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Abstract: Raising health and environmental concerns over the nanoparticles synthesized from
hazardous chemicals have urged researchers to focus on safer, environmentally friendlier and
cheaper alternatives as well as prompted the development of green synthesis. Apart from many
advantages, green synthesis is often not selective enough (among other issues) to create shape-specific
nanoparticle structures. Herein, we have used a biopolymer conjugate and Pd and Pt precursors to
prepare sustainable bimetallic nanoparticles with various morphology types. The nanoparticles were
synthesized by a novel green approach using a bio-conjugate of chitosan and polyhydroxybutyrate
(Cs-PHB). The bio-conjugate plays the simultaneous roles of a reducing and a capping agent, which
was confirmed by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR)
and energy dispersive X-ray spectrometry (EDS) analysis, proving the presence of a Cs-PHB layer
on the surface of the prepared nanoparticles. The EDS profile also revealed the elemental structure
of these nanoparticles and confirmed the formation of a Pd/Pt alloy. TEM morphological analysis
showed the formation of star-like, octahedron or decahedron Pd/Pt nanoparticles, depending on
the synthesis conditions. The bimetallic Pd/Pt nanoparticles synthesized with various Pd/Pt molar
ratios were successfully applied for the catalytic reduction of 4-nitrophenol to 4-aminophenol by
borohydride. The calculated κc values (ratio of kapp to the concentration of the catalyst) revealed
that the decahedron nanoparticles (size of 15 ± 4 nm), synthesized at the molar ratio of 2:1 (Pd/Pt),
temperature of 130 ◦C, 10 g/L of Cs-PHB conjugate and time of 30 min, exhibited excellent catalytic
activity compared to other bimetallic nanoparticles reported in the literature.

Keywords: green synthesis; biopolymers; bimetallic nanoparticles; catalytic reduction; 4-nitrophenol

1. Introduction

The raising health and environmental concerns over nanoparticles synthesized from hazardous
chemicals, which are also often economically unfeasible, have urged researchers to focus on safer,
environmentally-friendlier and cheaper alternatives. These reasons have prompted the development
of green nanoparticle syntheses, which are safe and adhere to the green chemistry approach [1].
Biopolymers, which are abundantly available and easily biodegradable, are promising materials for
providing an environmentally-benign synthesis of nanomaterials. These natural polymers have been
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successfully used as reducing, stabilizing and capping agents in the synthesis of nanoparticles [2–4],
allowing alterations in the nanoparticle size [5] and shape [6]. Furthermore, the different functional
groups present in these biopolymers can actively contribute to the improvement of metallic nanoparticle
catalytic reactions [7,8]. A typical example of a simple monometallic and bimetallic nanoparticle
synthesis is the one-step reduction and stabilization of Au and Ag nanoparticles [9,10].

Chitosan is considered one of the most studied biopolymers in the literature, and has been
successfully used in different applications such as the synthesis and stabilization of various different
nanoparticles [11–13], bio-medical applications [14], drug delivery [15], water treatment [16] and many
other uses [17–19]. Chitosan is obtained from chitin, which is mainly extracted from crustacean shell
wastes [20]. While its non-toxicity for mammals and biodegradability make it popular, its insolubility
in water is one of its drawbacks.

Another biopolymer that is starting to gain interest in different scientific fields is
poly(3-hydroxybutyrate) (PHB), which can be produced by different bacteria [21] and also from
waste materials [22,23]. It is usually used as a carbon source in in-situ bioremediation [24], a drug
delivery carrier [25], a biodegradable bioplastic [26], and a stabilizing agent for nanoparticles [27].
However, difficulties such as the solubility of PHB in only organic solvents, which are toxic to both
humans and the environment [28,29], need to be addressed to achieve good dispersions for synthesis.

Motivated by the above situation, our group developed a water-soluble conjugate of chitosan
and PHB, which was successfully applied to control not only the growth and aggregation of the Au
nanoparticles but also their surface properties [30].

