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Microtubules composed of αβ-tubulin dimers are dynamic cytoskeletal

polymers that play key roles in essential cellular processes such as cell

division, organelle positioning, intracellular transport, and cell migration. γ-
Tubulin is a highly conserved member of the tubulin family that is required for

microtubule nucleation. γ-Tubulin, together with its associated proteins, forms

the γ-tubulin ring complex (γ-TuRC), that templates microtubules. Here we

review recent advances in the structure of γ-TuRC, its activation, and

centrosomal recruitment. This provides new mechanistic insights into the

molecular mechanism of microtubule nucleation. Accumulating data suggest

that γ-tubulin also has other, less well understood functions. We discuss

emerging evidence that γ-tubulin can form oligomers and filaments, has

specific nuclear functions, and might be involved in centrosomal cross-talk

between microtubules and microfilaments.
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Introduction

The microtubule cytoskeleton is essential for vital cellular functions such as cell

division, maintenance of cell shape, organelle positioning, intracellular transport, and cell

migration. Microtubules are dynamic in nature and oscillate stochastically between phases

of assembly and disassembly in a process known as “dynamic instability of microtubules”

(Mitchison and Kirschner, 1984). The major building components of microtubules are

αβ-tubulin heterodimers that form cylinders with a diameter of ~25 nm. αβ-Tubulins are
linked head-to-tail and form a polar protofilament. The lateral connection of thirteen

protofilaments forms a left-handed helical microtubule wall. Polar microtubules have

structurally distinct ends: a fast-growing plus end (+) that exposes β-tubulin and a slow-

growing minus end (-) that exposes α-tubulin. Both subunits bind GTP, but hydrolysis

occurs only at the β-subunit (Nogales and Wang, 2006). In cells, the (-)-ends of

microtubules are anchored in microtubule organization centers (MTOCs), whereas

the unanchored (+)-ends are very dynamic. Due to the dynamic properties, the

microtubule network remodels in response to various signaling stimuli.

The low concentration of αβ-tubulin dimer in the cytosol prevents spontaneous

nucleation of microtubules. Therefore, nucleation occurs from MTOCs. The centrosome,

which consists of two centrioles surrounded by pericentriolar material (PCM), is the

major MTOC in mammalian cells. In addition, the centrosome locally concentrates
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various signaling molecules, including kinases and phosphatases,

integrates various signaling pathways (Arquint et al., 2014) and is

involved in actin filament organization (Farina et al., 2016; Inoue

et al., 2019). Microtubules are also nucleated from other MTOCs

such as the Golgi apparatus, pre-existing microtubules, nuclear

envelope, chromatin, cell cortex endosomes and mitochondria as

reviewed recently (Paz and Lüders, 2018; Akhmanova and

Kapitein, 2022). These noncentrosomal MTOCs play

important roles in the construction and regulation of the

dynamic microtubule system.

γ-Tubulin (Oakley and Oakley, 1989) is a highly conserved

member of the tubulin family (Ludueña, 2013), present at less

than 1% the level of αβ-tubulin (Stearns et al., 1991). It combines

with other proteins to form γ-tubulin complexes, which are the basic

elements for nucleation of microtubules from MTOCs at various

cellular sites as reviewed previously (Oakley et al., 2015; Petry and

Vale, 2015; Tovey et al., 2018; Thawani and Petry, 2021).

This review focuses on recent research and emerging issues

related to the γ-tubulin functions. Particular attention is paid to

the structure of the γ-tubulin ring complex (γ-TuRC), the

regulation of centrosomal microtubule nucleation, the ability

of γ-tubulin to form oligomers, and the nuclear functions of γ-
tubulin. We also discuss the role of γ-TuRC in centrosomal

microfilament/microtubule cross-talk.

γ-Tubulin isotypes and posttranslational
modifications

Isotypes of α- and β-tubulins, encoded by multiple genes,

differ mainly in their C-terminal tails (CTTs). The differences

between isotypes are often evolutionarily highly conserved,

indicating their functional importance (Ludueña, 1993). Nine

isotypes for each tubulin subunit have been identified in humans.

Some isotypes are ubiquitous, while others are found only in

specialized microtubule assemblies (Ludueña, 2013; Roll-Mecak,

2020). In contrast, in humans, there are only two γ-tubulin genes

(TUBG1 and TUBG2) with 94% sequence similarity, which are

located in tandem at the 17th chromosome (Wise et al., 2000).

The difference between human γ-tubulin-1 and γ-tubulin-2 is

only ten amino acids, nine of which are located in the C-terminal

domains of the molecules (aa 389–451). Nevertheless, they can be

distinguished based on their electrophoretic and

immunochemical properties (Ohashi et al., 2016; Dráberová

et al., 2017). Both γ-tubulins are capable of nucleating

microtubules (Vinopal et al., 2012). While γ-tubulin-1 is

ubiquitously found, γ-tubulin-2 is mainly expressed in the

brain (Wise et al., 2000; Yuba-Kubo et al., 2005). The

function of γ-tubulin-2 is unclear, but based on its

accumulation in neuroblastoma cells under oxidative stress

and in mature neurons, it may have a prosurvive function. In

mature neurons, dominant γ-tubulin-1may ensure noncentrosomal

microtubule nucleation (Dráberová et al., 2017).

The atomic structure of γ-tubulin shows a conformation

similar to α- and β-tubulins (Aldaz et al., 2005; Rice et al., 2008).
When the defined microtubule polarity is extended to the ends of

the αβ-tubulin dimer and each tubulin monomer, the (+)-end of

γ-tubulin contacts the (-)-end of α-tubulin. γ-Tubulin shares

high homology with β-tubulin in the (+)-end face involved in

longitudinal contacts between αβ-tubulin dimers (Inclán and

Nogales, 2001). Similar to αβ-tubulin dimers, γ-tubulin binds

GTP, which enhances its interaction with αβ-tubulin dimers in

both budding yeast Saccharomyces cerevisiae (Gombos et al.,

2013) and reconstituted human γ-TuRC (Wieczorek et al., 2021).

