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Immune-related signature identifies IL1R2 as 
an immunological and prognostic biomarker in 
pancreatic cancer
Chengcheng Wanga,b,c,d, Yuan Chena,c,e, Xinpeng Yina,c,e, Ruiyuan Xua,c,e, Rexiati Ruzea,c,e, Jianlu Songa,c,e, 
Chenglin Hua,c,e, Yupei Zhaoa,b,c,e,*

Abstract 
Objective: Pancreatic cancer is one of the most aggressive malignancies, a robust prognostic signature and novel biomarkers 
are urgently needed for accurate stratification of the patients and optimization of clinical decision-making.
Methods: A list of bioinformatic analysis were applied in public dataset to construct an immune-related signature. Furthermore, 
the most pivotal gene in the signature was identified. The potential mechanism of the core gene function was revealed through 
GSEA, CIBERSORT, ESTIMATE, immunophenoscore (IPS) algorithm, single-cell analysis, and functional experiment.
Results: An immune-related prognostic signature and associated nomogram were constructed and validated. Among the genes 
constituting the signature, interleukin 1 receptor type II (IL1R2) was identified as the gene occupying the most paramount position in the 
risk signature. Meanwhile, knockdown of IL1R2 significantly inhibited the proliferation, invasion, and migration ability of pancreatic cancer 
cells. Additionally, high IL1R2 expression was associated with reduced CD8+ T cell infiltration in pancreatic cancer microenvironment, 
which may be due to high programmed cell death-ligand-1 (PD-L1) expression in cancer cells. Finally, the IPS algorithm proved that pa-
tients with high IL1R2 expression possessed a higher tumor mutation burden and a higher probability of benefiting from immunotherapy.
Conclusion: In conclusion, our study constructed an efficient immune-related prognostic signature and identified the key role 
of IL1R2 in the development of pancreatic cancer, as well as its potential to serve as a biomarker for immunotherapy efficacy 
prediction for pancreatic cancer.
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Introduction
Pancreatic cancer (PC) is one of the most malignant tumor 
with a 5-year survival rate of only 12%.[1] Meanwhile, accord-
ing to the latest epidemiological data, the global burden of 
PC has increased dramatically over the past few decades and 

is expected to become a leading cause of cancer-related mor-
tality.[2] The poor prognosis of PC is mainly due to the lack 
of sensitive screening methods, remarkable resistance to most 
conventional treatment options, and complex tumor microen-
vironments.[3] Apart from that, the lack of accurate predictive 
signature and effective therapeutic targets is also a contribu-
tor of the dismal status.[4,5] Therefore, it is of great significance 
to construct accurate prognostic signature of PC and identify 
potential key factors determining the oncogenesis and devel-
opment of PC.

The immunological components within tumors, termed the 
tumor immune microenvironment (TIME), has been proved to 
be strongly related to cancer development.[6,7] Gao et al[8] has 
reported that tumor-derived ILT4/PIR-B was directly involved 
in induction of cell senescence in naive/effector T cells mediated 
by tumor cells in vitro and in vivo, which contributed to the 
progression of the tumor. Meanwhile, OTU deubiquitinase 5 
(OTUD5)-mediated deubiquitination of yes-associated protein 
(YAP) in macrophage promoted M2 phenotype polarization and 
favored triple-negative breast cancer progression.[9] Therefore, 
an immune-related prognostic signature was considered to accu-
rately predict the prognosis of PC patients. Furthermore, the 
most paramount gene in the risk signature was further explored, 
as well as its potential mechanisms and ability to serve as a novel 
biomarker for predicting the efficiency of immunotherapy.

In the present study, an immune-related prognostic sig-
nature and associated nomogram were constructed and vali-
dated. Among the genes constituting the signature, interleukin 
1 receptor type II (IL1R2) was identified as the gene occupy-
ing the most paramount position in the risk signature, which 
was strongly associated with poor prognosis of PC patients. 
Meanwhile, knockdown of IL1R2 in PC cells resulted in a sig-
nificant decrease of the proliferation, invasion, and migration 
ability. CIBERSORT, ESTIMATE, and Gene Set Enrichment 
Analysis (GSEA) algorithms illustrated a lower CD8+ T cell 
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infiltration in patients with high IL1R2 expression, which was 
associated with high programmed cell death-ligand-1 (PD-L1) 
expression in IL1R2 high expression PC cells. In addition, 
single-cell analysis confirmed the difference in the interaction 
with T cells between IL1R2-high and IL1R2-low expression 
cancer cells and demonstrated a lower percentage of CD8+ 
T cells in patients with high IL1R2 expression. Finally, the 
immunophenoscore (IPS) algorithm demonstrated that patients 
with high IL1R2 expression possessed a higher tumor mutation 
burden (TMB) and better responsiveness to immunotherapy, 
suggesting that IL1R2 was expected to be a potential bio-
marker for predicting PC immunotherapy efficiency.