Due to interactions between two metals and their unique and more flexible surface structures
in comparison to monometallic nanoparticles, bimetallic nanoparticles have gained precedence over
traditional heterogeneous catalysts due to their excellent catalytic activity [31]. The nanoparticle
surface area plays a key role in heterogeneous catalysis because it is directly correlated to the catalyst
active sites on which the catalytic reactions are taking place. Moreover, the nanoparticles are often
easily recovered from the reaction medium, and they possess steric environments within their active
sites, both features that can positively influence the catalytic activity [32]. Among the noble metals,
both palladium (Pd) and platinum (Pt) are well known for their unique characteristics, and both are
used successfully in different scientific fields, including catalysis [33–38]. Due to the fact they have
similar face-centred cubic (fcc) crystal structures and a high lattice match (lattice mismatch of 0.77%),
palladium and platinum are highly miscible [39,40].

We propose a one-pot, quick and green synthesis of decahedral Pd/Pt using solely Pd and Pt
precursors and a Cs-PHB bio-conjugate as a reducing reagent. Based on our previous studies, we
hypothesize that Cs-PHB cannot only help to control the growth and aggregation of the nanoparticles
but also to tailor their catalytic activity. To the best of our knowledge, this is the first report to use
Cs-PHB for the green synthesis of bimetallic nanoparticles. In addition, we believe in the simplicity of
this procedure for obtaining decahedron Pd/Pt bimetallic nanoparticles. The synthesized nanoparticles
were characterized by ATR-FTIR, TEM, and EDS, and successfully tested on the standard reduction
reaction of the 4-nitrophenol (4-NP) to 4-aminophenol (4-AP).

2. Materials and Methods

2.1. Reagents and Solutions

Chitosan (low Mw of 50–190 kDa, 75%–85% deacetylated), sodium borohydride (98%),
4-nitrophenol (ReagentPlus, >99%), K2PdCl4 (98%), PtCl4 (96%) were purchased from Sigma–Aldrich
(Saint Louis, MO, USA); polyhydroxybutyrate (PHB, Biomer P209) from Biomer (Krailing, Germany);
nitric acid (65%) from Lach-ner (Neratovice, Czech Republic). Deionized water (DI; 18.2 MΩ·cm–1,
ELGA, Veolia Water, Marlow, UK) was used in all of the experiments.
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2.2. Analytical Methods

ATR-FTIR spectra were recorded at a resolution of 4 cm−1 over the 4000–700 cm−1 range using a
NICOLET IZ10 spectrometer (Thermo Scientific, Waltham, MA, USA) equipped with a germanium
ATR crystal and a single reflection angle 45◦ horizontal ATR accessory. The UV-Vis spectroscopic
analysis was performed using a DR 3900 UV-Vis spectrophotometer (Hach Lange, Loveland, CO, USA)
equipped with 1 cm quartz cuvettes. High-resolution transmission electron microscopy (HR-TEM)
analysis was carried out using transmission electron microscopy/scanning transmission electron
microscopy (TEM/STEM) system (Titan 80-300, FEI, city, state abbrev if USA, country) with a super
twin-lens operated at 300 kV and equipped with an annular dark field detector. The presence of various
elements in the obtained nanoparticles was analysed using energy-dispersive X-ray spectroscopy (EDX,
Aztec, Oxford Instruments, Abingdon, UK). ICP-MS (Elan 6000, Perkin Elmer, Waltham, MA, USA)
was used to determine the Pd/Pt concentration.

2.3. Preparation of Cs-PHB Conjugate

The conjugate was prepared following the procedure reported previously by our group [30].
Briefly, a chitosan solution was made by adding chitosan (0.5 g) to acidified deionized water (100 mL)
and stirring to obtain a homogeneous solution. Subsequently, PHB (0.12 g) was added to the mixture
and stirred overnight at 80 ◦C. The resulting solution was sonicated for 30 min at 80 ◦C, purified by a
dialysis tube, and finally freeze-dried.