Extensive posttranslational modifications (PTMs) of α- and β-
tubulin isotypes (Janke andMagiera, 2020) generate multiple charge

variants of both subunits, termed tubulin isoforms, which can be

separated by isoelectric focusing (Wolff et al., 1982; Linhartová et al.,

1992). PTMs of γ-tubulins also generate multiple charge variants

that have been distinguished using 2D-PAGE in various systems,

including budding yeast (Vogel et al., 2001), nucleated erythrocytes

(Linhartová et al., 2002), brains (Détraves et al., 1997; Sulimenko

et al., 2002), and various cell lines (Kukharskyy et al., 2004;

Dráberová et al., 2017). Of the PTMs of γ-tubulin, most data

have been collected on its phosphorylation. Large-scale

phosphoproteomic analysis of spindle pole bodies (SPBs) in

budding yeast revealed multiple phosphorylation sites on γ-
tubulin (Tub4) (Keck et al., 2011; Lin et al., 2011; Fong et al.,

2018). Phosphomimetic mutations of highly conserved Tub4 sites

resulted in spindle assembly defects (S360) (Keck et al., 2011; Lin

et al., 2011), increased number of SPB microtubules (Y445) (Vogel

et al., 2001), defects in spindle alignment (Y362) (Shulist et al., 2017),

induced metaphase arrest (S74 and S100) (Lin et al., 2011), and cell

cycle delay (S71) (Fong et al., 2018). Overall, these data strongly

suggest that phosphorylation of γ-tubulin is important for the

control of microtubule organization in the course of cell cycle in

yeast. Multiple phosphorylation sites on γ-tubulin are also

important for basal body assembly and stability, as shown in the

ciliate Tetrahymena thermophila (Joachimiak et al., 2018).

Phosphorylation analysis of human mitotic protein complexes

revealed multiple phosphorylation sites on γ-tubulin (Hegemann

et al., 2011), but the corresponding kinases are largely unknown. In

mammals, the kinase BRSK1 (SADB), which controls cell cycle

progression, phosphorylates γ-tubulin at S131 and S385.

Phosphorylation at the S131 residue controled centrosome

duplication (Alvarado-Kristensson et al., 2009), while

phosphorylation at the S385 residue regulated cellular localization

of γ-tubulin. Phosphomimetic S385D γ-tubulin translocated to the

nucleus and influenced the execution of S phase (Eklund et al.,

2014). Recently, the nonreceptor tyrosine kinase c-Abl was reported

to phosphorylate γ-tubulin at Y443, the equivalent residue of

Y445 in yeast γ-tubulin. Phosphorylation at the Y443 residue

promoted assembly of γ-TuRC and nucleation of centrosomal

microtubules (Wang et al., 2022). γ-Tubulin may also be a

substrate for Cdk2 (cyclin-dependent kinase 2) at S80 (Chi et al.,

2008). Additional serine and threonine phosphorylation sites (S32,
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S129, S284, S364, T423, and S424) have been identified by mass

spectrometry on human γ-tubulin (PhosphoSitePlus database), but

their functional significance is unknown. The distribution of known

phosphorylation sites on the human γ-tubulin molecule is shown in

Figure 1.

Ubiquitination is another PTM relevant to γ-tubulin.
Monoubiquitination of γ-tubulin by the BRCA1 (breast cancer

type 1 susceptibility protein)/BARD1 (BRCA1-associated RING

domain protein 1) E3 ligase complex results in detachment of γ-
tubulin from the centrosome and inhibition of microtubule

nucleation (Hsu et al., 2001; Starita et al., 2004; Sankaran et al.,

2005). On the other hand, removal of ubiquitin from γ-tubulin by

the deubiquitylase BAP1 (BRCA1-associated protein-1) leads to

accumulation of unmodified γ-tubulin at the centrosome (Zarrizi

et al., 2014). Polyubiquitination of γ-tubulin by the E3 ligases cullin

1, cullin 4A, and cullin 4B, followed by its proteosomal degradation,

plays an important role in the dismantling of γ-tubulin complexes

(Thirunavukarasou et al., 2015; Yin et al., 2021). Finally, acetylation

of human γ-tubulin (K397, K400) was also identified by mass

spectrometry (PhosphoSitePlus database), but the function is

unknown.

γ-Tubulin nucleation complexes

γ-Tubulin together with its associated proteins forms

complexes that are essential for microtubule nucleation. A

large fraction of cytosolic γ-tubulin exists in a tetrameric

complex with γ-tubulin complex protein (GCP)2 and

GCP3 in stoichiometry 2:1:1, termed the γ-tubulin small

complex (γ-TuSC), with a molecular weight of ~300 kDa

(Oegema et al., 1999; Kollman et al., 2008). In budding yeast,

where Spc97 and Spc98 are homologs of GCP2 and GCP3,

respectively, the γ-TuSC represents a major structural unit of

the γ-TuRC (Kollman et al., 2015). In higher eukaryotes, γ-
TuSCs with additional γ-tubulins and GCP4-6 form the helical

ring of γ-TuRC with a molecular weight of ~2.2-MDa. γ-TuRC
provides a template that mimics the geometry of microtubules

and stimulates microtubule nucleation (Moritz et al., 1995;

Zheng et al., 1995; Kollman et al., 2010).

