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Abstract: Postaxial polydactyly (PAP) is a common abnormality characterized by extra digits on hands
and/or feet. To date, sequence variants in seven genes have been identified in non-syndromic PAP. In
the present study, a fetus manifesting non-syndromic postaxial polydactyly type A (PAPA) was found
by fetal ultrasonography. To better evaluate fetal prognosis, SNP array analysis and trio whole-exome
sequencing (trio-WES) were performed to identify the underlying etiology. Although SNP array
analysis revealed no abnormality, trio-WES identified compound heterozygous splice site variants in
KIAA0825, c.-1-2A>T and c.2247-2A>G in intron 2 and intron 12, respectively. These two splice site
variants were absent in control databases and were predicted to influence splicing by in silico analysis.
To confirm the potential pathogenicity of the variants, in vitro splicing assays using minigene and
RNA from peripheral leukocytes of the heterozygous parents were conducted. Minigene and RT-
PCR assays demonstrated that the c.-1-2A>T variant led to the loss of the initiation codon, and the
c.2247-2A>G variant mainly resulted in exon 13 skipping. Prenatal WES and subsequent functional
studies are important approaches for defining the genetic etiology of fetuses with PAPA and are also
essential for accurate genetic counseling and decision making. Taken together, this study expands the
spectrum of KIAA0825 variations in PAPA patients and increases the knowledge of the molecular
consequences of KIAA0825 splice site variants.

Keywords: postaxial polydactyly type A; KIAA0825; limb anomaly; whole-exome sequencing; aberrant
splicing; functional study

1. Introduction

Polydactyly, which refers to the occurrence of extra digit(s), is the most frequently
observed congenital limb anomaly at birth [1,2]. The prevalence of polydactyly varies from
5 to 19/10,000 live births in different ethnic groups [3]. Polydactyly can occur as an isolated
condition or as a part of a more complicated developmental syndrome. In syndromic
form, the polydactyly has been found to be a part of 290 well-characterized syndromic
malformations [4]. The non-syndromic form of polydactyly is much more common than
syndromic polydactyly. Non-syndromic polydactyly, depending on the anatomical location
of the extra digits, is classified as preaxial (on the thumb side of the hands and greater
toe of the feet), postaxial (on the little finger side of the hands and the fifth toe of the feet)
and central polydactyly (involving the middle digits in hands and feet). Clinical studies in
Pakistanis showed that central polydactyly is rare and 52% of non-syndromic polydactylies
are postaxial polydactylies (PAP) [5].

Non-syndromic PAP is further subclassified into type A (PAPA), with a fully developed
extra fifth digit, and type B (PAPB), with an incompletely developed extra digit. According
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to the different inheritance patterns and mutant loci, PAPA was divided into eleven isoforms
with four autosomal dominant loci (PAPA 1–4) and seven autosomal recessive loci (PAPA
5–11). In humans, to date, seven disease-causing genes have been reported in PAPA,
including GLI3 (OMIM: 174,200), ZNF141(OMIM: 194,648), IQCE (OMIM: 617,631), GLI1
(OMIM: 165,220), FAM92A (OMIM: 617,273), KIAA0825 (OMIM: 617,266) and DACH1
(OMIM: 603,803), which were associated with PAPA1, PAPA6, PAPA7, PAPA8, PAPA9,
PAPA10 and PAPA11, respectively [6–12].

KIAA0825 was first identified in 2019 [9]. To date, only four homozygous disease-
causing variants of KIAA0825 have been reported, all in Pakistani consanguineous families,
including two frameshift variants [p.(Gln198Thrfs*21); p.(Cys48Serfs*28)], one nonsense
variant [p.(Lys725*)] and one missense variant [p.(Leu17Ser)] [3,9,13].

Here, we describe a fetus with two novel splice site variants manifesting non-syndromic
PAPA in a Chinese family. To the best of our knowledge, this is the first study of splice
site variants of KIAA0825 in patients with PAPA. This study expands the spectrum of
KIAA0825 variations in PAPA patients and increases knowledge about the biological role of
the KIAA0825 splice site variants, c.-1-2A>T and c.2247-2A>G.