Methods

Datasets sources and processing

Immune-related genes (IRGs) were extracted and integrated 
from the ImmPort database (https://immport.niaid.nih.gov; 
March 1, 2021)[10] (Additional Table S1, http://links.lww.com/
JP9/A53). Genomics data and clinical information were down-
loaded from The Cancer Genome Atlas (TCGA) dataset (https://
portal.gdc.cancer.gov/; March 1, 2021). Samples with inade-
quate clinical information and follow-up period less than 30 
days were excluded. Finally, 166 cases were included in the 
study (Additional Table S2, http://links.lww.com/JP9/A54). 
Log2(TPM+0.01) was used throughout the analysis unless oth-
erwise noted.

In addition, GSE62452, GSE78229, and GSE71729 data-
set were downloaded from Gene Expression Omnibus (GEO) 
(http://www.ncbi.nlm.nih.gov/geo/).[11–13] The normalized 
expression matrix of microarray data can be directly download 
from the GEO. Probes were then matched to the gene sym-
bols using the annotation files provided by the manufacturer. 
Furthermore, the single-cell dataset CRA001160 was down-
loaded from Tumor Immune Single-cell Hub (TISCH) database 
(http://tisch.comp-genomics.org/).[14,15] And the RNA-seq data 
of all pancreatic cell lines was extracted from the Cancer Cell 
Line Encyclopedia (CCLE) database.[16]

Establishment of the prognostic signature and 
nomogram based on IRGs

Limma package was applied to analyze differentially expressed 
genes (DEGs) in GSE71729 and GSE62452.[17] |Fold change| 
>1.5 and false discovery rate (FDR) <0.05 were set as the cut-
offs for the DEGs. The intersection of differential genes was 
further selected by univariate Cox regression analysis, least 
absolute shrinkage and selection operator (LASSO) regression 
analysis and multivariate Cox regression analysis to construct 
the optimal prognosis signature of PC. The risk score of the 
signature was calculated as follows: risk score = (exprgene1 
× Coefgene1) + (exprgene2 × Coefgene2) + … + (exprgenen × 
Coefgenen). Subsequently, the nomogram based on the gene 
signature and clinicopathological factors was also established 
to predict the 1.0-, 1.5-, 2.0-year survival probability of PC 
patients.

Gene Set Enrichment Analysis

Patients in the TCGA entire set were divided into IL1R2 
high expression group and IL1R2 low expression group, fol-
lowed by DEGs analysis and GSEA. The ALL ontology of the 
genes was analyzed by Gene Ontology (GO),[18] while path-
way enrichment was analyzed by the Kyoto Encyclopedia 
of Genes and Genomes (KEGG).[19] The number of random 
sample permutations was set at 1000, and nominal (NOM) P 
value <.05 and FDR q value <0.25 were set as the significance 
threshold.

TIME analysis, TMB calculation, and immunotherapy 
efficacy prediction

The CIBERSORT algorithm was used to calculate the propor-
tion of 22 types of immune cells in each patient’s tumor micro-
environment, while the ESTIMATE algorithm was applied to 
score the immune infiltration in the patient’s tumor microenvi-
ronment.[20,21] The mutation profile of each patient was acquired 
from TCGA data portal (https://portal.gdc.cancer.gov/; March 
1, 2021) and analyzed by “maftools” package.[22] Additionally, 
IPS algorithm was applied to estimate the probability that PC 
patients respond to immunotherapy, including anti-PD-1 ther-
apy, anti-CTLA-4 therapy, and the combination of anti-PD-1 
and anti-CTLA-4 therapy (https://tcia.at/).[23]

scRNA-seq data quality control, dimension reduction, 
and cell clustering

The processed expression matrix and clinical information of the 
single-cell dataset CRA001160 were downloaded from TISCH 
database and analyzed by Seurat package.[14] Low quality cells 
(<200 genes/cell, <3 cells/gene, >5% mitochondrial genes, total 
expressed genes <200, and total expressed genes >7000) were 
removed. Subsequently, principal component analysis (PCA) was 
performed and the first 15 dimensions were used to compute a 
Uniform Manifold Approximation and Projection (UMAP, res = 
1.0). In addition, the cell types were annotated according to the 
markers provided by the author.[15]