GCP2-6 each bind directly to γ-tubulin to form GCP-γ-
tubulin heterodimers (called spokes). Spokes assemble into a left-

handed, cone-shaped structure that controls microtubule

assembly and facilitates lateral interactions between αβ-tubulin
dimers (Kollman et al., 2011). Two short homologous regions are

unique to GCPs: the N-terminal GRIP (γ-tubulin ring protein) 1

domain and the C-terminal GRIP2 domain. The flexible

connection between these domains allows rearrangement of

the γ-tubulin positions in the complex. The GRIP2 domains

interact with γ-tubulins, while the GRIP1 domains form the

primary interface between GCP proteins (Gunawardane et al.,

2000; Kollman et al., 2011). Detailed γ-TuRC structures have

recently been uncovered by four independent studies that

provide mechanistic insights into how microtubules are

templated from γ-TuRC (Wieczorek et al., 2020b; Consolati

et al., 2020; Liu et al., 2020; Zimmermann et al., 2020). Cryo-

FIGURE 1
Distribution of phosphorylation sites on human γ-tubulin. Exterior and interior views of the γ-TuSC portion containing γ-tubulins (yellow)
interacting with the C-terminal GRIP2 domains of GCP2 (green) and GCP3 (light blue). The position of γ-tubulin phosphorylation sites for which
kinases are known are marked with red spheres, phosphorylation sites without corresponding kinases are marked with dark blue spheres. The
molecular structure representation is based on native human γ-TuRC (PDB: 6v6s) and was generated using ChimeraX 1.3 software.
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EM reconstructions showed that γ-TuRC has a width of ~30 nm

and a height of ~25 nm. The 14 spokes are aligned laterally to

form a short helix, and the γ-tubulins are located on the open side
of the cone, in the C-terminal region of each GCP. Spoke

positions 1 and 14 partially overlap. Spoke positions 1-8 are

occupied by four γ-TuSCs, whereas spoke positions 9–14 contain
GCP4, GCP5, GCP4, and GCP6, and a terminal γ-TuSC. All
studies identified a scaffold in the complex interior, called the

lumenal bridge, which surprisingly also contains actin. In

addition to actin, the luminal bridge includes two small

molecules of MZT1 (mitotic spindle organizing protein 1), the

N-terminus of GCP6 and the N-terminus of GCP3 (Wieczorek

et al., 2020a).

The assembly of γ-TuRC is modular, starting with the

formation of a stable subcomplex of six spokes, consisting of

GCP2-3-4-5-4-6, which then expands with the addition of four

preformed GCP2-3 units (γ-TuSC), MZT1, and actin (Würtz

et al., 2022). DNAseI binds directly to actin with high affinity.

The in vitro nucleation activity of isolated endogenous γ-TuRC
was markedly inhibited after treatment with DNAseI, and

saturation of DNAseI with actin abolished this inhibition,

suggesting a functional importance of actin in the complex

(Liu et al., 2020). Actin has been shown not to be required for

assembly of γ-TuRC, but to determine the geometry of the

complex and ensure effective nucleation of microtubules

(Würtz et al., 2022). On the outer surface of reconstituted γ-

FIGURE 2
Structure and molecular architecture of human γ-TuRC. (A) General architecture of the left-handed γ-TuRC spiral as determined by cryo-EM
single-particle analysis, resolution 3.8 Å. γ-Tubulins (yellow, orange), GCP2 (aquamarine), GCP3 (blue), GCP4 (brown), GCP5 (green), GCP6 (purple),
actin (red) and the luminal bridge (pink) are shown. The spokes (GCP-γ-tubulin heterodimers) are numbered (1–14 in brackets). In the tilted view, the
approximate location of the MTOC is indicated. The orientation of subcomplexes shown in panel (B) and (C) is indicated. (B) General
architecture of a GCP-γ-tubulin spoke. The GCP N-terminal GRIP1 and C-terminal GRIP2 domains are annotated. Unresolved GCP segments are
indicated by dashed lines. GCP is shown in rainbow colors from N-terminus (blue) to the C-terminus (red). (C) Location of the unassigned density
segment (red) present on each GCP(2–3) subcomplex of the human γ-TuRC. This figure was prepared using PDB 6V6S and EMD-21074. Reprinted
by permission from Current Opinion in Structural Biology (Zupa et al., 2021).

Frontiers in Cell and Developmental Biology frontiersin.org04

Sulimenko et al. 10.3389/fcell.2022.880761

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.880761


TuRC, MZT1, and MZT2 were identified to bind to the

N-terminal domains of GCPs. These MZT1/2 proteins may

aid in the recruitment of γ-TuRC to the centrosome

(Wieczorek et al., 2020a; Consolati et al., 2020; Würtz et al.,

2022). The location of γ-tubulin molecules at the interface

between γ-TuRC and αβ-tubulin dimers does not correspond

exactly to the geometry of microtubules. While spokes 1–8 with

four GCP2-3 units (γ-TuSC) follow microtubule symmetry and

adopt a “closed conformation,” spokes 9–14 are less tightly

aligned and do not serve as a perfect template for microtubule

nucleation. They are asymmetric in both diameter and spacing

and have an “open conformation” (Wieczorek et al., 2020b;

Consolati et al., 2020; Liu et al., 2020; Zimmermann et al.,

2020). This could explain why the cytosolic γ-TuRC exhibits

low nucleation activity (Consolati et al., 2020). The

molecular architecture and structure of γ-TuRC is shown in

Figure 2.

The deciphered structure of γ-TuRC supports a model of

microtubule nucleation in which γ-tubulins recruit αβ-tubulin
dimers and promote their lateral interactions during the early

stages of microtubule assembly (Zheng et al., 1995; Keating and

Borisy, 2000; Moritz et al., 2000; Wiese and Zheng, 2000). It has

been shown that the association of as few as four αβ-tubulin
dimers (minimal nucleus) in the rate-limiting step is sufficient for

γ-TuRC-mediated nucleation (Consolati et al., 2020; Thawani

et al., 2020). This process is thus more efficient than spontaneous

nucleation of microtubules in solution, which requires

cooperative assembly of eight αβ-tubulin dimers in the rate-

limiting step (Thawani et al., 2020). It is supposed that a

conformational changes leading to fully closed γ-TuRC,
consistent with 13-fold microtubule symmetry, are required to

increase the efficiency of γ-TuRC nucleation.

γ-TuRC activation

Although the mechanisms of γ-TuRC activation are not well

understood, there is evidence that activation of γ-TuRC may

occur by multiple mechanisms. Activating protein factors,

phosphorylation of γ-TuRC-building and activating proteins,

or conformational changes after binding of αβ-tubulin could

be involved in context-specific activation.