2.4. Synthesis of Bimetallic Nanoparticles

Pd/Pt bimetallic nanoparticles were synthesized following a modified co-reduction method of
Lim et al. [41]. Briefly, K2PdCl4 and PtCl4 were dissolved in DI to get two (Pd and Pt) stock solutions
with a concentration of 10 mM each. Both solutions were stirred for 5 minutes in order to dissolve the
salts. Cs-PHB was dissolved in DI to get a stock solution of 20 g/L. Subsequently, a certain amount
of palladium and platinum precursor stock solutions (0.5 mL of Pd and 0.5 mL of Pt precursor stock
solution for the Pd:Pt ratio of 1:1; 0.25 mL of Pd and 0.5 mL of Pt precursor stock solution for the Pd:Pt
ratio of 1:2; 0.5 mL of Pd and 0.25 mL of Pt precursor stock solution for the Pd:Pt ratio 2:1) were added
to the Cs-PHB solution (2.5 mL), the volume was raised to 5 mL by adding DI. The reactor was heated
(130–150 ◦C) for 30 min following the procedure reported by Venkateshaiah et al. [42]. The reaction
was stopped by cooling down the samples in cold water. The obtained nanoparticles were washed
three times with deionized water and stored in a refrigerator (4 ◦C) for future use.

2.5. Catalytic Test

The catalytic test of 4-NP reduction to 4-AP by NaBH4 was carried out in a standard 1 cm path
length quartz cuvette. The procedure was reported previously by Baruah et al. [43]. A typical test
involves the mixing of 24 µL of 4-NP (5 mM), and an excess of NaBH4 (120 µL of 0.1 M) in an Eppendorf
tube (1.5 mL). A certain amount of nanoparticles was added, and the volume was adjusted to 1 mL
using DI water. Then the solution was immediately transferred into a quartz cuvette and the absorbance
was recorded by UV-Vis at regular intervals. All of the tests were carried out at room temperature
(25 ◦C) in triplicate. An excess of NaBH4 (12 mM of NaBH4 and 0.12 mM of 4-NP) was used in the
reduction process.

3. Results and Discussion

Pd/Pt nanoparticles were synthesized under different conditions (temperature from 130 to 150 ◦C)
and using different ratios of Pd and Pt precursors (from 1:2 to 2:1). The resulting particles were
characterised by ATR-FTIR, HR-TEM and EDS. Three types of nanoparticles synthetized at a constant
temperature but at different metallic ratio were also compared for their catalytic activity.
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3.1. Characterization of the Nanoparticles

3.1.1. ATR-FTIR

An ATR-FTIR analysis was performed to examine the functional groups located on the Pd/Pt
bimetallic nanoparticles (Figure 1). The peak observable at ~1724 cm−1 in the PHB spectrum (Figure 1a)
may be attributed to the ester group present in the PHB. The chitosan spectrum shows a peak at
~3300 cm−1 due to the O–H and N–H bonds, whereas the peak at ~2900 cm−1 may be ascribed to the
symmetric or asymmetric CH2 stretching vibrations. The peak at ~1600 cm−1 may be assigned to the
NH2 groups, while at ~1380 cm−1 the peak may be ascribed to CH3 symmetrical deformations [44]. The
last representative peak at ~1100 cm−1 may be attributed to C–O–C glycosidic linkage. The conjugate
spectrum (Figure 1c) shows differences when comparing the PHB (Figure 1a) to the chitosan (Figure 1b)
spectra. A decrease in the intensity of the NH2 group at ~1600 cm−1 [30] was observed, while an
increase in the intensity at ~1555 cm−1 was observed, which may correspond to the amide type II bond
formation [30]. This suggests that the amino group of chitosan reacts with the C–O–C group of PHB to
form the amide bond.
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Figure 1. ATR-FTIR analysis of (a) PHB, (b) chitosan, (c) Cs-PHB, (d) Pd/Pt ratio 1:1 (zoom on the
region of the 4000–1500 cm−1 spectrum part is available in Figure S1 in Supplementary Materials),
(e) Pd/Pt ratio 1:2 and (f) Pd/Pt ratio 2:1 (synthesis temperature of Pd/Pt: 130 ◦C).

