of their 
vaccination status (the teaching session was not related to 
influenza vaccination)—and there was no benefit/coercion 
for individuals to respond positively or otherwise. Future 
research into this modelling approach should include investi-
gation into the estimation of missing data to allow subjects with 
partially observed information to be included in the analysis, 
and to investigate whether non-participation is informative, 
that is, non-participants have atypical vaccination behaviour.23

Making a decision about influenza vaccination is a 
complex process—many people are neither completely 
for nor completely against influenza vaccination, and this 
may not be in alignment with their self-reported vaccina-
tion status.24 There may be varying levels of attitudes to 
vaccination that could be described using an ordinal or 
continuous scale, rather than as a simple binary variable. 
Extracting this more nuanced data is a challenge, and 
requires qualitative methods such as in-depth interviews 
with participants.24

Using the auto-logistic modelling approach, we have 
expanded on the results of the social network analysis. This 
novel approach to analysing social network data allows us 
to investigate in more detail the underlying process that 
has led to an observed network and its vaccination distri-
bution. Quantitative methods that explore social behaviour 
are likely to become instrumental in defining targeted 
approaches to improving public health—this study outlines 
a suitable approach to investigating how an individual’s 
behaviour might be influenced by the behaviour of their 
neighbours in a network.
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Table 2  Parameter estimates for the auto-logistic regression models fit using the foundation doctor data

Model
Parameter 
estimate

SE (Hessian 
derived)

Lower CI
(including Monte 
Carlo Standard Error 
(MCSE))

Upper CI
(including MCSE) χ2 P value

Auto-logistic model 1
(equation 2)
Maximum Likelihood (ML): 
107.835

(Intercept) 0.984 0.409 0.180 1.788 5.679 0.017

‍β1‍
(Number of 
neighbours)

−0.105 0.062 −0.227 0.017 2.862 0.091

‍γ ‍ 0.965 0.365 0.248 1.682 7.051 0.008

Auto-logistic model 2
(equation 2)
ML: 108.702

‍α‍(Intercept) 0.933 0.509 −0.064 1.930 3.362 0.067

‍β1‍
(1=Year 2)

−0.132 0.385 −0.886 0.622 0.118 0.732

‍β2‍
(1=West)

0.295 0.375 −0.440 1.030 0.618 0.432

‍β3‍
(1=female)

0.103 0.402 −0.685 0.891 0.066 0.798

‍β4‍
(Number of 
neighbours)

−0.100 0.066 −0.229 0.029 2.315 0.128

‍γ ‍ 0.795 0.377 0.056 1.534 4.441 0.035

Social networks are powerful phenomena that may 
be harnessed to encourage diffusion of positive health 
behaviours.21 We have shown that this is particularly 
relevant in an occupational setting where somewhat arti-
ficial social networks are formed with clearly defined 
boundaries, and knowledge about occupational health is 
exchanged between workers.
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