Several candidates might play a role as γ-TuRC activating

factors. CDK5RAP2 (cyclin-dependent kinase 5 regulatory

subunit-associated protein 2/centrosomal protein 215/Cep215)

is the best characterized mammalian activator (Fong et al., 2008).

It contains an activating ~5.5-kDa domain (γ-TuNA/γ-TuRC-
mediated nucleation activator 1/centrosomin motif 1/CM1) that

is conserved in all eukaryotes among proteins that recruit γ-
TuRCs to MTOCs (Lin et al., 2015). In vitro experiments with

purified γ-TuRCs showed differential effects of CM1 on

nucleation activity. When the CM1 domain was added to

human γ-TuRC, nucleation activity increased 7.1-fold (Choi

et al., 2010). However, when the CM1 domain was added to

Xenopus γ-TuRC, the activity increased only 1.7-fold (Liu et al.,

2020) or only insignificantly (Thawani et al., 2020). On the other

hand, functional complexes resembling γ-TuRC were formed

when the CDK5RAP2 homolog Mto 1/2 from the fission yeast

Schizosaccharomyces pombe was added to γ-TuSC (Leong et al.,

2019). It has also been shown that binding of the CM1 domain

from the budding yeast Spc110 protein to γ-TuSC results in

structural changes that facilitate assembly of γ-TuRC (Brilot

et al., 2021). It has been suggested that the kinase NME7

(nucleoside diphosphate kinase 7), which copurifies with γ-
TuRC (Wieczorek et al., 2020b; Liu et al., 2020), may also

serve as an activating factor (Liu et al., 2014). However, when

NME7 was added to γ-TuRC nucleation assays, the nucleation

activity increased only 2.5-fold (Liu et al., 2014) or insignificantly

(Thawani et al., 2020). Since the corresponding substrate of

NME7 on γ-TuRC is unknown, the question remains whether

NME7 can actually activate γ-TuRC. TPX2 (targeting protein for

Xklp2), the multifunctional Ran-GTP-regulated factor for

spindle assembly (Roostalu and Surrey, 2017; Tovey and

Conduit, 2018), could also serve as an activating protein. High

concentrations of human TPX2 stimulated γ-TuRC-dependend
microtubule nucleation (Consolati et al., 2020). In contrast, such

stimulation was not observed in Xenopus (Thawani et al., 2020).

These differences may reflect the species-specific activity of

TPX2. Recently, the well-characterized microtubule

polymerase XMAP215 (Xenopus microtubule assembly protein

215 kDa; mammalian ch-TOG [colonic and hepatic tumor

overexpressed gene protein]) was shown to interact with γ-
tubulin complexes (Gunzelmann et al., 2018; Thawani et al.,

2018). It also increases the nucleation activity of γ-TuRC up to

25-fold (Consolati et al., 2020; Thawani et al., 2020). It has been

proposed that XMAP215 complements γ-TuRC dependent

nucleation. XMAP215 first associates with the γ-TuRC and

then delivers αβ-tubulin interacting with its TOG domains to

the γ-TuRC and subsequently to the growing microtubule end

(Thawani et al., 2020). The open question is whether the activity

of XMAP-215 is synergistic or additive with γ-tubulin (King

et al., 2020).

As described in the previous text, γ-tubulin has multiple

phosphorylation sites, and its phosphorylation can modulate the

conformational changes required for γTuRC activation.

Phosphorylation of sites at the (+) end of γ-tubulin could

directly regulate interactions with αβ-tubulin dimers, and the

same is true for phosphorylation of sites at the lateral contacts

between γ-tubulin and αβ-tubulin dimers (Kollman et al., 2015).

Some of the known phosphorylation sites on the human γ-
tubulin molecule are located at important interface between γ-
TuSCs and may affect the formation of γ-TuRC (Figure 1).

GCPs are also phosphorylated (Hegemann et al., 2011;

Santamaria et al., 2011; Fong et al., 2018; Brilot et al., 2021).

Surprisingly, phosphorylation at most of the mapped sites on γ-
TuSC appears to destabilize the assembled γ-TuRC. On the other
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hand, a stabilizing effect of phosphorylation was predicted at two

sites (Brilot et al., 2021). This highlights that phosphorylation

and dephosphorylation may play complex modulatory roles in

the activation of γ-TuRC. In higher eukaryotes, only a few

kinases are known to phosphorylate GCPs. GCP6 is

phosphorylated by the kinases PLK4 (polo-like kinase 4)

(Bahtz et al., 2012) and Cdk1 (cyclin-dependent kinase 1)

(Oriolo et al., 2007). Phosphorylation of GCP5 by GSK3β
(glycogen synthase kinase 3β) inhibits the accumulation of γ-
TuRC at centrosomes (Horio and Oakley, 1994). In addition,

activating factors can also be regulated by phosphorylation. It has

been reported that binding of human CDK5RAP2 (Hanafusa

et al., 2015) or SPD-5 (spindle-defective protein 5), a

CM1 domain-containing protein from Caenorhabditis elegans

(Ohta et al., 2021) to γ-TuRCs depends on phosphorylation.

Furthermore, binding of CDK5RAP2 to γ-TuRC is regulated by

autoinhibition, and phosphorylation helps to abrogate this

activity (Tovey et al., 2021). The activating role of

NME7 kinase can be affected by its autophosphorylation (Liu

et al., 2014). TPX2 is the major cofactor for the mitotic kinase

Aurora A, which is indirectly involved in the regulation of γ-
TuRC-driven microtubule nucleation (Kufer et al., 2002;

Meunier and Vernos, 2016; Joukov and De Nicolo, 2018).

Overall, phosphorylation of building components of γ-TuRC
may affect the complex stability. Further regulation of

microtubule nucleation activity may occur through

phosphorylation of activating proteins.