The ATR-FTIR spectra of Pd/Pt nanoparticles (Figure 1d–f) showed several bands. The first one
(~3330 cm−1) may be attributed to the NH/OH bond, whereas the one at ~2926 cm−1 is compatible
with asymmetric or symmetric CH2 stretching vibration. The peak at 1724 cm−1 may be related to
the ester group, while the one at ~1555 cm−1 to the amide type II bond. The hydroxyl groups present
in the conjugate may assist in the reduction of the precursor as reported by Dang et al. [45] and by
Dorjnamjin et al. [46], while the rest of the polymer may coat the nanoparticles. The differences in
intensity between the variously synthesized Pd/Pt nanoparticles may indicate different amounts of
organic and inorganic material that could be found in samples. For example, Pd/Pt = 1:1 nanoparticles
were synthesized with the highest ratio of metal precursors concentration (2 mM overall) to the polymer
conjugate concentration, and in the low frequencies (<1500 cm−1) their spectrum exhibits a (high
absorbance) baseline sloping down to the left (typical for some metal nanoparticles; similar phenomena
could be observed e.g. in the work of Hu et al. [47]).
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3.1.2. HR-TEM

In order to obtain more information about the morphology of the synthesized Pd/Pt nanoparticles,
a HR-TEM analysis was performed. Figure 2 shows the different shapes obtained by altering the
synthesis temperature (from 130 to 150 ◦C) and Pd/Pt molar ratio (1:1, 1:2 and 2:1).
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at 130 ◦C and (f) SAED pattern of Pd/Pt (2:1). For all of the samples, the scale bar stands for 5 nm.
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The sample synthesized at 150 ◦C and with a molar ratio 1:1 (Pd/Pt) (Figure 2a) shows a star-like
structure, while lowering the temperature of synthesis to 140 ◦C (Figure 2b) changed the morphology of
the nanoparticles to an octahedron. An additional decrease of temperature to 130 ◦C (Figure 2c) caused
a synthesis of smaller nanoparticles with a surface characterized by different, randomly-orientated
faces. Moreover, when the molar ratio changed to 2:1 and 1:2 (Pd/Pt) at the remaining temperature
(130 ◦C), nanoparticles with decahedral morphology were observed (Figure 2d,e). The decahedral
shape of the nanoparticles occurs only under strict conditions [48]. When certain conditions are applied,
the ions specifically interact to form a Cs-PHB/precursor complex, which determines the formation of
decahedron shapes upon reduction. However, when the conditions and the ratios vary, other shapes
are formed. Zhang et al. [49] reported that hydroxyl groups may affect the shape of the nanoparticles.
Ghosh et al. [50] showed the possibility of obtaining flower-shaped zero-valent iron by controlling the
amount of hydroxyl groups during the synthesis process, which suggests that the presence of hydroxyl
groups may influence the formation of decahedral morphology. The SAED pattern for a Pd/Pt ratio of
2:1 indicates the polycrystalline nature of an as-synthesized Pd/Pt bimetallic alloy (Figure 2f). The
SAED analysis identified (111), (220) and (311) planes of fcc. For this sample, the nanoparticle size
distribution was calculated from TEM micrographs, and the mean size of these nanoparticles was
found to be 15 ± 4 nm (Figure S2 in Supplementary Materials).

