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Abstract

Stable quantitative trait loci (QTL) are important for deployment in marker assisted selection

in wheat (Triticum aestivum L.) and other crops. We reported QTL discovery in wheat using

a population of 217 recombinant inbred lines and multiple statistical approach including

multi-environment, multi-trait and epistatic interactions analysis. We detected nine consis-

tent QTL linked to different traits on chromosomes 1A, 2A, 2B, 5A, 5B, 6A, 6B and 7A. Grain

yield QTL were detected on chromosomes 2B.1 and 5B across three or four models of Gen-

Stat, MapQTL, and QTLNetwork while the QTL on chromosomes 5A.1, 6A.2, and 7A.1

were only significant with yield from one or two models. The phenotypic variation explained

(PVE) by the QTL on 2B.1 ranged from 3.3–25.1% based on single and multi-environment

models in GenStat and was pleiotropic or co-located with maturity (days to heading) and

yield related traits (test weight, thousand kernel weight, harvest index). The QTL on 5B at

211 cM had PVE range of 1.8–9.3% and had no significant pleiotropic effects. Other consis-

tent QTL detected in this study were linked to yield related traits and agronomic traits. The

QTL on 1A was consistent for the number of spikes m-2 across environments and all the four

analysis models with a PVE range of 5.8–8.6%. QTL for kernels spike-1 were found in chro-

mosomes 1A, 2A.1, 2B.1, 6A.2, and 7A.1 with PVE ranged from 5.6–12.8% while QTL for

thousand kernel weight were located on chromosomes 1A, 2B.1, 5A.1, 6A.2, 6B.1 and 7A.1

with PVEranged from 2.7–19.5%. Among the consistent QTL, five QTL had significant epi-

static interactions (additive × additive) at least for one trait and none revealed significant

additive × additive × environment interactions. Comparative analysis revealed that the

region within the confidence interval of the QTL on 5B from 211.4–244.2 cM is also linked to

genes for aspartate-semialdehyde dehydrogenase, splicing regulatory glutamine/lysine-rich

protein 1 isoform X1, and UDP-glucose 6-dehydrogenase 1-like isoform X1. The stable QTL
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could be important for further validation, high throughput SNP development, and marker-

assisted selection (MAS) in wheat.

Introduction

Identification of consistent loci or haplotypes associated with traits is important in generation

advancement decision, forward breeding, gene pyramiding and deployment recommenda-

tions in wheat and other crop breedings. These genomic regions can also play an important

role during placement of new wheat variety into specific geographical footprints to maximize

yield performance via genotype-environment matching. Several factors are considered prior to

deployment of a QTL including the stability of the QTL across environment and genetic back-

ground, equivalency or effect of the QTL on other traits in elite germplasm, efficacy of the

QTL if it is linked to disease or pest resistance, and availability of diagnostic marker in linkage

disequilibrium with the QTL. In wheat, several strategies for MAS have been used to improve

traits with majority focusing on simple traits [1, 2]. Notably, Rht-B1 and Rht-D1 linked to

reduced stature have been deployed via MAS in wheat and in some environments a concomi-

tant increase in yield have been observed although there seem to be a strong linkage disequilib-

rium between the two dwarfing genes and Fusarium head blight (FHB) susceptibility [2, 3]. A

recently mapped QTL for reduced height, Rht24, on chromosome 6A has a potential for MAS

and a diagnostic KASP marker has been developed [2, 4]. Our previous work using RIL popu-

lation and 90K SNP array detected stable diagnostic marker tightly linked to Wsm2, a gene

conferring resistance to wheat streak mosaic virus and is currently applied in MAS in winter

wheat [5, 6]. Markers linked to Fhb1 and Qfhs.ifa5A, conferring resistance to Fusarium head

blight, have also been applied in MAS in wheat breeding [7]. In addition, several other func-

tional markers have been developed for agronomic traits, end-use quality and disease resis-

tance [7, 8]

Detection of consistent QTL depends, in part, on the quality of phenotypic data, genotypic

data, and statistical analysis. Typically, evaluation of mapping population is done over multiple

seasons in different testing footprints that are representatives of target mega-environments.

This approach facilitates detection of consistent QTL over environments and seasons by

modeling multi-environment variance-covariance structures that account for heterogeneity of

genetic variance. Recent advances in marker technology have led to development of dense and

ultra-dense genetic maps providing a fairly good genome coverage [9]. In addition, advances

in statistical modeling particularly application of linear mixed models (LMM) provides flexi-

bility to include variance-covariance (VCOV) structure to account for heterogeneity in genetic

variances and environmental correlation [10, 11]. LMM can account for both QTL-by-trait

interactions (QTI) and QTL-by-environment interactions (QEI) including interaction with

environmental covariables such as temperature, light duration and intensity, and moisture lev-

els [10, 12].

Many genetic studies focusing on QTL discovery in wheat have utilized sparse genetic maps

to tag QTL and rely on specific statistical method limiting the interpretation of the results to

assumptions defined by the analysis approach. In addition, most studies assume the significance

of epistatic and pleiotropic interactions underlying yield and yield components in wheat. Most

of these QTL have been summarized and posted online on the catalogue of gene symbols.

(https://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp). In the present study, we

used high resolution genetic maps constructed using 90K array SNPs and implemented linear
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and linear mixed model QTL mapping approach in different genetic mapping software pro-

grams [13–16]. The SNP associated with significant QTL were used in combined analysis of

pleiotropy and epistasis as outlined by Tyler et al. [13]. Our objectives were to map stable QTL

for grain yield and yield components in one of the most popular hard red winter wheat, TAM

111, within the framework of single trait multi-environment and multi-trait analysis and exam-

ine marker-to-trait effects and marker-to-marker interactions through analysis of pleiotropy

and epistasis [13, 16]. Consistent QTL detected from various statistical models were compared

for their locations on consensus genetic and physical maps.

Materials and methods

Recombinant inbred line population and trial evaluation

A bi-parental mapping population was derived from a cross between CO960293-2 (PI 615160)

[17] and TAM 111 (PI 631352) [18]. CO960293-2 was developed by Colorado Agricultural

Experiment Station and co-released as a germplasm line by Colorado and Kansas Agricultural

Experiment Stations primarily for resistance to wheat streak mosaic virus and Russian Wheat

Aphid (Diuraphis noxi M.). TAM 111 is a popular cultivar developed and released by Texas

A&M AgriLife Research in 2002. It has good performance in both low and high productivity

environments [18, 19]. A trial comprising 217 recombinant inbred lines (RIL) plus three

checks (four checks in 2012/13) was planted in eight environments from 2012 to 2014; each

location-by-year combination was considered as an environment. The locations used in this

study were in Texas at Texas AgriLife Research stations in Bushland (35˚ 06’ N, 102˚ 27’ W),

Chillicothe (34˚ 07’ N, 99˚ 18’ W) and Etter (35˚ 59’ N, 101˚ 59’ W); Kansas State University

Agricultural Research Center-Hays, Hays KS (38˚ 51’ N, 99˚20’ W); University of Idaho Aber-

deen Research and Extension Center, Aberdeen ID (42˚ 57’ N, 112˚ 49’ W); and Colorado

State University Plainsman Research Center, Walsh CO (37˚ 25’ N, 102˚ 18’ W). The trials in

Etter and Hays were evaluated in both the 2012/13 and 2013/14 crop seasons. The trials in

Etter, Aberdeen and Walsh were under well-watered conditions whereas the remaining trials

were under dryland conditions. The plot size was 4.645 m2 (4.459 m2 in Walsh) and all trials

had two replications. Standard agronomic practices were carried out for each environment.