Finally, it was suggested that the driving force for

achieving a fully closed γ-TuRC conformation might be the

arrangement of αβ-tubulin dimers at the γ-TuRC itself. Using

computational modelling, it was shown that four laterally

associated tubulin dimers at the γ-TuRC create a transition

state that closes the γ-TuRC (Thawani et al., 2020).

Interestingly, Caenorhabditis mitotic centrosomes

concentrate soluble αβ-tubulin more than 10-fold compared

to the cytoplasm (Baumgart et al., 2019). Thus, the

concentration of αβ-tubulin dimers could also modulate the

γ-TuRC nucleation activity. An open question is whether, in

cells expressing different isotypes of α- and β-tubulins, some

tubulin isotypes might be better substrates for microtubule

nucleation driven by γ-TuRC (Ti et al., 2018). The model for

the modular assembly and activation of γ-TuRC is shown in

Figure 3.

γ-TuRC recruitment to centrosome

In addition to activating proteins, there are other proteins,

referred to here as targeting/anchoring proteins, that are involved

in the regulation of γ-TuRC-driven microtubule nucleation.

They are not essential for the assembly of γ-TuRC, but they
help in the recruitment and tethering of the complex to MTOCs.

Below, we provide an overview of regulatory proteins important

for centrosomal microtubule nucleation in mammalian cells. For

FIGURE 3
Model for the modular assembly of γ-TuRC and its activation. The first step in the formation of γ-TuRC is the core assembly of the stable
subcomplex from γ-TuSC (2 molecules of γ-tubulin and one copy each of GCP2 and GCP3), GCP-γ-tubulin heterodimers (spokes; one molecule of
γ-tubulin and one copy each of GCP4, GCP5 or GCP6), andMZT1 (1). During the expansion phase, four additional γ-TuSC units, MZT1/2, and actin are
added (2). The resulting γ-TuRCs with the open conformation are concentrated onto centrosomes via targeting proteins (e.g., CDK5RAP2,
NEDD1) (3). The pitch and diameter of open γ-TuRC are incompatible with those of assembled microtubules. This suggests that the complex
undergoes a conformational change through its activation to reduce its diameter before microtubule nucleation. Different modes of activation,
including direct binding of activating proteins (e.g., CDK5RAP2, NME7), phosphorylation of γ-TuRC by kinases, or increased concentration of αβ-
tubulins, can result in a conformational change leading to a closed γ-TuRC (4). Different types of activation may occur simultaneously. Nucleation-
competent γ-TuRC with a closed conformation can then effectively nucleate microtubule (MT) (5). Created with BioRender.com.
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a detailed discussion of noncentrosomal microtubule nucleation,

we refer reader to recent reviews (Valenzuela et al., 2020; Wilkes

and Moore, 2020; Akhmanova and Kapitein, 2022).

Targeting/anchoring of γ-TuRCs to interphase centrosomes

is mediated by CDK5RAP2 via its CM2 domain (centrosomin

motif 2) (Wang et al., 2010) and by NEDD1 (neural precursor cell

expressed developmentally down-regulated protein 1/GCP-WD)

(Haren et al., 2006; Lüders et al., 2006). Ninein anchors γ-TuRCs
to subdistal appendages of the mother centriole (Bouckson-

Castaing et al., 1996; Delgehyr et al., 2005). This process may

involve dynein complex, which can be activated by ninein

(Redwine et al., 2017). γ-TuRC may also be bound to the

central region of the mother centriole via the centrosomal

protein FSD1 (Tu et al., 2018) or to the proximal/PCM region

via the protein complex MSD1-WDR8 (Hori et al., 2015).

Augmin (HAUS) complex interacts with γ-TuRC and is

required for branching microtubule nucleation (Goshima

et al., 2008). Recently, augmin-γ-TuRC was identified in the

lumen of the centriole, and it was shown that γ-TuRCs are

recruited to the luminal region by the interaction of augmin with

the centriole inner scaffold protein POC5 (Schweizer et al., 2021).

Cep192 (centrosomal protein 192), which is implicated in the

recruitment of γ-TuRC to centrosome (Gomez-Ferreria et al.,

2007; O’Rourke et al., 2014), anchors γ-TuRC both to PCM and

to the outer sides of centrioles (Schweizer et al., 2021). Additional

proteins such as AKAP9 (A-kinase anchoring protein 9;

AKAP450) (Takahashi et al., 2002; Ong et al., 2018), and

pericentrin (Kendrin) (Zimmerman et al., 2004; Lawo et al.,

2012) are also important for centrosomal localization of the

complex, but since they are incorporated into PCM, they may

also indirectly modulate γ-TuRC binding. Spatially and

temporally distinct subpopulations of γ-TuRCs in centrosomes

may be involved in different functions. In addition to canonical

microtubule nucleation, γ-TuRC participates in centriole

biogenesis and stabilization, and in microtubule anchoring

(Schweizer and Lüders, 2021; Vineethakumari and Lüders,

2022). The structural elements of γ-TuRC and the major

regulatory proteins of centrosomal microtubule nucleation in

mammalian interphase cells are summarized in Table 1.

Phosphorylation of targeting/anchoring proteins affects

recruitment of γ-TuRCs to centrosomes. NEDD1 is

phosphorylated at multiple sites (Gomez-Ferreria et al.,

2012), and sequential phosphorylation of NEDD1 by Cdk1

(cyclin-dependent kinase 1) and Plk1 (polo-like kinase 1) is

essential for centrosomal targeting of γ-TuRC (Zhang et al.,

2009). Phosphorylation of NEED1 by Cdk1 is required for its

interaction with Plk1 and allows binding of γ-TuRC to pre-

existing microtubules via the multiprotein augmin complex

(Haren et al., 2009; Johmura et al., 2011). The kinase Aurora A

phosphorylates NEDD1, which is a prerequisite for nucleation

of microtubules from chromatin (Pinyol et al., 2013; Scrofani

et al., 2015). Moreover, phosphorylation of NEDD1 by

PLK4 promotes its interaction with SAS-6, the central

component of the centriolar cartwheel (Chi et al., 2021),

which associates with γ-TuRC during initiation of centriole

duplication (Gupta et al., 2020). Phosphorylation of

pericentrin by Plk1 (Santamaria et al., 2011) supports the

accumulation of NEDD1 and CEP192 at the centrosome (Lee

and Rhee, 2011). Phosphorylation of proteins participating in

the recruitment of γ-TuRC to centrosomes therefore plays an

important role in centriole biogenesis and microtubule

nucleation.