The various synthesis strategies used to obtain bimetallic Pd/Pt nanoparticles with varying
morphologies are shown in Table 1. As stated earlier, changes to the synthesis procedure may result in
the formation of structurally different nanoparticles, e.g. nanocubes are obtained by reduction with
poly(vinylpyrrolidone) (PVP) while nanotetrahedra are formed when Na2C2O4 and formaldehyde
are used [39]. Conventionally for these kind of reactions, high temperatures [51] and prolonged
synthesis times [52,53] are required. Very often the reducing agents used are hazardous, e.g. sodium
borohydride [44,45].

Table 1. Synthesis procedures reported in the literature for obtaining Pd/Pt nanoparticles with
different shapes.

Shape Solvent Precursors Molar Pd/Pt
Ratio

Reducing
Agent

Temperature
(◦C)

Synthesis
Time (min) Reference

Cube DMF Na2PdCl4
K2PtCl6

1:1 - 130 300 [54]

Nanosponges Water H2PdCl4
K2PtCl6

1:1 NaBH4
Room

temperature ~5 [55]

Tetrahedron Water Na2PdCl4
K2PtCl6

1:1 HCHO 180 120 [56]

Octahedron Water Na2PdCl4
H2PtCl6

1:1 Glycerol 100 180 [57]

Corallite-like
structure Water K2PdCl4

K2Pt(CN)4
2.05:1 NaBH4

Room
temperature 120 [58]

Branched
Dandelion-like Water Na2PdCl4

K2PtCl6
1:7 Ascorbic

acid
Room

temperature 30 [55]

Nanocages Water K2PdBr4
Na2PtBr6

1:2 Ascorbic
acid

Room
temperature 480 [40]

Irregular
polyhedron Water K2PdCl4

PtCl4
1:1 Cs-PHB 130 30 This work

Decahedron Water K2PdCl4
PtCl4

1:2 Cs-PHB 130 30 This work

Decahedron Water K2PdCl4
PtCl4

2:1 Cs-PHB 130 30 This work

Wang et al. [59] reported the possibility to synthesize decahedral Pd/Pt, wherein the synthesis
procedure can be divided into two steps: the first is to obtain Pd decahedraln structures, followed by
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the platinum deposition. Nano star-shaped Pd/Pt particles were reported by Lim et al. [41] using a
co-reduction method involving Na2PdCl4 and K2PtCl4 in a PVP aqueous medium at 80 ◦C for 18 h.
Another example of shape-specific synthesis of Pd/Pt was a seeded growth method using palladium
truncated octahedral seeds for the synthesis of Pd/Pt nanodendrites [60].

3.1.3. EDS, Mapping and Profile

The EDS analysis of the bimetallic nanoparticles shows that all of the samples contain both
palladium and platinum metals (Figure 3). Moreover, carbon and oxygen were also present in all of the
analysed samples. The presence of both C and O may be attributed to the existence of a conjugate on
the surface of these nanoparticles, which may act as a stabilizing agent.
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The EDS mapping analysis of the bimetallic nanoparticles (molar ratio of Pd/Pt of 2:1 and
temperature of 130 ◦C) clearly shows the presence of both metals ubiquitously on the surface of the
nanoparticle (Figure 4a,b). The EDS mapping also determined the presence of Pd/Pt alloy. The EDS
profile analysis (Figure 4c) shows the presence of carbon (due to the presence of the conjugate), and
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it is in accordance with the previous ATR-FTIR analysis (see above). The profile also confirmed the
predominant presence of Pd in almost all of the particle regions due to the initial Pd/Pt ratio of 2:1.
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3.2. Catalysis

The catalytic performance of the Pd/Pt nanoparticles was proven by employing the reduction of
4-NP to 4-AP by NaBH4 as a model [61]. The aqueous 4-NP solution shows a maximum absorption at
~317 nm, which upon addition of sodium borohydride shifts to 401 nm, indicating the formation of
4-nitrophenolate, and the solution turns from pale yellow to bright yellow. The reduction does not
take place in the absence of a catalyst (kinetic barrier), which was verified by the unchanged intensity
of the maximum absorption at 401 nm in the absence of the catalysts for 40 min (data not shown).