Cell culture

The origin and culture of the cells are described in the previ-
ous article.[24] In brief, BxPC-3 cell line was cultured in RPMI-
1640 medium (Corning, NY, USA, #10–040-CV), and T3M4 
cell line was cultured in high glucose Dulbecco Modified Eagle 
Medium (DMEM; Corning, #10–013-CMR). All medium were 
supplemented with 10% fetal bovine serum (FBS) (HyClone, 
UT, USA, #SH30073.03) and 1% Penicillin–Streptomycin (Life 
Technologies, MA, USA, #15,140–122).

siRNA transient transfection

Small interfering RNA (siRNA) targeting IL1R2 was pur-
chased from Tsingke (Tsingke Biotechnology, Beijing, China). 
Sequences of siRNAs used were as follows: siIL1R2-1#: 
5ʹ-GUAUUGAGCUACGCAUCAA-3ʹ; siIL1R2-2#: 
5ʹ-GACUGACAAUCCCGUGUAA-3ʹ. Transfections of each siRNA 
(80 nM) was performed using Lipofectamine 3000 (Invitrogen, 
Carlsbad, CA) according to the manufacturer’s instruction.

Western blot analysis

The specific process of western blot analysis was described previ-
ously.[25] The primary antibodies anti-IL1R2 (1:1000, Proteintech, 
Wuhan, China, 60262-1-Ig), and anti-glyceraldehyde-3- 
phosphate dehydrogenase (GAPDH) (1:20000; Proteintech, 
60004-1-Ig) were used overnight at 4°C and then incubated 
with horseradish peroxidase (HRP)-conjugated secondary 
antibodies (1:5000; Proteintech, SA00001-1 and SA00001-
2) at room temperature for 1 hour. Chemiluminescence assay 
(Thermo scientific, MA, USA, 34580) was utilized to visualize 
protein bands.

RNA extraction and quantitative real-time PCR analysis

The specific operation process has been described in the previous 
article.[26] The expression of genes was normalized to GAPDH, 
and the 2-ΔΔCt method was used to quantify the fold change. 
The primer sequences used for qRT-PCR were as follows:

https://immport.niaid.nih.gov
http://links.lww.com/JP9/A53
http://links.lww.com/JP9/A53
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://links.lww.com/JP9/A54
http://www.ncbi.nlm.nih.gov/geo/
http://tisch.comp-genomics.org/
https://portal.gdc.cancer.gov/
https://tcia.at/
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IL1R2:

Forward 5ʹ-ATGTTGCGCTTGTACGTGTT-3ʹ,

Reverse 5ʹ-CCCGCTTGTAATGCCTCCC-3ʹ;

GAPDH:

Forward 5ʹ-GTCTCCTCTGACTTCAACAGCG-3ʹ,

Reverse 5ʹ-ACCACCCTGTTGCTGTAGCCAA-3ʹ.

Cell proliferation assay

The specific experimental procedure has been described in the 
previous article.[27] In brief, cancer cells from control and treat-
ment groups were seeded into 96-well plates and measured the 
optical density (OD) values with Cell Counting Kit-8 (CCK-8) 
reagent (Dojindo Laboratories, Shanghai, China, CK04) at 0, 
24, 48, 72, 96 hours, respectively.

Migration and invasion assay

The specific experimental procedure has been described in the 
previous article.[28] In brief, 100,000 cells resuspended in 150 
µL of serum-free medium were seeded into upper transwell 

chamber (24-well and 8.0 μm pore size, Corning, 3422) with or 
without Matrigel (Corning, 354234). And 600 µL of medium 
containing 10% FBS was added to the lower chamber. The 
migrated cells were then fixed with methanol and stained after 
24 hours of incubation.

Statistical analysis

All statistical analysis was performed in GraphPad Prism 8 (ver-
sion 8.0.1) and R software (version 4.1.0). Biological replicates 
are shown as means ± standard error of mean (SEM) of 3 inde-
pendent experiments. P values are specified in figures.

Results

Five IRGs were screened out for constructing the risk 
signature

First, DEGs analysis was performed on IRGs in GSE71729 
and GSE62452 datasets (Fig. 1A, B, |Fold change| >1.5 and 
FDR < 0.05 were regarded as statistically significant), and 75 
DEGs were obtained after taking the intersection (Fig. 1C). 
Subsequently, univariate cox analysis was conducted to screen 
the prognosis-related genes, and LAASO regression analysis was 

Figure 1. Screening out immune-related genes for risk signature construction. (A, B) Heatmap of immune-related DEGs between normal tissue and PC 
in GSE71729 and GSE62452. (C) Venn plot of the intersection of 2 DEGs datasets. (D) Five IRGs were screened out for constructing a risk signature. (E) 
Kaplan-Meier analysis of the 5 genes in the risk signature. AIC = Akaike information criterion, DEG = differentially expressed gene, IRG = immune-related gene,  
PC = pancreatic cancer, PDAC = pancreatic ductal adenocarcinoma.