Besides targeting/anchoring proteins, several modulatory

proteins, not covered in this review, are also critical for

regulating microtubule nucleation from centrosomes

(Sulimenko et al., 2017). These proteins likely affect

microtubule nucleation more indirectly. As an example,

TACC3 (transforming acidic coiled-coil containing protein 3)

stabilizes γ-TuRC during its assembly from γ-TuSC (Singh et al.,

2014; Rajeev et al., 2019). On the other hand the putative tumor

suppressor cyclin-dependent kinase five regulatory subunit-

associated protein 3 (CDK5RAP3; C53) (Wang et al., 2007),

which exerts multiple functions in cell cycle regulation, DNA

damage response, cell invasion, and ER homeostasis (Sheng et al.,

2021), interacts with γ-TuRC and acts as a negative regulator of

microtubule nucleation. Displacement of C53 from the

centrosome by exposure of cells to ER stress stimulates

microtubule nucleation (Klebanovych et al., 2022).

Intriquingly, some GTPase-activating proteins (GAPs) for

ARF small GTPases (Sztul et al., 2019) may also be involved

in regulating centrosomal microtubule nucleation. GAP

ELMOD2, which acts with the GTPase ARL2, associates with

centrosomes, and its deletion suppresses γ-TuRC recruitment

and microtubule nucleation (Turn et al., 2020). Similarly, GAP

GIT1, which acts with the GTPase Arf6 and functions as

signalling adaptor protein, also associates with centrosomes

TABLE 1 Building components of γ-TuRC and major regulatory proteins of centrosomal microtubule nucleation in mammalian interphase cells.

γ-TuRC γ-tubulin, GCP2, GCP3, GCP4, GCP5, GCP6, Actin, MZT1, MZT2

Activating CDK5RAP2, NME7, chTOG/XMAP215,TPX2

Targeting/Anchoring CDK5RAP2, NEDD1, AKAP9, Cep192, Ninein, Pericentrin

Dynein complex, FSD1, MSD1-WDR8, Augmin complex
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(Zhao et al., 2005). Depletion of GIT1 suppresses centrosomal γ-
tubulin accumulation and microtubule nucleation (Sulimenko

et al., 2015; Černohorská et al., 2016). This suggests that

signalling pathways other than those involving kinases and

phosphatases may be involved in the regulation of γ-TuRC-
dependent microtubule nucleation.

Interestingly, interactions between γ-tubulin and proteins

essential for nonmuscle actin assembly, such as the Arp2/

3 complex and its activator WASH, have been reported in

different systems (Schaerer-Brodbeck and Riezman, 2003;

Monfregola et al., 2010). Arp 2/3 requires profilin 1 for actin

assembly, which sequesters actin, accelerates actin nucleotide

exchange, and can dock to free actin filament (+)-ends as

profilin-actin. Profilin 1 plays a key role in coordinating the

different sub-arrangemeents in dynamic actin cytoarchitecture

(Henty-Ridilla and Goode, 2015). Profilin 1 associates with γ-
TuRC and its deletion enhances centrosomal microtubule

nucleation in interphase cells (Nejedlá et al., 2021). As

centrosomes have been proposed to nucleate actin

polymerization (Farina et al., 2019; Inoue et al., 2019), it is

possible that loss of profilin 1 results in less polymerization-

ready actin (profilin-actin) and fewer actin filaments around

centrosomes. The reduced steric hindrance could lead to

increased de novo microtubule nucleation, as has been

proposed for mitotic centrosomes (Plessner et al., 2019).

Alternatively, deletion of profilin 1 would make more actin

accessible for association with γ-TuRCs, which in turn would

increase functional complexes formation and microtubule

nucleation. The activity of γ-TuRC may therefore play an

important role in centrosomal microfilament/microtubule

cross-talk (Karlsson and Dráber, 2021).

γ-Tubulin oligomers and filaments

Several studies using purified cellular or recombinant γ-
tubulins have shown that γ-tubulin is capable of forming

filamentous structures in vitro. The results of high-resolution

microscopy suggest that such structures may also be present in

cells, as documented below.

Acentrosomal plant cells contain large amounts of γ-tubulin
compared to animal cells, and plant γ-tubulin forms

heterogeneous complexes of high molecular weight (Dryková

et al., 2003). Immunopurification of γ-tubulin with an anti-

peptide antibody to γ-tubulin was performed from

Arabidopsis thaliana cells. Analysis of the purified γ-tubulin
with negative staining and transmission electron microscopy

(TEM) revealed helically entangled double filaments together

with filament bundles. Atomic force microscopy (AFM) showed

that the most common width of the double-stranded filaments is

8.5 nm, which corresponds to the width inferred from TEM

analysis (~6 × 9 nm in a cross-section). When overexpressed

GFP-labeled γ-tubulin was purified from Arabidopsis cells with

anti-GFP antibody and acid elution, immunofluorescence

microscopy revealed fibrillar structures. When purification was

performed at a low SDS concentration that interfered with the

interactions between γ-tubulin and GCPs, short γ-tubulin
filaments were also detected. This suggests that Arabidopsis γ-
tubulin is capable of forming filaments in vitro in the absence of

GCPs (Chumová et al., 2018). Such formation of γ-tubulin
filaments was not restricted to plant cells. When

overexpressed RFP-labeled γ-tubulin from human

osteosarcoma cells U2OS was purified using anti-RFP

antibody and acid elution, immunofluorescence microscopy

revealed filaments. In the absence of GCPs, filaments were

also formed, but they were shorter. TEM confirmed the

double-stranded character of the filaments (Chumová et al.,

2018). Oligomerization of γ-tubulin has been previously

reported in microtubule proteins isolated from porcine brain

by two temperature-dependent cycles of polymerization and

depolymerization (MTP-2). MTP-2 preparations

electrophoretically separated under nondenaturing conditions

generated “ladders” of multiple oligomers containing α-
tubulin and γ-tubulin (Sulimenko et al., 2002). After isolation

of γ-tubulin from MTP-2 with an anti-peptide antibody to γ-
tubulin and immunizing peptide elution, γ-tubulin oligomers

were detected in samples lacking αβ-tubulin dimers. Moreover,

purified γ-tubulin from brain lacking both GCPs and αβ-tubulin
dimers was capable of forming oligomers (Chumová et al., 2018).