2. Materials and Methods

The present study was performed following the Declaration of Helsinki protocols
and approved by the Ethics Committee of Maternal and Child Health Hospital of Hubei
Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,
China. Written informed consent for conducting the study and for the publication of
photographs was obtained from the parents.

2.1. Case Presentation

A 24-year-old primigravida Chinese woman was referred to the Medical Genetics
Center at 24 + 3 weeks of gestation due to an abnormal ultrasound examination. The woman
and her husband were both healthy and non-consanguineous. None of them had a family
history of skeletal anomalies (Figure 1a). The nuchal translucency at 12 weeks of gestation
was normal (NT = 1.8 mm), and the second trimester serum screening for trisomy 21, 18 and
NTD was low risk. However, at 23 weeks of gestation, a prenatal ultrasound examination
revealed that the fetus had PAPA (Figure 1b–e). No other structural abnormalities were
found. Amniocentesis was performed at 24 weeks of gestation for SNP array analysis and
trio whole-exome sequencing (trio-WES).

2.2. SNP Array Analysis

Genomic DNA was extracted from ten milliliters of uncultured amniotic fluid cells by
Qiagen DNA Blood Mini Kit following the manufacturer’s protocol. SNP array analysis
was performed with CytoScan 750 K array (Affymetrix, Santa Clara, CA, USA), including
550,000 CNVs probes and 200,000 SNP probes, according to the manufacturer’s instructions.
The thresholds for our detection criteria for CNVs were set at ≥200 kb for gains, ≥100 kb
for losses and ≥10 Mb for the loss of heterozygosity (LOH).

2.3. Prenatal Trio-WES

DNA sample of the fetus was obtained from ten milliliters of uncultured amniotic
fluid cells. Parental DNA was extracted from two milliliters of peripheral blood. WES was
performed on the fetus–parental trio using the xGen® Exome Research Panel v1.0 (IDT,
Coralville, IA, USA) on the Illumina NovaSeq6000. Exome enrichment of the genomic DNA
library was performed according to the manufacturer’s protocols.
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Figure 1. Family pedigree and Ultrasound imaging data of the fetus showed PAPA. (a) A Pedigree of
this family with segregating PAP in an autosomal recessive manner. Circles and squares represent
females and males, respectively. Clear symbols represent unaffected members, while filled symbols
show affected members. (b,c) Ultrasound imaging for right hand (b) and left hand (c) displaying
PAPA. (d,e) Ultrasound imaging for right foot (d) and left foot (e) exhibiting PAPA.

Sequencing data were annotated according to the previously described pipeline [14].
Based on the variant annotations, a series of filtering strategies were applied to identify
candidate variants from the fetal WES data associated with the phenotype of polydactyly.
The filtering steps were as follows: (1) excluding the variants outside exonic and splic-
ing regions (eight bases flanking the exonic boundaries); (2) excluding the variants with
minor allele frequency(MAF) ≥0.01 according to public databases (Genome Aggregation
Database, 1000 Genomes and Exome Aggregation Consortium database); (3) excluding
synonymous variants in exome; and (4) only including de novo variants, homozygous
variants, compound heterozygous and hemizygous variant located in the X chromosome
inherited from the mother. Then, the remaining variants generated a list of candidate genes.
To prioritize the most likely candidate disease-causing gene, all candidate genes were then
ranked by Phenolyzer [15]. Finally, the variants in the candidate genes were verified by
Sanger sequencing and classified according to ACMG guidelines [16].