Trait measurements and data analyses

Grain yield was recorded in all the environments whereas yield components, plant height and

days to heading were recorded in a subset of environments. Yield components were recorded

in the Texas environments and Hays 2013 (HY13). Plant height was recorded in all the envi-

ronments except Walsh 2014 (WA14) and Etter 2013 (ET13) whereas days to heading was

recorded in ET13, HY13, Aberdeen 2013 (AB13) and Bushland 2014 (BS14). Days to heading

was recorded at Feekes growth stage 10.1 as the number of days from January 1st to when 50%

of the spikes had emerged from the boot. Percentage of green leaf area was visually rated in

BS14 and Chillicothe 2014 (CH14) at Feekes growth stage 10.5 on a scale of 0–100%, where 0%

= all the leaves senesced and 100% = all leaves green. Similarly, the greenness of the flag leaf

was rated at Feekes growth stage 10.5 on a scale of 0–100% where 0% = whole flag leaf senesced

and 100% = whole flag leaf green. At Feekes growth stage 11, plant height was measured in

centimeters (cm) from representative plants in each plot as the distance from the base of the

stem to the tip of the spike excluding awns. In addition, a half meter long sample from a uni-

formly filled and representative inner row was harvested from each plot and used for determi-

nation of biomass and yield components. The samples were oven-dried at 60˚C for three days

and the weight of each sample recorded. The total number of stems and the number of heads

were counted for each biomass sample. The spikes m2, mean single head weight, kernels
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spike1, kernels m2, and thousand kernel weight were calculated from the plot sample. The

spikes m2 was computed by dividing the number of heads by the sample plot area. The thou-

sand kernel weight was determined by counting and weighing three sets of 100 kernels for

each plot and multiplying the average weight by 10. Mean single head weight was calculated by

dividing the total dry head weight per plot biomass sample by the number of heads. The ker-

nels m-2 was estimated by dividing the weight of grain from the sample by single kernel weight.

The harvest index was calculated as grain weight per sample divided by total weight of bio-

mass. All trials were harvested using a combine harvester and the grain yield plot-1 was used to

calculate yield in metric tons hectare-1. Test weight, in kg m-3, was measured using Seedburo

equipment (www.seedburo.com, Des Plaines, IL, USA).

Individual and combined environment data was subjected to analysis of variance

(ANOVA) in SAS (SAS Institute, 2013) to determine the significance of genotypic and other

components of the model. The statistical model used for individual environment analysis was

as follows:

Yik ¼ mþ Rk þ Gi þ εik

Where Yik is the observed phenotypic value of the ith genotype in kth replicate, μ is the overall

mean, Rk is the replication effect, Gi is the genetic effect of ith genotype and Ɛik is the residual.

All components were considered fixed. The statistical model for combined analysis of variance

was as follows:

Yijk ¼ mþ RðEÞ þ Gi þ Ej þ ðGEIÞij þ εijk

Where Yijk is the observed value of the ith genotype in the jth environment and kth replicate, R
(E) is replication nested within the environment, Ej is the effect of the environment, (GEI)ij is

genotype-by-environment interaction, Ɛijk is the residual. To compute mean squares, all the

components were considered as fixed whereas for variance components, all components in the

model were considered as random. Best linear unbiased predictors (BLUP) and variance com-

ponents were computed using residual maximum likelihood adapted to META-R program

[20]. The BLUP were used for QTL analysis in GenStat version 17 [15]. For single trait multi-

environment QTL analysis, the appropriate VCOV structure was modeled in GenStat to

account for heterogeneity of genetic variances and correlation among environments [10, 12].

The best VCOV was selected based on the Schwarz information criterion. The genetic correla-

tions (ρg) between pairs of traits were computed using the following formula in METAR:

rg ¼
Covx;y
ðs2

xs
2
yÞ

1=2

Where COVx,y is the genetic covariance between trait x and y, σ2x is the variance of phenotype

x and σ2y is the variance of phenotype y [20]. Entry-mean heritability estimates were computed

using the formula:

Combined environment h2
¼

s2
g

s2
e=rt þ s2

ge=t þ s2
g

Where r is the number of replication, t is the number of environments, σ2g is genotype vari-

ance, σ2ge is the GEI variance, and σ2e is the residual variance [21]
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DNA extraction and genotyping

Total genomic DNA was extracted from leaf samples of 217 RIL using a CTAB method with

minor modification [22, 23]. The RIL and four sets of each parent were genotyped using 90K

SNP array based on the manufacturer’s protocol (www.illumina.com). The fluorescence signal

was captured using an Illumina scanner and subsequently processed using GenomeStudio

software (www.illumina.com). To adjust clusters with skewed cluster separation, manual cura-

tion of the data was done by examining the clusters in a Cartesian plot. Loci with low average

normalized intensity and undefined clusters were excluded prior to downstream analysis. The

genotype data set consisting of 8,819 high quality SNP was used for downstream statistical

analysis [5, 24].

Linkage mapping and QTL analysis

We implemented linkage mapping in JoinMap version 4.0 [25]. Prior to linkage map construc-

tion, SNPs with identical loci scoring at 100% similarity were omitted to eliminate genetic

redundancy and improve computation efficiency. In addition, all SNP with significant segrega-

tion distortion based on Chi square test (P< 0.05) were also omitted. We grouped loci into

linkage groups based on Independence LOD with increasing stringency from 2.0 to 30.0 and

the incremental step of 1.0. The Kosambi mapping function was used to convert recombina-

tion frequency into centiMorgans [26]. The pairwise recombination frequency was calculated

based on a maximum likelihood (ML) algorithm with the default settings in JoinMap [25]. The

final linkage map of 5,580 SNPs covering all of 21 chromosomes with 44 linkage groups was

used for QTL analysis. Linkage groups were assigned to chromosomes based on loci informa-

tion in the 9K and 40K genetic maps [27, 28].

Multi-environment and multi-trait QTL analyses were performed in GenStat based on a

LMM framework as described by several authors [10, 12, 29]. In GenStat, QTL mapping was

implemented in a stepwise manner commencing with simple interval mapping followed by at

least two rounds of composite interval mapping using QTL identified to control the genetic

background [30–32]. Backward selection was conducted on QTL detected and the final effects

were estimated based on multi-QTL model [3032]. The markers associated with QTL were

used for combined analysis of pleiotropy and epistasis using the CAPE package in R [13, 33,

34].

In addition, MapQTL 6.0 [25] was used to analyze and identify significant QTL for each

trait based on single environment data. We used QTLNetwork sofware [16] to analyze the sig-

nificant QTL additive effects, epistasis effects and their interactions with environments across

data from multiple environments. The detected QTL results were compared within the three

models (single-environment, multi-environment, and multi-trait) of GenStat. Comparative

analyses were conducted based on the linked SNPs of unique and consistent QTL using data-

bases from T3 (https://t3sandbox.org/t3/sandbox/wheat/, accessed on March 1, 2017) and the

Chinese Spring reference genome from International Wheat Genome Sequence Consortium

(IWGSC RefSeqv1.0, https://wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies, accessed

on March 1, 2017).

Results

Phenotypic analysis of yield and its related traits

Combined ANOVA across environments revealed significant (P< 0.001) genotype and envi-

ronment components for traits whereas the GEI was statistically significant for all traits except

for biomass weight (S1 Table). The genotype × environment variance component for grain
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yield was higher than variance due to genotype. A reverse trend was observed for all the other

traits where genotype variance components were greater than genotype × environment vari-

ance (Fig 1C). The highest variance component due to genotype were observed for green leaf

area, thousand kernel weight, and test weight. The phenotypic variance explained (PVE) by

the model fit was greater than 80% for all the traits except test weight which had PVE of 77%

(Fig 1C). The entry-mean heritability ranged from moderate (0.40 to 0.60) to high (> 0.60)

except for biomass weight which had heritability of 0.31 (Fig 1B). Moderate estimates of herita-

bility (0.43–0.64) were observed for grain yield, harvest index, and total stems whereas the

remaining traits had high heritability (0.65–0.88). The average grain yield across environments

was 3.6 t ha-1 with a corresponding test weight of 750.4 kg m-3. On average, the population had

142 days to heading and the mean plant height was 63.2 cm. The average number of spikes m-2

was 376-. A single spike had an average of 28 kernels and weighed 0.7 g. The average thousand

kernel weight was 26.2 g (S1 Table). We observed high yield variability in performance both

within and across environments (Fig 1A). The highest range in yield was observed in AB13

and WA14 environments compared to dryland experiments. Dryland experiments showed dif-

ferences in phenotypic expression with the trial in CH14 showing the least range in yield per-

formance (0.5 to 2.0 t ha-1) attributed to a severe drought stress leading to a narrow window

for the grain filling stage. Nonetheless, we still detected significant genotypic variation and the

entry-mean heritability was 0.65 (Fig 1A and S1 Table). Comparison of average grain yield

showed that environment AR13, WA14, and CH14 were significantly different (P< 0.01)

from each other and from all other environments in the present study as indicated by nonover-

lapping comparison circles (Fig 1A). BS14 and CH14 were not significant from each other.