Formation of γ-tubulin oligomers in vitro was also observed

in the case of isolated recombinant proteins. TEM analysis of

purified His6-labeled human γ-tubulin expressed in E. coli

revealed a meshwork of γ-tubulin filaments termed γ-strings
(Rosselló et al., 2018). Purified recombinant human γ-tubulin
expressed in E. coli formed conformationally distinct aggregates,

including long thin fibers ~6.7 nm wide, in the presence of ATP

and chaperonin CCT of type II (Pouchucq et al., 2018).

Interestingly, purified Tev-StrepII-His6-labeled human γ-
tubulin produced in Sf9 insect cells by a baculovirus

expression system self-assembled into filaments with variable

width at high γ-tubulin concentration (1–2 μM) (Thawani et al.,

2020). 3D reconstructions of negatively stained electron

micrographs of thin width γ-tubulin filaments revealed four

linear arrays of interacting γ-tubulins. When the crystal

structure of human γ-tubulin (PDB: 1Z5W) (Aldaz et al.,

2005) was docked to the reconstituted filaments, a lateral

arrangement of γ-tubulin in a linear array was revealed with a

repeat unit of approximately 54 Å (Thawani et al., 2020). This

closely matched the lateral repeats but not the longitudinal

repeats (40 Å) of αβ-tubulin in microtubule lattice (PDB:

6DPU) (Zhang et al., 2018). Arrays of γ-tubulin were also

generated from purified myc-His6-tagged human γ-tubulin
expressed in Sf9 cells at concentrations of 0.25 μM and above.

Helical reconstruction of negative-stain electron micrographs of

the γ-tubulin arrays revealed a fivefold symmetry with a hollow

center and a diameter of ~15 nm. Docking of the crystal structure
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of γ-tubulin to 3D reconstruction of electron micrographs

disclosed a lateral arrangement of γ-tubulins along the long

axis with their (+) ends facing outward enabling interaction

with αβ-tubulin. The γ-tubulin arrays promoted formation of

microtubules and nucleation capacity correlated with array

formation (King et al., 2020). Short templating γ-tubulin
oligomers might enhance the rate of spontaneous αβ-tubulin
assembly by eliminating kinetic barrier to lateral αβ-tubulin
growth (Rice et al., 2021). Overall, the results of the in vitro

experiments demonstrate the intrinsic capability of γ-tubulin to

form oligomers and filaments.

γ-Tubulin arrays were detected in vivo in interphase cells.

Association of γ-tubulin along pre-existing microtubules has

been observed in higher plants (Liu et al., 1993) or fission

yeasts (Sawin et al., 2004). In S2 cells of Drosophila

melanogaster, γ-tubulin localized along interphase

microtubules in the form of γ-TuRC, and it was proposed

that the γ-TuRC could regulate microtubule dynamics by

limiting catastrophes (Bouissou et al., 2009). γ-Tubulin was

found on microtubules forming a marginal band in erythroid

cells of the chicken embryo (Linhartová et al., 2002), and in

cultured mammalian cell lines in interphase, where it

sporadically coated microtubules in limited regions (Hubert

et al., 2011). In contrast, tubular γ-tubulin structures that

were not associated with microtubules were found in the

fraction of cells overexpressing tagged γ-tubulin, suggesting

that γ-tubulin retains the potential to assemble into

macromolecular assemblies in vivo (Shu and Joshi, 1995).

Interestingly, superresolution microscopy in Arabidopsis cells

revealed short γ-tubulin filaments outside the microtubules.

They accumulated both at the mitotic spindle poles and at the

outer membrane of the nuclear envelope. It has been suggested

that γ-tubulin may form a dynamic 3D structure of more or less

densely packed, laterally connected filaments (Chumová et al.,

2018). Such fibrillar structures were distinct from the dynamic

polar fibers termed γ-tubules that have been detected in

mammalian tissue culture cell lines and reportedly to be

formed in a GTP-dependent manner from γ-TuRCs and

pericentrin (Lindström and Alvarado-Kristensson, 2018).

However, pericentrin is not present in the Arabidopsis

genome. The role of fibrillar γ-tubulin assemblies is currently

unclear. It has been proposed that they have sequestration and

scaffolding functions (Chumová et al., 2021). They may also

participate in mechanotransduction processes, as they are

associated with the multiprotein complex LINC (linker of

nucleoskeleton and cytoskeleton) (Rosselló et al., 2018;

Chumová et al., 2019; Corvaisier and Alvarado-Kristensson,

2020). Interestingly, γ-tubulin has been detected in inner

membranes and matrix of isolated mitochondria (Dráberová

et al., 2017), and it has been suggested that γ-tubulin
filaments (γ-strings) may represent mitochondrial structural

components (Lindström et al., 2018). As described in the

following section, γ-tubulin can also be found in cell nuclei. It

has been proposed that γ-tubulin filaments may also play a

structural role in nuclei (Corvaisier et al., 2021). Further

studies are however needed to verify the presence of fibrillar

γ-tubulin assemblies in different model systems, determine their

composition, structure and decipher their cellular function(s).