2.4. Splicing Prediction

Multiple online in silico splice site prediction software were used to evaluate the
potential pathogenicity of the splice site variants, including Human Splicing Finder (http:
//umd.be/Redirect.html, accessed on 15 January 2022), Splice AI (https://spliceailookup.
broadinstitute.org/, accessed on 15 January 2022), Varseak (https://varseak.bio/, accessed
on 15 January 2022), Mutation Taster (https://www.mutationtaster.org/, accessed on
15 January 2022) and NNSplice (https://www.fruitfly.org/seq_tools/splice.html, accessed
on 15 January 2022) with the default parameters.

http://umd.be/Redirect.html
http://umd.be/Redirect.html
https://spliceailookup.broadinstitute.org/
https://spliceailookup.broadinstitute.org/
https://varseak.bio/
https://www.mutationtaster.org/
https://www.fruitfly.org/seq_tools/splice.html
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2.5. Minigene Assay

To analyze how the identified variants affect splicing, the minigene assay was built
as previously described [17]. We used the pcMINI-C vector that we developed previously,
which contained a multicloning site as shown in Supplementary Figure S1. The c.-1-2A>T
variant and the c.2247-2A>G variant were located at the donor splice site of intron 2 and
intron 12, respectively. Thus, exon 3 or exon 13 of KIAA0825, and approximately 450 bp of
flanking 5′ and 3′ intronic sequences, were amplified by PCR from the controls’ genomic
DNA by DNA Polymerase (PrimerSTAR MAX DNA Polymerase, R045A, TaKaRa, Kusatsu,
Japan). The PCR products were cloned into a pcMINI-C vector using classical restriction
and ligation methods (detailed methods seen in the Supplementary Materials). Mutant
constructs containing the c.-1-2A>T and c.2247-2A>G variants were generated by PCR
using the mutant primers (detailed methods seen in the Supplementary Materials). After
the WT/mutant plasmids were directly confirmed by Sanger sequencing, both WT and
mutant plasmids were transfected into HEK293T and HeLa cells. After 48 h, total RNA was
extracted using the RNA extraction kit (Trizol RNAiso PLUS, 9109, TaKaRa, Kusatsu, Japan)
and reverse-transcribed with the Superscript III reverse transcriptase (HifairTM 1st Strand
cDNA Synthesis SuperMix for qPCR (gDNA digester plus), 11123ES70, YEASEN, Shanghai,
China), and the resulting cDNA was PCR-amplified. The amplified products were analyzed
on 1.5% agarose gel electrophoresis and subsequently sequenced by Sanger sequencing.

2.6. Reverse Transcriptase PCR Analysis

As the fetal blood sample was unavailable, peripheral blood samples from the het-
erozygous parents and voluntary control subjects were collected in EDTA tubes. Total RNA
extraction was performed according to the manufacturer’s protocols (Trizol RNAiso PLUS,
9109, TaKaRa, Kusatsu, Japan). The quality and concentration of RNA was determined by
the NanoDrop 2000 system (Thermo Fisher Scientific, Waltham, MA, USA). The HifairTM
1st Strand cDNA Synthesis SuperMix (11123ES70, YEASEN, Shanghai, China) was used
to generate cDNA following the manufacturer’s protocol. The resulting cDNA was PCR-
amplified using the kit (PrimerSTAR MAX DNA Polymerase; TaKaRa, Kusatsu, Japan)
with primers designed to detect exon 1 to exon 5 of KIAA0825 for the father and exon 11
to exon 15 of KIAA0825 for the mother. Primer sets are listed in Supplementary Table S2.
The amplified products were analyzed by electrophoresis on 1.5% agarose gel containing
ethidium bromide and visualized by exposure to ultraviolet light. Subsequently, products
were excised from the gel, purified with a commercial kit (DNA Gel Extraction Kit, 2001250,
SIMGEN, Hangzhou, China) and sequenced by Sanger sequencing.

3. Results
3.1. Identification of Compound Heterozygous Splice Site Variants in KIAA0825 Related to the
Disease Phenotype