When the Pd/Pt nanoparticles were added to the solution, the intensity at 401 nm gradually
decreased until it disappeared. Because an excess of NaBH4 was used, the pseudo first-order kinetics
model was applied to evaluate the catalytic performance of the Pd/Pt nanoparticles [62]. Due to
the fact that the absorbance at 401 nm was linearly dependent on the 4-NP concentration (through
4-nitrophenolate), the rate constant k of the reaction can be calculated from the linear plot of ln(At/A0)
versus the reaction time t(min) [63–67]:

ln(At/A0) = −kappt (1)

where At and A0 is absorbance at time t and 0, respectively. The pseudo-first-order kinetic rate
constants (kapp) of the 4-NP reduction calculated based on Equation (1) for the various concentrations
of nanoparticles synthesized with different molar (Pd/Pt) ratios of 1:1, 1:2 and 2:1, respectively are
summarized in Table 2.

The reduction of 4-NP to 4-AP with borohydride catalysed by Pd/Pt nanoparticles may be
explained by an electrochemical reaction, where the nanoparticles facilitate the electron transfer from
BH4

− to 4-NP. The mechanism is divided into the following steps: first both borohydride and 4-NP are
adsorbed on the surface of the Pd/Pt nanoparticles, then electrons are transferred from BH4

− to the
nanoparticles with the formation of a negatively charged layer on their surface, later the electrons are
transferred to 4-NP with a consequent formation of reduced products (Figure 5).
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Table 2. The pseudo-first-order kinetic rate constants (kapp) of Pd/Pt synthesized in different ratios and
κc value obtained by linear approximation of kapp (s−1) vs concentration of catalysts (g/L).

Catalysts Synthesis
Temperature (◦C)

Concentration
(mg/L)

kapp
(min−1)

κc
(L s−1 g−1)

Pd/Pt (1:1) 130

0.379 0.038

12 ± 40.757 0.546

1.515 0.897

Pd/Pt (1:2) 130

0.147 0.066

9 ± 10.293 0.152

0.586 0.305

Pd/Pt (2:1) 130

0.202 0.198

51 ± 110.404 0.424

0.809 1.967
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Figure 5. Electron transfer mechanism for reduction of 4-NP to 4-AP.

4-NP is often used for testing the catalytic activities of nanoparticles; nevertheless, catalytic
performance comparisons are not easy. Most studies report only the kapp, but the kapp is strongly
dependent on the concentration of reactants and the catalyst used for the reaction. Increasing the
amount of catalyst in the reactor increases the total surface area available for the reaction, which means
that a higher reaction rate is facilitated, and the time needed for reduction is shortened. Also, it was
not possible in our study to add the same amounts of catalysts at different Pd/Pt ratios during the
experiments. To overcome this, the activity parameter (κc) was employed to compare the efficiencies.
This was determined by calculation of the slope of kapp (s−1) as a function of the catalyst concentration
(g/L) [65].

To the best of our knowledge, κc is the most appropriate parameter for comparing the catalytic
activity of catalysts reported in the literature [65,67]. The κc values were calculated for these three
different Pd/Pt ratios and, therefore, different morphologies. While for the same Pd/Pt ratio (1:1) and
excess of Pt (1:2), the κc value is approximately 10, for the excess of Pd (2:1), the κc value of 51 is
significantly higher. This is probably caused by a higher Pd ratio and not by morphology, since both
excesses of one of the metals (1:2 and 2:1) have the same morphology of a decahedron, but significantly
different κc values (Figure 6).
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Table 3 shows a comparison of the κc values obtained by different bimetallic catalysts for the
reduction of 4-NP. The value determined by this study for a Pd/Pt ratio of 2:1 is one of the highest
known to-date.

Table 3. Comparison of different bimetallic catalysts on the reduction of 4-NP reported in the literature.