Similarly, the average grain yield in HY13 and HY14 was not significant from each other.

Grain yield under drought stress condition ranged from 1.3 t ha-1 in CH14 to 3.9 t ha-1 in

HY13 (Fig 1A).

Across environments, grain yield had significant genetic correlation (P< 0.01) with days to

heading, harvest index, kernels m-2, biomass weight, spikes m-2, green leaf area, and greenness

of the flag leaf (Fig 1D). The negative correlation observed for grain yield with both green leaf

Fig 1. Visualization of phenotypic performance (A) Individual environment boxplot for grain yield. The y-axis is

grain yield in t ha1 and the x-axis represents environments. The mid line in the box represent the median, the

lower and upper horizontal lines of the box represent 25 and 75 percentiles, respectively. The lower whisker

represents the 25th percentile minus 1.5 × inter-quartile range (IQR) and the upper whisker is the 75th percentile

plus 1.5 × IQR. (B) Entry-mean heritability (C) Percentage of phenotypic variance explained (PVE), genotype

and genotype x environment components (D) Genetic correlation between grain yield and agronomic traits.

https://doi.org/10.1371/journal.pone.0189669.g001
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area and greenness of the flag leaf suggest that delayed chlorophyll decay may not necessarily

translate to increased grain yield in the US High Plains. The significant correlation between

grain yield and harvest index, biomass weight and spikes m-2 suggest that improvement in

grain yield may be achievable through indirect selection of these traits. The highest significant

correlation across environment (ρg = 0.43, P< 0.01) was observed between grain yield and

spikes m-2 (Fig 1D). The genetic correlation between grain yield with biomass weight was

moderate (ρg = 0.40 to 0.60) to high (ρg > 0.60) in all trials where the yield components were

recorded (data not shown). Kernels m-2 was significantly correlated with grain yield in three

environments but was not significantly correlated with grain yield in CH14 (data not shown).

Test weight was positively correlated with grain yield in four environments although the corre-

lations were less than 0.30 (data not shown).

Consistent QTL for grain yield, yield components and agronomic traits

We detected nine consistent QTL on chromosomes 1A, 2A, 2B, 5A, 5B, 6A, 6B, and 7A

(Table 1, S2–S6 Tables). The QTL on chromosome 1A was linked to spikes m-2 across all the

four analysis methods, henceforth referred to as M1, M2, M3 and M4 for method 1 (GenStat-

multiEnv), method 2 (GenStat-SingleEnv), method 3 (MapQTL), and method 4 (QTLNet-

work), respectively. The magnitude of additive effects and PVE varied from one method to the

next. The PVE for spikes m-2 in M1 ranged from 5.8–7.9% with an additive effect range of

13.1–19.1 spikes. The PVE for spikes m-2 in M2 was 7.8% whereas the range in M3 (6.1–8.1%)

was similar to M1. This same QTL was also linked to harvest index in M1 and M3; mean single

head weight in M1 and M2; kernels spike-1 in M2, M3, and M4; thousand kernel weight in M3

and M4 and test weight in M2 (Table 1).

The interval region for this 1A QTL harbors seven protein coding gene with transcript ID

TRIAE_CS42_1AL_TGACv1_001932_AA0036960,Traes_1AS_656CB2399, Trae-
s_1AS_7B084FDFA, Traes_1AS_3160922E9, Traes_1AS_6CB929C18, Traes_1AS_1CBC21AE8,

Traes_1AS_5317928F1. This transcript indicates that the 1A QTL is around the centromere

given some genes are on the short arm and others on the long arm (http://plants.ensembl.org).

The QTL on chromosome 2A.1 was consistently linked to the number of kernels spike-1

with PVE of 5.1–8.1% in M1, 8.1% and 12.2% in M2, and 5.6–12.8% in M3. In all the QTL

analysis approach, this 2A.1 QTL had an additive effect of about one kernel per spike. In addi-

tion to kernel spike-1, it was linked to test weight in M1 and M2 where it had PVE of 2.5–

12.2% and 9.7% in M1 and M2, respectively. Comparative search showed that the gene, Trae-
s_2AL_2EC344DEE, is within the region of 2A.1QTL on the long arm of chromosome 2A

(http://plants.ensembl.org).

Two QTL, repeatable across environment and statistical analysis methods were detected on

chromosome 2B.1. The first one was at the region of 122 to 152 cM of 2B.1, was significantly

associated with spikes m-2 in M2 and M3 with a corresponding PVE of 9.7% and 8.5%, respec-

tively. The additive effect for this QTL was 16 spikes m-2 in M2 and M3 and 7.8 spikes m-2 in

M4. Analysis using M2 showed that this 2B.1 QTL was also linked to day to heading with PVE

range of 8.3–20.7%. BLAST search showed that 20 genes falls within the confidence interval of

this first QTL on 2B.1 (http://plants.ensembl.org; https://urgi.versailles.inra.fr). The second

QTL on chromosome 2B.1 was linked to harvest index in all the four methods but to yield and

thousand kernel weight in the first three methods. We also detected significant statistical asso-

ciation of this QTL on test weight, greenness of the flag leaf and green leaf area in both M1 and

M2. For grain yield, this 2nd QTL on 2B.1 had a PVE range of 3.3–25.1% in M1, 13.4% in M2,

and 8.6–20.7% in M3. Overall, the additive effect for grain yield ranged from 0.05–0.25 t ha-1

depending on the environment and statistical analysis method. The PVE for this 2nd QTL on
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Table 1. Summary of consistent QTL for yield, yield components and agronomic traits.

Chrom QTL ID Peak

(cM)