SNP array analysis showed no chromosomal abnormalities or copy number variations
at the whole-genome level. To further search for the potential genetic cause of the fetal
abnormalities, prenatal trio-WES was performed on the fetus and both parents. The filtering
criteria for trio-WES data are listed in Supplementary Table S1. After the filtering steps,
315 variants of 105 genes were identified. These genes were then related to the ‘polydactyly’
phenotype using Phenolyzer. KIAA0825, located on chromosome 5q15, was predicted to
be the most likely candidate gene, and the loss function of KIAA0825 was responsible
for postaxial polydactyly type A10(PAPA10). Two splice site variants of KIAA0825 were
identified in the fetus, NC_000005.10 (NM_001145678.3): c.2247-2A>G (rs1305545002) and
c.-1-2A>T (rs1173789302), which were inherited from the mother and father, respectively.
Both variants were confirmed by Sanger sequencing (Figure 2b,c) and the primers used in
PCR amplification and sequencing are listed in Supplementary Tables S2 and S3. Neither
variant was present in the 1000 Genomes and Exome Aggregation Consortium database,
but both were present in the Genome Aggregation Database with extremely low MAF
(c.2247-2A>G, MAF = 1.54832× 10−5; c.-1-2A>T, MAF = 5.61987 × 10−5).



Genes 2022, 13, 1230 5 of 11

Figure 2. Sanger sequencing chromatogram of KIAA0825 variants in the family. (a) The variant
c.-1-2A>T in KIAA0825 is identified in II-2 (proband) and I-1 (father). Arrows represent the variant.
(b) The variant c.2247-2A>G in KIAA0825 is identified in II-2 (proband) and I-2 (mother). Arrows
represent the variant.

3.2. Splice Effect of the KIAA0825 c.-1-2A>T Variant

In silico predictions implied that the KIAA0825 c.-1-2A>T variant may disrupt a
conserved splice acceptor upstream of the initiation codon, which would lead to the loss
of initiation codon. To confirm the pathogenicity of this splice site variant and check
transcription products, we conducted minigene assay and RT-PCR with the heterozygous
father’s peripheral leukocytes. HEK293T and HeLa cells were transfected with wildtype
or mutant minigene vectors. The wildtype constructs showed normal splicing, whereas
the c.-1-2A>T variant influenced the splicing of exon 3 by disrupting its 3′ splice acceptor
site. This event led to the loss of 71 nucleotides (nt) of exon 3 (r.1_70del) (Figure 3b–d). In
addition, RT-PCR results from the father’s peripheral blood also revealed two aberrant
alternative splicing events, including a strong skipping of exon 3 (r.1_131del) and a deletion
of exon1 to exon3 (r.1_85del) (Figure 3a,c,d).
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Figure 3. Blood RT-PCR and minigene assay analysis of the KIAA0825 c.-1-2A>T. (a) Electrophoresis
results of the RT-PCR products with the father’s peripheral leukocytes; the band amplified from
the control (wt) is labeled as a and the bands amplified from the father (mut) are labeled as a, b
and c. (b) RT-PCR electrophoresis results of the minigene assay; bands from WT and the c.-1-2A>T
constructs were labeled as d and e, respectively, in both HeLa and 293T cells. (c) The corresponding
Sanger sequencing results of excised bands of a, b, c from the blood RT-PCR and excised bands of d, e
from the minigene assay. (d) The diagram of alternative splicing events observed from the sanger
sequence in the blood RT-PCR and minigene assay. The alternative splicing events from the father
(mut) are labeled as a, b and c. The alternative splicing events from WT and the c.-1-2A>T constructs
in minigene were labeled as d and e. Red arrow indicates the variant location.

3.3. Splice Effect of the KIAA0825 c.2247-2A>G Variant

In silico predictions indicated that the KIAA0825 c.2247-2A>G variant may disrupt a
conserved splice acceptor of exon 13, which could result in the loss of the splice acceptor
site of exon 13 and exon 13 skipping. Minigene assay revealed both exon 13 skipping
(r.2247_2357del) and loss of 10 nucleotides (nt) of exon 13 (r.2247_2256del) in both HEK293T
and HeLa cells compared to the wildtype control (Figure 4b–d). As the band representing
the 10 nt deletion was very weak, exon 13 skipping was considered the main consequence
of this variant. Moreover, the RT-PCR products of the mother who carried the heterozygous
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KIAA0825 c.2247-2 A>G variant, only showed exon 13 skipping (r.2247_2357del) compared
to the normal control.