Catalysts
Catalyst

Concentration
(mg/L)

4-NP
Concentration

(mM)

NaBH4
Concentration

(mM)
kapp (s−1)

κc
(L s−1 g−1) Ref.

Pd/Au 8 0.07 21 0.258 32 [68]
Au53Pd47/graphene

nanosheets 0.06 0.05 5 0.014 240 [69]

Cu/Ag 0.48 0.096 11.2 0.0003 7.18 [70]
PdCuY 20 0.72 1.5 0.002 0.12 [71]

Pd/Pt nanotubes 3.4 0.09 100 0.008 25 [72]
Pd/Pt (2:1) 0.809 0.12 12 0.033 51 ± 11 This work
Pd/Pt (1:1) 0.757 0.12 12 0.009 12 ± 4 This work
Pd/Pt (1:2) 0.586 0.12 12 0.005 9 ± 1 This work

4. Conclusions

The present research describes a facile mediated green synthesis of bimetallic Pd/Pt nanoparticles
of various morphologies. The nanoparticles were synthesized from K2PdCl4 and PtCl4 precursor
salts by a co-reduction with a Cs-PHB conjugate. Depending on the temperature and metal ratio,
nanoparticles with a star-like structure, and octahedral or decahedral morphology were formed.
The optimal conditions to obtain a decahedral shape were found to be: (Pd/Pt) molar ratio of 2:1,
synthesis temperature of 130 ◦C, 10 g/L of Cs-PHB conjugate and time of 30 min. While ATR-FTIR and
EDS confirmed the presence of a Cs-PHB layer on the surface of the nanoparticles, EDS verified the
formation of a Pd/Pt alloy. TEM analysis confirmed the different shapes and sizes of the nanoparticles
by changing the temperature and molar metal ratio. The decahedral bimetallic nanoparticles prepared
at a molar ratio of 2:1 show an excellent catalytic performance for the catalytic reduction of 4-NP by
borohydride. The pseudo-first-order kinetic constant for the nanoparticles synthesized with molar
ratios (Pd/Pt) of 1:1, 1:2 and 2:1 were found to be 0.898 min−1 (catalyst concentration: 1.515 mg/L), 0.305
min−1 (0.586 mg/L) and 1.968 min−1 (0.809 mg/L), respectively. Compared with the other bimetallic
nanoparticles, the (2:1) decahedral Pd/Pt nanoparticles exhibit excellent catalytic performance, which
is demonstrated by the high κc value (51 ± 11 L s−1 g−1).
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Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/12/1948/s1,
Figure S1 FTIR analysis of Pd/Pt ratio 1:1, Figure S2: Size distribution of Pd/Pt synthesized at 130 ◦C and molar
ratio 2:1 (Pd:Pt), Figure S3: pseudo-first-order kinetics of sample synthesized with molar ratio of 1:1 with differet
concentration of nanoparticles (a) 0.379 mg/L (R2 0.993), (b) 0.757 mg/L (R2 0.992), (c) 1.515 mg/L (R2 0.982) and (d)
HRTEM image of Pd/Pt decahedron nanoparticle (molar ratio 1:1 (Pd/Pt) 130 ◦C), Figure S4: pseudo-first-order
kinetics of sample synthesized with molar ratio of 1:2 with differet concentration of nanoparticles (a) 0.147 mg/L (R2

0.992), (b) 0.293 mg/L (R2 0.998), (c) 0.586 mg/L (R2 0.984) and (d) HRTEM image of Pd/Pt decahedron nanoparticle
(molar ratio 1:2 (Pd/Pt) 130 ◦C), Figure S5: pseudo-first-order kinetics of sample synthesized with molar ratio of
2:1 with different concentration of nanoparticles (a) 0.202 mg/L (R2 0.997) (b) 0.404 mg/L (R2 0.986) (c) 0.809 g/L
(R2 0.979) and d) HRTEM image of Pd/Pt decahedron nanoparticle (molar ratio 2:1 (Pd/Pt) 130 ◦C).
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