M1b M2 b M3 b M4 b Favorable alleles e

Traita A c PVE d A c PVE d A c PVE d A c

1A 1 170–179 KPS 0.82 7.9 0.5–0.8 5.6–7.5 0.6 P2

173–186 SPM 13.1–19.1 5.8–7.9 14.0 7.8 11.8–18.7 6.1–8.6 9.8 P1

179–181 TKW 0.6–0.7 9.0 0.3 P2

201–204 HI 0.006–0.008 3.0–6.1 0.01 8.8 P2

173–179 MSHW 0.02 4.1–10.9 0.03 7.0–11.5 P2

196 TW 4.4 5.3 P2

2A.1 3 46–68 KPS 0.83 5.1–8.1 0.8–1.3 8.1–12.2 0.8–1.5 5.6–12.8 0.8 P2

46–52 TW 6.7–22.0 2.5–12.2 19.6 9.7 P1

2B.1.2 4 122–125 SPM 16.9 9.7 16.7 8.5 7.8 P1

142 PH 0.5–0.9 2.2–7.4 P2

142–152 DTH 0.4–0.7 8.3–21 P1

2B.1 5 170–173 GY 0.05–0.25 3.3–25.1 0.12 13.4 0.11 8.6–20.7 P2

167 KPS 0.7 5.3 P2

165 SPM 6.8–13.9 1.8–6.0 P1

166–173 TKW 0.4–1.0 2.7–19.5 0.7 8.6 0.5–1.0 6.1–18.4 P2

170–173 HI 0.004–0.016 3.3–22.9 0.01–0.02 5.6–7.0 0.01–0.02 9.8–25.9 0.013 P2

164–168 TW 5.5–8.6 1.8–14.4 6.6 5.9 P2

167 DTH 0.3–0.9 2.5–30.6 P1

168–173 GFL 0.1–0.2 10.6–36.4 0.01 21.2–39.5 P1

168–175 GLA 0.2–0.3 32.0–42.1 0.2 21.1–25.4 P1

5A.1 8 99 GY 0.04–0.25 2.2–5.2 P2

99 SPM 9.0 P1

86–117 TKW 0.5–0.8 6.1–8.6 0.52 P2

100 KPM 126.1 9.0 P1

5B 11 211–243 GY 0.04–0.20 1.8–9.3 0.10 7.2 0.11 7.7–8.2 0.07 P2

6A.2 14 131 GY 0.06 5.2 P2

129 KPS 0.3 P2

125–127 SPM 19.5 9.3 20.0 8.8 8.7 P2

129–133 TKW 0.8–1.1 11.8–17.5 0.7–1.0 12.8–14.0 0.7–1.0 9.3–13.4 0.7 P1

115–122 HI 0.006 1.3–6.5 0.01 7.1–8.3 0.01 P1

129 TW 7.3 7.2 P1

113 TS 2.7 7.2 P2

130–131 PH 0.8 0.8–6.3 1.1 7.8 P1

107 GLA 0.1 4 P2

6B.1 15 130–135 SPM 5.5–22.7 1.7–9.4 18.6 8.5 12.9–14.9 6.8–9.5 P1

133–166 TKW 0.4–0.6 2.5–4.5 0.3 P2

127–151 TW 4.5–13.5 3.5–5.9 6.7 6.2 P1

146–148 PH 1.9–2.4 7.7–9.2 P2

7A.1 16 20 GY 0.1 7.4 0.11 7.2 P1

4–20 KPS 0.5–1.0 2.4–7.3 0.9 8.4 0.5–1.1 5.3–8.6 0.5 P2

0–20 TKW 0.3 0.9–2.1 0.7 9.5 0.6–0.7 6.2–8.7 0.6 P1

aAbbreviation of traits: GY grain yield, TW test weight, DTH days to heading, PH plant height, HI harvest index, SPM spike m2, KPS kernels spike1, KPM,

kernels m2, MSHW mean single head weight, TKW, thousand kernel weight, TS total stems, GLA green leaf area, GFL greenness of flag leaf
b M1 Method 1, GenStat Multi-env model; M2 Method 2, GenStat Single-env model; M3 Method 3, MapQTL; M4 Method 4, QTLNetwork
c A Additive effect; Ignore the negative signs because the parental favorable alleles are labelled
d PVE Phenotypic variations explained
e P1 female parent, CO960293-2; P2 male parent, TAM 111

https://doi.org/10.1371/journal.pone.0189669.t001
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2B.1 on harvest index was 3.3–22.9% in M1, 5.6% and 7.0% in M2, and 9.8–25.9% in M3. The

corresponding additive effect for harvest index was 0.004–0.016 in M1, 0.01 and 0.02 in M2,

and 0.01–0.02 in M3. This 2nd QTL on 2B.1 was also linked to days to heading in M1 with a

PVE range of 2.5–30.6%. Based on the database search of the linked SNP markers, this QTL is

very close to the PpdB1 gene, 1.9 Mb apart on the Chinese Spring reference genome (www.

wheatgenome.org) and is associated with protein coding gene heat shock 70kDa protein

TRIAE_CS42_2BS_TGACv1_146035_AA0453700,Traes_2BS_96D64756B, Traes_2BS_F3D19
22E5 and Traes_2BS_B88CDE912 on the short arm of chromosome 2B (S8 Table) (http://

plants.ensembl.org).

The QTL on 5A.1 was associated with yield based on M1 analyses, spikes m-2 from M4, and

thousand kernel weight from M3 and M4 (Table 1). However, this is a QTL with small effect

based on its additive effect and PVE. The peak SNP for 5A.1 is within TRIAE_CS42_5AL_T-
GACv1_375092_AA1215930gene which has 7 exons and 20 variants (http://plants.ensembl.

org).

The QTL on 5B at 211 cM was consistently linked to grain yield across environments and

methods with PVE of 1.8–9.3%, 7.2%, and 7.7–8.2% in M1, M2, and M3, respectively. This

QTL had an additive effect of 0.04–0.20 t ha-1 in M1, 0.1 t ha-1 in M2, 0.11 in M3, and 0.07 in

M4. The region spanning 5B.1 on the long arm of chromosome 5B harbors TRIAE_CS42_5B
L_TGACv1_408832_AA1364560gene which has a single transcript coding of 146 amino acid.

The QTL on 6A.2 was consistently linked to thousand kernel weight with a corresponding

PVE of 11.8–17.5% in M1, 12.8–14.0% in M2, and 9.3–13.4% in M3. In addition, 6A.2 QTL

was also linked to harvest index in M1, M3, M4; spikes m2 in M2, M3, M4; and plant height in

M1 and M2. One of the peak SNP (IWB8924) for 6A.2 is within TRIAE_CS42_6AL_TGAC-
v1_472318_AA1520780gene on the long arm of chromosome 6A (http://plants.ensembl.org).

The gene has four transcripts and codes Diacylglycerol kinase which play a role in signaling

under biotic and abiotic stress [35]. Another peak marker, IWB67907, is within a predicted

TRIAE_CS42_6AL_TGACv1_472781_AA1525920 gene that codes Alphamannosidase. In other

plants, alphamannosidase has enzymatic function on Nglycans [36, 37]. IWB7004, also within

confidence interval for 6A.2, is linked to TRIAE_CS42_1BS_TGACv1_051115_AA0177850
gene for uncharacterized protein in wheat (http://plants.ensembl.org). The QTL on 6B.1 was

significantly associated with spikes m2 and had PVE of 1.7–9.4% in M1, 8.5% in M2, and 6.8–

9.5% in M3. The additive effect of 6B.1 QTL for spikes m2 was 5.5–22.7, 18.6, and 12.9–14.9

spikes m2 in M1, M2, and M3, respectively. A search for genes within the QTL region revealed

two protein coding genes TRIAE_CS42_6BL_TGACv1_501196_AA1614830on 6BL, and

TRIAE_CS42_6BS_TGACv1_514653_AA1662770on 6BS indicating that the QTL is located

near the centromeric region. On chromosome 7A.1, we detected a QTL consistently linked to

the number of kernels spike1 and thousand kernel weight across environment and QTL analy-

sis methods. The PVE for thousand kernel weight was 0.9–2.1%, 9.5%, and 6.2–8.7% in M1,

M2, and M3, respectively. The corresponding additive effect was 0.3 g, 0.7 g, 0.6–0.7 g, respec-

tively. For the number of kernels spike1, the PVE was 2.4–7.3%, 8.4%, and 5.3–8.6% in M1,

M2, and M3, respectively. BLAST search of peak SNP showed that TRIAE_CS42_7AL_TGAC-
v1_557259_AA1778880gene is located within the region spanning 7A.1.

QTLNetwork analyses for additive affects, epistasis, and their interactions revealed more

significant effects (Table 1, S2 and S3 Tables). Epistasis was important for thousand kernel

weight with seven significant additive × additive (A × A) interaction detected between QTL on

chromosome 1A, 1B.1, 3A.3, 3B.1, 5B, 6B and QTL on 5D.1, 7A.3, and 7B. Three out of these

seven were between Qtkw.tamu.7B.2 and a QTL on 1A, 3B.1, and 6B (S3 Table). There was no

significant additive × additive × environment (A × A × E) interaction for thousand kernel

weight but additive × environment (A × E) interaction was important. Among the ten QTL
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linked to thousand kernel weight, Qtkw.tamu.6A.2 showed significant A × E interaction at

CH14 (S2 Table). The number of spikes m-2 had nine significant epistases detected with one

showing significant A × A × E interaction. Five significant A × A interaction for spikes m-2

were between one major QTL and a new QTL that was not detected based method 1 to 4 while

one epistasis was between two new QTL. We detected one significant epistasis for kernel

spike1 and harvest index. The latter involved interaction between two new QTL while the for-

mer involved interaction between Qkps.tamu.3D.1 and a new QTL for kernel spike-1. Only the

A × A × E for two major stable QTL Qhi.tamu.2B.1 and Qhi.tamu.6A.2 was significant (S3

Table).