Figure 4. Blood RT-PCR and minigene assay analysis of the KIAA0825 c.2247-2A>G variant: (a) Elec-
trophoresis results of the RT-PCR products with the mother’s peripheral leukocytes, the band ampli-
fied from the normal control (wt) was labeled as a and the bands amplified from the mother (mut)
were named as a and b. (b) RT-PCR electrophoresis results of the minigene assay. Bands from the
WT and c.2247-2A>G constructs were labeled as c, d and e, respectively, both in HeLa and 293T cells.
(c) The corresponding Sanger sequencing results of excised bands of a, b from the blood RT-PCR
and excised bands of c, d, e from the minigene assay. (d) The diagram of alternative splicing events
observed in the blood RT-PCR and minigene assay. The alternative splicing events from the mather
(mut) are labeled as a and b. The alternative splicing events from WT and the c.2247-2A>G constructs
in minigene were labeled as c, d and e. Red arrow indicates the variant location.

4. Discussion

Polydactyly is a manifestation that can be either syndromic or non-syndromic, with
different prognoses. For non-syndromic polydactyly patients, undergoing surgical pro-
cedures generally result in a favorable prognosis. However, for syndromic polydactyly
patients, who often suffer from other severe complications, the prognoses are usually poor.
In the uterus, fetal phenotypic assessment, which is mainly obtained via ultrasound and
MRI, is often not comprehensive and accurate. A precise genetic diagnosis is extremely
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valuable for the obstetrician to evaluate the fetal prognosis, provide genetic counseling and
decide on optimal treatment options.

Multiple techniques have been performed to investigate the underlying genetic bases
of fetal structural anomalies. Classical karyotype and chromosome microarray analysis
(CMA) can detect aneuploidy and copy number variation, which provide about 40%
diagnostic yield for these fetuses [18], while prenatal WES can provide an additional
10–20% diagnostic yield and is recommended as second-tier prenatal testing for fetuses
with structural anomalies [19–21]. In this study, SNP array analysis did not find any
chromosomal abnormalities in the fetus with PAPA, while trio-WES identified compound
heterozygous variants in KIAA0825.

The KIAA0825 gene is located at 5q15. To date, the function of the KIAA0825 gene has
not been characterized. Only a few studies have been performed on the mouse orthologous
gene 2210408I21Rik. 2210408I21Rik was expressed in developing limb buds from E11.5 to
E15,5 and homozygous 2210408I21Riktm1 (EUCOMM)Wtsi knock-out mice had a drastic reduc-
tion in bone mineral density [3,9,22–24]. Only four disease-causing variants of KIAA0825
have been reported in patients with various PAP phenotypes in Pakistani consanguineous
families [3,9,13]. In our study, we first reported two splice site variants, which were the first
splice site and the fifth and sixth identified variants in the KIAA0805 gene. The fetal clinical
features in our family were generally consistent with those of previous studies [3,9,13]. Our
study further validated the relationship between KIAA0825 and PAPA10.

KIAA0825 has two isoforms: a long isoform with 1275 amino acids and a short isoform
with 324 amino acids. The c.-1-2A>T variant affected both long and short isoforms. Our
minigene assay showed that the c.-1-2A>T variant led to the loss of 71 nucleotides of
exon 3 (r.1_70del). However, blood RT-PCR of the heterozygous father showed that the
c.-1-2A>T variant created two aberrant splicing results: skipping of exon 3 (r.1_131del)
and deletion of exon 1 to exon 3 (r.1_85del). The canonical initiation codon of KIAA0825
is located at the 2nt of exon 3. Although the blood RT-PCR and minigene assay results
were not consistent, both tests demonstrated that the c.-1-2A>T variant caused aberrant
splicing, which led to the loss of the canonical initiation codon. The c.-1-2A>T belongs to
a canonical ± 1,2 splice site. Destroying the canonical ± 1,2 splice site is often assumed
to lead to a null effect and subsequently mRNA degradation through nonsense-mediated
decay (NMD) without protein production [25]. However, many functional studies also
showed that start loss variants could robustly reinitiate at alternate downstream ATG or
non-ATG sites [26,27], likely resulting in the production of truncated proteins. Supek F. also
reported that the NMD efficiency was reduced in the 5′-most 150 nt of a transcript’s coding
region, gradually increasing from 5′ to 3′ in this segment [28]. Thus, based on the prediction
software (https://web.expasy.org/translate/, accessed on 23 June 2022)), we speculated
that the c.-1-2A>T variant would reinitiate at an in-frame ATG codon located at 336 bp
downstream from the original translation initiation site (TIS), which may produce an N-
terminal truncated protein lacking 112 amino acids [p.(Asn1_Glu112del)] (Supplementary
Figure S2a,b). Due to the absence of a specific antibody and low KIAA0825 expression in
the peripheral blood, we cannot elucidate the exact alternate TIS of KIAA0825.