γ-Tubulin nuclear functions

Contrary to the persistent view that γ-tubulin is a typical

cytosolic protein, γ-tubulin has been localized in the nuclei of

both plant (Binarová et al., 2000) and animal cells (Lesca et al.,

2005; Höög et al., 2011). In addition, specific nuclear localization

signal (NLS) in the γ-tubulin molecule was deciphered (Höög

et al., 2011). Proteomic analysis suggested that γ-tubulin might

be also in nucleoli (Andersen et al., 2002). A significant increase

in γ-tubulin protein level observed in glioblastoma cell lines

(Katsetos et al., 2009) contributed to the unequivocal

confirmation of nucleolar γ-tubulin (Hořejší et al., 2012).

Surprisingly, GCP2 and GCP3 were also found in nucleoli,

although no NLSs were identified in these molecules. This

suggests that both proteins might enter the nucleus by

hitchhiking on γ-tubulin (Dráberová et al., 2015).

There is evidence that γ-tubulin has nuclear-specific

functions. It has been reported that BRSK1-mediated

phosphorylation of γ-tubulin at S385 leads to transient

nuclear accumulation of γ-tubulin in S phase of cell cycle

(Eklund et al., 2014). Nuclear γ-tubulin attenuates the activity

of E2F transcription factors, important regulators of cell cycle

progression, in both animals (Höög et al., 2011) and plants

(Kállai et al., 2020). It was found that γ-tubulin and DP1 (E2F

heterodimerization protein) compete for the same binding site

on E2F and that the tumor suppressor retinoblastoma protein 1

(RB1) and γ-tubulin regulate each other’s expression.

Interestingly, a proapoptotic effect was observed in cancer

cells with nonfunctional RB1 signaling after depletion of γ-
tubulin protein levels (Ehlén et al., 2012). The E2Fs-γ-tubulin
interactions may participate in coordinating genome duplication

with spindle assembly in both animal cells containing

centrosomes and in acentrosomal plant cells in which

microtubules are nucleated from dispersed sites (Binarová

et al., 2006; Pastuglia et al., 2006). In addition, E2Fa and

RBR1 (Arabidopsis homolog of RB1) form foci in plant cells

in response to double-strand breaks that seem to allow

recruitment of the repair protein Rad51 (Biedermann et al.,

2017; Horvath et al., 2017). In mammalian cells,

Rad51 interacts with γ-tubulin in response to DNA damage

(Lesca et al., 2005). These results suggest that E2Fs-γ-tubulin
complexes may promote DNA repair or control the expression of

genes related to DNA repair (Raynaud and Nisa, 2020).

γ-Tubulin colocalizes in nucleoli with a putative tumor

suppressor C53, and it has been shown that C53 inhibits G2/M

checkpoint activation by DNA damage. Overexpression of γ-
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tubulin counteracts this C53 action (Hořejší et al., 2012).

Besides, γ-tubulin may be involved in DNA damage repair

processes as it associates not only with Rad51 (Lesca et al.,

2005) but also with BRCA1 (Hubert et al., 2011), and ATR

(Zhang et al., 2007). Proliferating cell nuclear antigen (PCNA)

is a coordinator of DNA replication and repair (Stoimenov

and Helleday, 2009). It has been reported that γ-tubulin binds

PCNA and aids in its recruitment to chromatin in mammalian

cells. A positive correlation between γ-tubulin and PCNA

expression was found in all examined tumor types (Corvaisier

et al., 2021). Finally, γ-tubulin is capable to modulate the

anaphase-promoting complex/cyclosome (APC/C), which is a

large protein complex with multiple subunits that is important

for cell cycle regulation. There is strong evidence that in

Aspergillus nidulans γ-tubulin plays an important role in

regulating APC/C during interphase (Nayak et al., 2010) by

inactivation of the APC/C activator CdhA (A. nidulans

homolog of Cdh1) at the G1-to-S transition (Edgerton-

Morgan and Oakley, 2012). Deciphering the molecular

mechanisms underlying the various nucleus-specific

functions of γ-tubulin remains the major challenge for

future studies.

Concluding remarks

Recent structural studies of γ-TuRCs have been very

informative, but molecular mechanisms how factors involved in

promoting the transition from the open to the closed state of γ-
TuRCs needs to be thoroughly characterized. Many proteins

(targeting, activating, anchoring, modulating) that interact with

γ-TuRCs are required to nucleate microtubule at right place and

time. However, the upstream signaling pathways ensuring that these

regulatory proteins act in concert and initiate microtubule

nucleation according to the cell’s requirements are largely

unknown. It is becoming increasingly clear that kinases and

phosphatases are important for microtubule regulation.

Therefore, functional characterization of phosphorylation sites in

γ-TuRCs and interacting proteins is required. Another important

issue to be resolved is the analysis of γ-TuRC subpopulations that

differ in composition or PTMs. Future studies are also needed to

determine whether different γ-TuRCs can independently nucleate

cell type-specific noncentrosomal microtubules. A detailed

understanding of the molecular mechanisms of microtubule

nucleation should provide new insights into the importance of γ-
TuRC dysregulation in cancer cell behaviour and in neurological

diseases and could lead to the development of highly specific γ-
tubulin drugs (Dráber and Dráberová, 2021).

In recent years, the functions of γ-tubulin independent of

microtubule nucleation have received more attention. High-

resolution cryo-electron microscopy will be essential for

deciphering the structure of recently reported γ-tubulin fibers

and their high-level assemblies in a cellular context.

Understanding the role of γ-tubulin isotypes under different

stress conditions, in cell cycle checkpoints and in DNA repair will

be important to elucidate their roles in carcinogenesis.

Finally, it has become increasingly evident that microtubules and

microfilaments frequently cooperate. Recent work suggests that both

microtubules and actin filaments are nucleated from centrosomes and

that actin and its associated proteins control microtubule nucleation.

Sophisticated in vitro reconstitution experiments should shed light on

the role of proteins regulatingmicrotubule nucleation in the cross-talk

between microtubules and microfilaments.
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