The QTL on 1A, 1B.1, 1B.3, and 2B.1 at 170 cM as well as the QTL on 5B at 243 cM showed

significant A × E for grain yield whereas two QTL on 1A and 2B.1 at 170 cM showed signifi-

cant A × E for harvest index (S2 Table). An interaction between two QTL, Qgy.tamu.3D.1 and

Qgy.tamu.5B.1, was not significant for A × A epistasis but significant for A × A × E interac-

tions. Overall, the environment AB13 (Aberdeen, Idaho 2013) was different from other envi-

ronments. Five out of the six significant A × A × E interactions involved AB13 (S3 Table).

Multi-trait QTL for yield and yield components

The multi-trait genetic model across seven environments revealed nine significant QTL with

all QTL detected showing significant QTI as indicated by a color coded HVA (red color =

HVA from TAM 111, blue = HVA from CO960293-2) [10, 12] (Table 2, Fig 2).Seven of the

nine multi-trait QTL were also detected based on M1 and M2 approach (Table 1). Multi-trait

QTL on chromosomes 2B (Qmt.tamu.2B.1) and 6A.2 (Qmt.tamu.6A.2) were associated with

the highest number of traits suggesting that these genomic regions are essential in wheat

breeding for higher yield (Fig 2).

Grain yield was linked to multi-trait QTL on chromosome 1B.1, 2B.1, 5A.1, and 5B with all

QTL except 1B.1 showing HVA from TAM 111 (Fig 2). Biomass weight was linked to multi-

trait QTL on chromosome 1B.1 and 7A.1 (Table 2 and Fig 2). Multi-trait QTL associated with

plant height were detected on chromosome 5A.1, 6A.2, and 7A.1 and the chromosomal loca-

tion of multi-trait QTL for plant height on 6A.2 agreed with single trait multi-environment

QTL model (Tables 1 and 2). Days to heading was linked to multi-trait QTL on 2B.1, 2D.3, 5B,

and 6A.2 whereas green leaf area and greenness of the flag leaf were associated with multi-trait

QTL on chromosome 2B.1, 2D.3, and 5B although the greenness of the flag leaf had an addi-

tional QTL on 5A.2 (Table 2). The multi-trait QTL with significant additive effect on kernels

m2 were mapped on chromosome 5A.1 and 5A.2 (Table 2). Harvest index was associated with

multi-trait QTL on 2B.1, 5B, and 6A.2 whereas kernel spike-1 QTL with significant additive

effects were detected on 1B.1, 6A.2, and 7A.1 (Table 2). Mean single head weight was linked to

multi-trait QTL on chromosomes 1B.1, 5A.1, and 6A.2. Thousand kernel weight QTL were

mapped on chromosome 2B.1, 5A.1, 5A.2, 6A.2, and 7A.1 (Table 2). The QTL for thousand

kernel weight detected on 2B.1, 5A.2, 6A.2, and 7A.1 were also detected in a single trait multi-

environment model (Table 1). The multi-trait QTL linked to spikes m2 were detected on chro-

mosome 2B.1, 5A.1, 5B, and 6A.2 with all QTL showing HVA from TAM 111 except for the

QTL on 5A.1. Test weight was associated with multi-trait QTL on 1B.1, 2B.1, 2D.3, 5A.2, 6A.2,

and 7A.1 whereas the multi-trait QTL with significant additive effect on total stems were

detected on chromosome 1B.1, 5A.1, and 6A.2 (Table 2). The multi-trait QTL on 1B.1, 2B.1,

2D.3, 6A.2, and 7A.1 were associated with kernels spike1. However, a test for significance of

additive revealed that only the QTL on 1B.1, the multi-trait QTL on 6A.2 and on 7A.1 had sig-

nificant additive effect on kernels spike1. Mean single head weight was associated with multi-

trait QTL on 1B.1, 5A.1, 6A.2, and 7A.1 although the latter had nonsignificant additive effect.
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Table 2. Multitrait QTL detected using data pooled across environments.

QTL Namea QTL

ID

Chr Position

(cM)

Peak SNP CI_LLb CI_ULc -log10

(P)

Traitsd AEe PVEf

(%)

HVAg Detected in single

environment

analysish

Detected in multi-

environment

Qmt.

tamu.1B.1

18 1B.1 111.4 IWB37118 91.3 123.1 10.9 BW, GY,

KPS,

MSHW,

TS, TW

0.17,

0.23,

0.18,

0.19,

0.24,

3.60

3.0,

5.4,

3.3,

3.7,

1.1, 8.0

P2, P1,

P1,

P1, P2,

P2

Yes: for TW in HY13 and

ET13

No

Qmt.

tamu.2B.1

5 2B.1 165.5 IWB43273 163.5 167.5 17.3 DTH,

GFL,

GLA,

HI, TKW,

TW

0.43,

0.76,

0.63,

0.48,

0.35,

2.15

18.4,

57.7,

39.2,

22.9,

12.0,

2.8

P1, P1,

P1,

P2, P2,

P2

Yes: for GFL and GLA in

BS14; HI, GFL, GLA, and GY

in CH14; DTH and HI in

ET13; DTH, TW, and TKW in

HY13

Yes: for DTH,

GFL, GLA, GY,

HI, and SPM

Qmt.

tamu.2B.1.1

19 2B.1 269.3 IWB70591 221.3 317.3 7.6 GY, SPM,

TKW, TW

0.19,

0.15,

0.16,

2.96

3.5,

2.2,

2.4, 5.2

P2, P2,

P1, P1

Yes: for GY in ET13 No

Qmt.

tamu.2D.3

6 2D.3 1.2 IWB26013 0.0 8.4 9.9 DTH,

GFL,

GLA, TW

0.27,

0.10,

0.11,

0.42

7.5,

1.0,

1.1,

17.7

P2, P2,

P2, P1

Yes: for TW in ET13, ET14,

and HY13; DTH in AB13

Yes: for TW

Qmt.

tamu.5A.1

8 5A.1 100.4 IWB912 83.6 117.2 5.1 KPM, GY,

MSHW,

PH,

SPM,

TKW, TS

0.19,

0.20,

0.24,

0.15,

0.15,

0.27,

0.30

3.7,

4.0,

5.6,

2.2,

2.1,

7.3, 9.0

P1, P2,

P2, P2,

P1, P2,

P1

Yes: for KPM in BS14 Yes: for GY

Qmt.

tamu.5A.2

9 5A.2 17.7 IWB6809 0.0 56.4 4.9 GFL,

KPM,

TKW, TW

0.09,

0.18,

0.20,

2.19

0.8,

3.4,

3.9, 2.8

P2, P2,

P1, P2

Yes: for TKW in BS14; KPM

in CH14; TW in HY13

Yes: for KPM,

KPS, and TKW

Qmt.

tamu.5B.1

11 5B 226.5 IWB21839 201.2 251.8 7.3 DTH,

GFL,

GLA, GY,

HI, SPM

0.16,

0.15,

0.12,

0.26,

0.14,

0.15

2.7,

2.4,

1.4,

7.0,

2.0, 2.2

P1, P1,

P1, P2,

P2, P2

Yes: for GY in HY13 Yes: for GY

Qmt.

tamu.6A.2

14 6A.2 130.7 IWB26244 111.6 133.5 11.8 DTH, HI,

KPS,

MSHW,

PH, SPM,

TKW, TS,

TW

0.14,

0.23,

0.13,

0.15,

0.25,

0.13,

0.29,

0.17,

3.35

1.9,

5.1,

1.6,

2.2,

6.3,

1.7,

8.3,

2.9, 6.9

P2, P1,

P2,

P1, P1,

P2,

P1, P2,

P1

Yes: for SPM and TKW in

ET13; TKW in ET14; TKW,

TW, and PH in HY13

Yes: for HI, PH,

and TKW

Qmt.