The c.2247-2A>G variant detected in our study only affected the long isoform. The
minigene assay analysis and blood RT-PCR analysis of this variant showed that this vari-
ant produced alternative splicing products, which mainly resulted in exon 13 skipping
(r.2247_2357del). This in-frame deletion of exon 13 was predicted to evade NMD and
produced a truncated protein with the deletion of 37 amino acids [p.(Phe751_Thr787del)]
(Supplementary Figure S2c). Since the fetus carries the compound heterozygous variants
of KIAA0825, we hypothesize that both the c.-1-2A>T variant, causing a truncated protein
lacking N-terminal residues, and c.2247-2A>G variant, causing a truncated protein with
the in-frame deletion of 37 amino acids, contribute to the PAPA phenotype of the fetus. We
also speculate that the N-terminal residues [p.(Asn1_Glu112del)] and 37 amino acids of
exon 13 [p.(Phe751_Thr787del)] are very important for KIAA0825 function.

https://web.expasy.org/translate/
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At least 50% of disease-causing variations are estimated to be splice site variants.
Functional analyses of the spliced isoforms such as the minigene assay and RT-PCR can
reclassify up to 75% of putative splicing variants [29]. The c.-1-2A>T and c.2247-2A>G
variants belong to special types of PVS1 null variants. Thus, when we initially classified
those two variants, we decreased the PVS1 criteria from very strong to supporting (c.-1-
2A>T) and strong (c.2247-2A>G), then classified them as variants of unknown significance
(VUS), according to the ACMG standards and guidelines for the interpretation of varia-
tions [25,28,30]. To further investigate the pathogenicity, we tested the alternative splicing
of those two variants by minigene assay in both HEK293 and Hela cells and the blood
RT-PCR for both heterozygous parents. After both splice isoform analyses proved that these
two variants caused aberrant splicing, we reclassified them from VUSs to likely pathogenic
variants. Accurate variant interpretation is essential for disease diagnosis, genetic counsel-
ing and prenatal counseling. In our study, after reaching a definitive molecular diagnosis
of the fetus with PAPA, the couple decided to continue the pregnancy.

5. Conclusions

In conclusion, we reported two novel KIAA0825 splice site variants in a fetus with
PAPA. Using minigene assay and blood RT-PCR for both heterozygous parents, we showed
that these two variants influenced splicing and potentially produced truncated proteins lack-
ing N-terminal residues [p.(Asn1_Glu112del)] and 37 amino acids of exon 13 [p.(Phe751_
Thr787del)]. Prenatal trio-WES and subsequent functional studies can identify the under-
lying etiology of the fetus with PAPA, help to evaluate fetal prognosis, provide genetic
counseling related to recurrence risk and facilitate future preimplantation genetic diagnosis
and prenatal diagnosis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13071230/s1. Figure S1: The pcMINI-C vector construction
map for minigene assay; Figure S2: The Protein structures of wild and mutant types; Table S1: The
number of variants after each filtering step; Table S2: Primer sequences in the minigene constructs
carrying the c.-1-2 A>T variant; Table S3: Primer sequences in the minigene constructs carrying the
c.2247-2 A>G variant. References [31–33] are cited in Supplementary Materials.
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