tamu.7A.1

16 7A.1 20.6 IWB7632 2.9 38.3 4.9 BW, KPS,

PH, TKW

0.17,

0.18,

0.19,

0.30

3.0,

3.3,

3.7, 8.7

P1, P2,

P1, P1

Yes: GY in ET14; KPS and

TKW in HY13

Yes: for KPS and

TKW

a QTL name including trait, institute, and chromosome location; the chromosome location part is unique for each numbered QTL if the peak positions were

less than 40 cM; within each chromosome fragment, different numbered QTL will have various chromosome fragment parts starting from the fragment

name, then adding “.1, .2, . . .”.
b CI_LL, lower limit of QTL confidence interval in centiMorgans.
c CI_UL, upper limit of QTL confidence interval in centiMorgans.
d Abbreviation of traits: GY grain yield, TW test weight, DTH days to heading, PH plant height, HI harvest index, KPM kernels m2, BW biomass weight, SPM

spike m2, KPS kernels spike1, MSHW mean single head weight, TKW, thousand kernel weight, TS total stems, GLA green leaf area, GFL greenness of flag

leaf
e Additive effects corresponding to each trait in the trait column.
f PVE, phenotypic variance explained (%) corresponding to each trait in the trait column.
g HVA, High value allele corresponding to each trait in the trait column. P1 = CO960293-2, P2 = TAM 111.
h ENV, environment, AB13 Aberdeen 2013, BS14 Bushland 2014, CH14 Chillicothe 2014, ET13 Etter 2013, ET14 Etter 2014, HY13 Hays 2013, HY14 Hays

2014.

https://doi.org/10.1371/journal.pone.0189669.t002
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The co-location observed in multi-trait analysis was supported by results from previous

analysis. In M1 analysis, mean single head weight, spikes m2 and harvest index were co-

located on chromosome 1A from 173.0 cM to 202.9 cM whereas thousand kernel weight,

kernels m2, and kernels spike1 were co-located on 5A.2 from 1.0 cM and 24.7 cM, respec-

tively based on peak SNP position (S4 Table and S1–S3 Figs). Test weight and kernels

spike1 were co-located on chromosome 2A.1 at 51.8 cM and 53.7 cM, respectively (S4

Table and S1–S3 Figs). QTL for days to heading, greenness of the flag leaf, green leaf area,

grain yield, harvest index, spikes m2, thousand kernel weight, and test weight were co-

located from 165.5 cM to 172.9 cM on chromosome 2B.1. In addition, thousand kernel

weight, plant height, and harvest index were co-located on 6A.2 from 115.3 cM to 129.7 cM

(S4 Table and S1–S3 Figs). In M2 QTL model showed colocation at 168–175 cM of 2B.1 for

greenness of the flag leaf and green leaf area and in the same map position as M1 colocation

(Table 1 and S4 and S5 Tables). Spikes m-2 and thousand kernel weight were co-located on

chromosome 6A.2 in ET13. In HY13, colocation of QTL was observed for test weight and

thousand kernel weight on 2B.1; thousand kernel weight, test weight, and plant height on

6A.2; and kernel spike-1 and thousand kernel weight on 7A.1 (S4 and S5 Tables). The colo-

cation of QTL for different traits could partly explain the genetic correlation observed in

this study (Fig 1D).

Fig 2. Genomewide scan for multi-trait QTL for grain yield and agronomic traits. The upper graph is the QTL profile

plot with the y-axis representing the log of likelihood, -log (P), for declaring significance of QTL. The red horizontal line

represents the threshold corrected for the number of independent tests using Li and Ji [38]. The lower profile is the

genomewide heat map of significant QTL across environments. The y-axis is the traits and the x-axis represents the

chromosomes. The light blue to blue color indicates the high value allele originates from CO9602932 and the yellow-red

color indicates the high value allele originates from TAM 111.

https://doi.org/10.1371/journal.pone.0189669.g002
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Combined analysis of pleiotropy and epistasis

Combined analysis of pleiotropy and epistasis (CAPE) jointly uses multiple phenotype and

genetic markers to model and define marker-to-trait effects and marker-to-marker interac-

tions. The detected marker-to-trait effect and marker interactions are defined either as

enhancing (allele from male parent) or repressing (allele from female parent). Typically, the

linear independence of the phenotypic data is achieved by singular value decomposition

(SVD) to extract composite traits (eigentraits) prior to analysis [13, 39, 40]. In this study, SVD

of grain yield and three yield components (spikes m-2, kernels spike-1, and thousand kernel

weight) generated four eigentraits (ET). The first three ET accounted for approximately 90%

of the variation in the phenotype and were used for CAPE to elucidate interaction patterns

underlying grain yield and yield components. The black arc lines represent linkage groups.

Light grey concentric lines represent traits with the innermost concentric line representing

grain yield followed sequentially by yield components namely thousand kernel weight, kernels

spike-1, and spikes m-2 (Fig 3B). A network of marker-to-marker interaction is represented by

color-coded arrow line depending on whether the interaction is enhancing (brown) or repress-

ing (blue). The segment of the linkage group involved in the interaction is marked by grey

color inside the black arc. The main effect calculated based on a subset of markers (markers

associated with significant effect in the previous section) are mapped along the concentric

lines. Both positive and negative pleiotropic effects were observed on chromosomes 1A, 2A.1,

2B.1, 5A.2, 5B, 6A.2, 6B, 7A.1, and 7B (Table 3 and Fig 3B). Markers on 2B.1, IWB70591 and

IWB64246, had enhancing effect on grain yield. In addition, IWB23950 at 228.0 cM and

IWB52093 at 402.6 cM on chromosome 5B had enhancing effect on grain yield. On the con-

trary, IWA3983 on 3B.1, IWB31561 on 6D.2, and IWB11000 on 7A.1 had a repression effect on

grain yield (Table 3 and Fig 3B). Thousand kernel weight was enhanced by IWB46316 and

IWB42357 on 1A; IWB16370 and IWB8143 on 2B.1; IWB47055 on 3A.1; IWB912 on 5A.1;

Fig 3. Interactions and pleiotropic patterns based on markers linked to significant QTL from multi-

environment and multi-trait QTL analysis. (A) Eigentraits (ET) generated through singular value decomposition of

phenotypic data. The first three ET explained approximately 90% of the phenotypic variation and were used for

combined analysis of pleiotropy and epistasis (CAPE). The legend indicates the direction of variance among traits. For

instance, for ET1, kernel spike-1 (KPS) and thousand kernel weight (TKW) vary in opposite direction compared to grain

yield (GY) and spike m-2 (SPM). (B) Interaction patterns from CAPE with main effects (brown and blue) depicted on the

concentric rings and interactions depicted by color-coded arrow lines within the plot. Brown arrow line represents

enhancing effect whereas blue arrow line indicates repressing effect.

https://doi.org/10.1371/journal.pone.0189669.g003
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Table 3. Significant marker-to-trait influences based on a subset of markers in combined analysis of pleiotropy and epitasis.

Markers QTL

ID

Source linkage

group

Source

position

Target

traitsa
Effect on

target

Source of

alleles

Effect SE |Effect|/

SEb
P-value q-value

IWB70591 19 2B.1 269.3 GY Enhancing TAM 111 0.59 0.18 3.23 0.0013 0.0392

IWB64246 19 2B.1 289.6 GY Enhancing TAM 111 0.66 0.19 3.47 0.0005 0.0270

IWB23950 11 5B 228.0 GY Enhancing TAM 111 0.84 0.20 4.23 0.0000 0.0008

IWB52093 12 5B 402.6 GY Enhancing TAM 111 0.96 0.32 3.02 0.0025 0.0360

IWB46316 21 1A 148.1 TKW Enhancing TAM 111 0.63 0.19 3.27 0.0013 0.0440

IWB42357 1 1A 196.0 TKW Enhancing TAM 111 0.78 0.19 4.08 0.0001 0.0015

IWB16370 4 2B.1 122.7 TKW Enhancing TAM 111 0.79 0.20 3.86 0.0002 0.0045

IWB8143 5 2B.1 166.7 TKW Enhancing TAM 111 0.81 0.20 4.10 0.0000 0.0022

IWB47055 25 3A.1 44.0 TKW Enhancing TAM 111 0.85 0.21 4.05 0.0001 0.0031

IWB912 8 5A.1 97.1 TKW Enhancing TAM 111 0.67 0.19 3.52 0.0006 0.0104

IWB72333 15 6B 127.5 TKW Enhancing TAM 111 0.79 0.21 3.76 0.0002 0.0061

IWB11040 15 6B 145.7 TKW Enhancing TAM 111 0.78 0.21 3.67 0.0003 0.0068

IWB9108 26 6B 230.7 TKW Enhancing TAM 111 0.67 0.18 3.71 0.0003 0.0081

IWB46316 21 1A 148.1 KPS Enhancing TAM 111 0.58 0.18 3.18 0.0017 0.0298

IWB13287 1 1A 169.9 KPS Enhancing TAM 111 0.76 0.21 3.57 0.0005 0.0096

IWB42357 1 1A 196.0 KPS Enhancing TAM 111 0.70 0.20 3.52 0.0005 0.0136

IWB7015 3 2A.1 43.9 KPS Enhancing TAM 111 0.97 0.21 4.51 0.0000 0.0001

IWB28453 3 2A.1 67.1 KPS Enhancing TAM 111 0.65 0.19 3.47 0.0006 0.0073

IWB12338 9 5A.2 1.0 KPS Enhancing TAM 111 0.61 0.20 3.14 0.0019 0.0243

IWB8687 9 5A.2 13.2 KPS Enhancing TAM 111 0.73 0.20 3.57 0.0005 0.0215

IWB14407 9 5A.2 24.7 KPS Enhancing TAM 111 0.70 0.20 3.44 0.0007 0.0342

IWB29746 12 5B 384.8 KPS Enhancing TAM 111 0.67 0.19 3.52 0.0005 0.0165

IWB7004 14 6A.2 128.7 KPS Enhancing TAM 111 0.63 0.19 3.40 0.0008 0.0312

IWB41660 16 7A.1 11.2 KPS Enhancing TAM 111 0.60 0.18 3.40 0.0008 0.0165

IWB7632 16 7A.1 20.6 KPS Enhancing TAM 111 0.71 0.21 3.34 0.0010 0.0190

IWB10879 17 7B 12.7 KPS Enhancing TAM 111 0.59 0.19 3.06 0.0025 0.0443

IWA3983 7 3B.1 107.9 GY Repressing CO960293-2 -0.69 0.19 3.52 0.0005 0.0164

IWB31561 27 6D.2 41.1 GY Repressing CO960293-2 -0.69 0.19 3.55 0.0004 0.0217

IWB11000 43 7A.1 57.8 GY Repressing CO960293-2 -0.61 0.20 3.11 0.0019 0.0298

IWB7015 3 2A.1 43.9 TKW Repressing CO960293-2 -0.71 0.20 3.58 0.0005 0.0108

IWB74769 9 5A.2 24.3 TKW Repressing CO960293-2 -0.93 0.18 5.10 0.0000 0.0000

IWB7004 14 6A.2 128.7 TKW Repressing CO960293-2 -0.97 0.19 5.08 0.0000 0.0000

IWA7406 16 7A.1 5.7 TKW Repressing CO960293-2 -0.74 0.17 4.31 0.0000 0.0008

IWB11000 43 7A.1 57.8 TKW Repressing CO960293-2 -0.66 0.17 3.87 0.0002 0.0055

IWB10879 17 7B 12.7 TKW Repressing CO960293-2 -0.67 0.17 3.88 0.0001 0.0034

IWB46316 21 1A 148.1 SPM Repressing CO960293-2 -0.96 0.21 4.47 0.0000 0.0006

IWB13287 1 1A 169.9 SPM Repressing CO960293-2 -0.74 0.18 4.04 0.0001 0.0033

IWB42357 1 1A 196.0 SPM Repressing CO960293-2 -0.87 0.19 4.59 0.0000 0.0003

IWB16370 4 2B.1 122.7 SPM Repressing CO960293-2 -0.69 0.20 3.46 0.0007 0.0343

IWA4416 12 5B 478.6 SPM Repressing CO960293-2 -0.59 0.17 3.35 0.0010 0.0420

IWB72333 15 6B 127.5 SPM Repressing CO960293-2 -0.76 0.19 4.05 0.0001 0.0016

IWB8809 15 6B 166.4 SPM Repressing CO960293-2 -0.70 0.18 3.83 0.0002 0.0025

IWB9108 26 6B 230.7 SPM Repressing CO960293-2 -0.82 0.18 4.63 0.0000 0.0002

a Abbreviation for traits: GY grain yield, TKW thousand kernel weight, KPS Kernels spike1, SPM Spikes m2

b The test statistic was computed by dividing the absolute effect by standard error (SE). The likelihood test for chance association was calculated using

500,000 permutations. The test statistic was compared with null distribution generated through permutation. To minimize inflation of false positives due to

multiple tests, the false discovery rate (FDR) corrected P-values (q-values) were computed

https://doi.org/10.1371/journal.pone.0189669.t003
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IWB72333, IWB11040, IWB9108 on 6B. QTL that had repression effect on thousand kernel

weight include IWB7015 on 2A.1; IWB74769 on 5A.2; IWB7004 on 6A.2; and IWA7406 and

IWB11000 on 7A.1 (Table 3). The two markers, IWB46316 and IWB42357 on 1A, enhancing

thousand kernel weight had positive pleiotropic effect on kernels spike1 but had repression

effect on spikes m2. In addition, the IWB16370 on 2B.1 which had positive effect on thousand

kernel weight showed negative pleiotropic effect on spikes m2 (Table 3; Fig 3B). Besides IWB
46316 on 1A, other markers that had enhancing effect on kernels spike1 include IWB13287
and IWB42357 on 1A; IWB7015 and IWB28453 on 2A.1; IWB12338, IWB8687 and IWB14407
on 5A.2; IWB29746 on 5B; IWB7004 on 6A.2; IWB41660 and IWB7632 on 7A.1 (Table 3 and

Fig 3B). IWB7015, IWB7004, and IWB10879 enhancing KPS had a negative pleiotropic effect

on thousand kernel weight.

Marker-to-marker interaction patterns were depicted using color-coded arrowed lines with

direction of the arrow indicating the target markers enhanced or repressed (Fig 3B). Similar to

marker-to-trait effect, the brown arrow lines indicate favorable interactions (enhancing) whereas

blue lines indicate unfavorable interactions (suppressing). The effect of markers on 1A was

enhanced by interaction with markers on 7A.1. The marker IWB7015 on 2A.1 was enhanced by

interaction with IWB7053 and IWB64246 on 2B.1. Markers on 2B.1 were enhanced by interac-

tion with markers on 2A.1, 2B.1, 6A.2, and 7A.1. IWB912 on 5A.1 was enhanced by IWB6263
whereas a set of markers mapped from 1.0 to 17.7 cM on 5A.2 were enhanced by interacting

with several markers on 1A, 2B.1, 5A.1, and 5B (Fig 3B and S7 Table). On chromosome 5B,

IWB21839, IWB59433, IWB29746, and IWB52093were enhanced by several markers on 5A.2,

6B, 2B.1, 2D.2, and 3B.1 (Fig 3B and S7 Table). Several markers on 6A.2 were enhanced by inter-

action with markers on 1A, 1D.1, 2B.1, and 6D.2. In addition, IWB43368mapped at 112.7 cM

on 6A.2 had enhancing effect on IWB1295mapped at 129.7 cM on the same chromosome. A

number of markers detected on 1D.1, 2A.1, 2D.3, 5A.2, 5B, and 7A.1 enhanced markers detected

on 6B. IWB7632 on 7A.1 was enhanced by IWB46316, IWB13287, and IWB42357 on 1A. IWB4
1660 showed positive interaction with IWB65641 on 5B whereas IWA7406 on 7A.1 showed posi-

tive interaction with IWB72333 and IWB8809 on 6B. Marker IWB65641 on 5B enhanced IWB
10879 on 7B (Fig 3B and S7 Table). Negative marker-to-marker interactions with sources of

alleles from CO9602932 were detected between 10 source chromosomes including 1A, 2A, 2B,

3A, 3B, 5A, 5B, 6A, 6B, and 7A (Fig 3B and S7 Table).

Discussion

We applied different genetic models to define the underlying genetic basis of quantitative traits

in winter wheat evaluated in different geographical testing footprints in the US Great Plains. A

single trait multi-environment QTL analysis revealed that most traits had significant QEI,

underscoring the need of multi-environment phenotyping to account for this variation. Across

all the models and traits, we detected 43 unique QTL with most QTL showing colocation or

pleiotropic effect. Nine of these QTL were consistent across environment and QTL analysis

methods and seven of the nine QTL were also detected based on multi-trait QTL analysis

approach. Stable grain yield QTL were detected on chromosomes 2B (Qgy.tamu.2B.1) and 5B

(Qgy.tamu.5B.1) based on M1, M2, M3, and M4. The multi-trait QTL on 2B.1 was mapped at

position 165.5 cM (172.9 cM in M1 analysis) and had a significant effect on grain yield and

other traits (Tables 1 and 2, S2–S7 Tables, S1–S3 Figs). Based on genetic map position, Qgy.

tamu.2B.1 was either pleiotropic or co-located with QTL for days to heading, test weight, ker-

nel weight, spikes m2, greenness of the flag leaf, green leaf area, and harvest index. BLAST

search using peak marker for Qgy.tamu.2B.1 revealed that it is associated with several genes

including NAD-dependent histone deacetylase domain containing protein and heat shock 70
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kDa protein (S8 Table). Four other multi-trait QTL (Qmt.tamu.1B.1, Qmt.tamu.2B.1.1, Qmt.
tamu.5A.1, and Qmt.tamu.5B.1) were also linked to grain yield and other traits with Qmt.
tamu.5B.1 showing map position consistency with QTL analysis in M1. Comparison of genetic

maps in Wu et al. [41] and the present study, both constructed using 90K SNP, showed that

IWA4518 (BobWhite_c8113_532) was mapped at 219.6 cM in the present work and falls within

the confidence interval for the multi-trait QTL Qmt.tamu.2B.1.1. The base sequence for

IWA4518 is within 1181 bp mRNA for uncharacterized protein in Aegilops tauschii subsp.

tauschii and 1264 bp mRNA from Triticum aestivum cDNA clone WT006_C07 (www.ncbi.

nlm.nih.gov). This region has also been associated with starch gelatinization in a study using

90K and 660K SNP array [42]. In their study, the linked SNP to the QTL for starch gelatiniza-

tion was RAC875_c56101_368, which was mapped near Qmt.tamu.2B.1.1 in the present study.

We detected other stable QTL for thousand kernel weight on 6A.2, 6B, and 7A.1. A recent

study using 90K SNP array reported kernel weight QTL on 3D, 4A, 5A, 6A, 7A, and 7B based

on multi-environment data from Gao [43]. The map position of QTL on 6A, and 7A based on

interval SNP were different from the present study suggesting that these could be new QTL for

thousand kernel weight. A consistent QTL for mean single head weight (Qmshw.tamu.1A) was

detected on 1A explaining 4.1–10.1% of the phenotypic variation. This region was linked to

spike compactness and sterile spikelet number in a RIL population genotyped using 90K SNP

array and SSR markers [44]. Plant height was linked to two stable QTL, one at 142 cM on 2B.1

and one on 6A.2 clustered or had pleiotropic effect on kernel weight, green leaf area, harvest

index, and spikes m2. Recent work by Wurschum et al [2] and Tian et al [45] showed that chro-

mosome 6A harbors Rht24 gene for reduced plant and that the gene is sensitive to gibberellic

acid. These studies used SNP, GBS and SSR making it difficult to make direct comparison with

the stable QTL for plant height detected in the present work although both QTL were mapped

on the long arm of chromosome 6A. A summary of QTL by Triticeae Coordinated Agricul-

tural Project (TCAP) reported. that IWB6528 (BS00012081_51), IWB56597 (RAC875_c3135
8_214), IWB4233 (BobWhite_c6771_697), and IWB54163 (RAC875_c15844_348) were associ-

ated with PH QTL on chromosome 2B (https://triticeaetoolbox.org/wheat/qtl/qtl_report.php).

In the present work, the four SNP were mapped within the confidence interval (119.4–165

cM) for plant height QTL on chromosome 2B suggesting that this could be same QTL for

plant height. The peak region for 2B.1.2 (IWB62653) was mapped at 142.2 cM compared to

144.6 cM, 144.7 cM, 144.0 cM and 145.1 for IWB6528,WB56597, IWB4233, and IWB54163,

respectively. Megablast search of the IWB62653 sequence revealed that it is within 1656 bp

mRNA of wre1n.pk0115.e3:fis clone (www.ncbi.nlm.nih.gov).

We detected stable QTL for test weight on chromosome 2A, 2B.1 at 164 cM and 6A.2. Both

test weight QTL on 2B and 6A were also detected when data was analyzed using multi-trait

QTL model with additional QTL Qmt.tamu.1B.1 on 1B, Qmt.tamu.2D on chromosome 2D,

and Qmt.tamu.5A.1 on chromosome 5A (Table 3). In a previous study, IWB47726 (Kuk-
ri_c7770_176) and IWB73106 (Tdurum_contig68343_339) were associated with fertile spikelet

number and spikelet compactness, respectively [44]. These two SNPs were mapped within the

confidence interval for mult-trait QTL Qmt.tamu.1B.1 in the present study.

The significant QTI observed in multi-trait model suggests that pleiotropy and epistatic

interactions can contribute to significant variations. Empirical studies on epistasis have

reported varying results with some reporting significant contribution of epistasis in the modu-

lation of quantitative traits while other studies have shown nonsignificant contribution [46].

Results of the multi-trait model were supported by further genetic analysis based on combined

analysis of pleiotropy and epistasis which showed various patterns of genetic interactions

among markers and traits. The marker-to-trait effect revealed that grain yield was enhanced

by markers on 2B.1 and 5B with favorable alleles from TAM 111 but was repressed by a set of
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markers detected on 3B.1, 6D.2, and 7A.1 with alleles from CO9602932. Two markers,

IWB46316 and IWB42357 on 1A enhancing thousand kernel weight had positive pleiotropic

effect on kernels spike-1 but had negative pleiotropic effects on spikes m2 (Fig 3B and Table 3).

Markers enhancing kernels spike-1 on 2A.1, 6A.2, and 7A.1 had a negative pleiotropic effect on

thousand kernel weight. These results suggest the importance of epistasis and pleiotropy in the

genetic architecture of yield components in winter wheat.

QTLNetwork analyses confirmed some results of epistasis from CAPE analyses and pro-

vided information on the importance QTL by environment and epistasis by environment

interactions. A × A, A × E, and A × A × E interactions were identified for several traits across

environments in this study. These interactions could be helpful in evaluation of the major

QTL and potential candidate genes in marker-assisted breeding and genomic prediction. Vali-

dation and conversion to KASP of SNPs tightly linked to yield and its components will be use-

ful for their utility in marker-assisted breeding.

Conclusions

We have provided QTL discovery results using both multi-environment, individual environ-

ment, and multi-trait analysis models of GenStat as well as using MapQTL and QTLNetwork.

The multi-environment QTL for grain yield on 5B was repeatable in six out of eight environ-

ments. This could be an important target region for fine mapping and validation to identify

SNPs associated with grain yield in wheat. A potential target region linked to mean single head

weight was detected on 1A. The QTL for mean single head weight on 1A was constitutively

expressed in all environments where data was recorded. Several QTL associated with multiple

traits were detected through multi-trait QTL analysis approach. Multi-trait QTL on 2B.1 and

6A.2 were associated with the highest number of traits suggesting essential function of these

genomic regions. The colocation observed in multi-environment QTL analysis and the results

of multi-trait agreed in part with the genetic correlation observed in this study. Beyond QTL

discovery, we defined both positive and negative marker-to-marker and marker-to-trait influ-

ences detected through joint analysis of pleiotropy and epistasis. Grain yield was enhanced by

markers on chromosome 2B.1 and 5B with favorable alleles from TAM 111 but was repressed

by several markers on 3B.1, 6D.2, and 7A.1 with favorable alleles from CO9602932. Other

traits showed similar patterns of interactions. The results from combined analysis of pleiotropy

and epistasis together with the standard QTL analysis provides a platform to build a set of

QTL with enhancing effects on the trait of interest. The information could be useful in identifi-

cation of markers for validation and subsequent deployment to improve grain yield as well as

other traits in wheat.
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