122

Wang et al • Journal of Pancreatology (2024) 7:2 Journal of Pancreatology

applied to avoid overfitting problems and further screen the can-
didate genes (Additional Figure S1A, B, http://links.lww.com/
JP9/A51, log(lambda.min) = −2.876043). Finally, multivariate 
Cox analysis was then used to explore an optimal gene combina-
tion for establishing the risk signature for PC patients (Fig. 1D), 
which outputted a prognostic signature for PC consisting of 5 
IRGs (CHGA, CXCL10, DEFB1, IL1R2, MET). Among them, 
CXCL10, DEFB1, IL1R2, and MET were risk factors for PC, 
while CHGA was a protective factor for PC (Fig. 1E).

Validation of the signature for predicting prognosis of PC 
patients

To further evaluate the validity of the prediction signature, we 
calculated the risk score for each patient separately based on 
their gene expression profiles (risk score = (−0.1324 × expression 

level of CHGA) + (0.1820 × expression level of CXCL10) + 
(0.1867 × expression level of DEFB1) + (0.1946 × expression 
level of IL1R2) + (0.3389 × expression level of MET)). And the 
effectiveness of the signature was validated in the TCGA train-
ing set, TCGA testing set, TCGA entire set, and GSE78229 data-
set by combining analysis of their clinical information (Fig. 2A).

Based on the results of Kaplan-Meier (K-M) curve analy-
sis, it was found that the prognosis of patients in the high-risk 
group was significantly worse than those in the low-risk group 
(Fig. 2B–E, P < .05 in TCGA training set, TCGA testing set, 
TCGA entire set, and GSE78229 dataset). Meanwhile, the area 
under curves (AUCs) of the risk signature for predicting 1-, 1.5-, 
2-, 2.5-, and 3-year survival of PC patients were 0.802, 0.713, 
0.676, 0.702, 0.777 in the TCGA training set, 0.790, 0.648, 
0.698, 0. 772, 0.739 in TCGA testing set, 0.789, 0.690, 0.695, 
0.733, 0.767 in TCGA entire set, and 0.550, 0.604, 0.774, 
0.778, 0.860 in GSE78229 dataset, respectively (Fig. 2F–I).

Figure 2. Effectiveness validation of the risk signature for survival prediction in training set, testing set, entire TCGA set, and GSE78229 set. (A) The process of the 
risk signature validation. (B–E) Kaplan-Meier analysis of OS of the risk signature in training set, testing set, entire TCGA set, and GSE78229 set. (F–I) Time-dependent 
ROC analysis of the risk signature in the 4 datasets. (J–M) Heatmap of the 5 hub genes expression, the risk scores distribution, and survival status plots of the patients 
in the 4 datasets. GEO = Gene Expression Omnibus, OS = overall survival, ROC = receiver operating characteristic, TCGA = The Cancer Genome Atlas.

http://links.lww.com/JP9/A51
http://links.lww.com/JP9/A51
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Additionally, it was observed that as the risk score increased, 
the expression of CXCL10, DEFB1, IL1R2, and MET experi-
enced a gradual increase, while the expression of CHGA expe-
rienced a stepwise decrease. Consistently, survival scatter plot 
indicated a significant increase in the number of deaths as the 
risk score rose (Fig. 2J–M). Overall, the above results further 
proved the effectiveness of the prediction signature in predict-
ing the prognosis of PC, in which the overall survival (OS) of 
patients in the high-risk group is remarkably lower than that of 
patients in the low-risk group.

Construction and validation of a nomogram based on the 
five-gene signature

To further optimize the prediction model, clinicopathological 
information was combined with the 5-gene signature to con-
struct a nomogram, including gender, age, grade, AJCC_stage, T 
stage, and N stage (Fig. 3A, B). Finally, the risk score, age, and N 
stage were incorporated into the construction of the nomogram 

based on univariate Cox regression analysis and multivariate 
Cox regression analysis (Fig. 3C).

Subsequently, calibration plot and time-dependent receiver 
operating characteristic (ROC) curve were applied to evaluate the 
effectiveness of the nomogram. The calibration curves presented 
satisfied coherence between predicted and actual 1-, 1.5-, and 2.0-
year OS in TCGA training set, TCGA testing set, and TCGA entire 
set (Additional Figure S2A–C, http://links.lww.com/JP9/A52). 
Additionally, the AUCs of the risk signature for predicting 1.0-, 
1.5-, and 2.0-year survival of PC patients were 0.766, 0.803, 0.804 
in the TCGA training set, 0.677, 0.545, 0.692 in TCGA testing set 
and 0.741, 0.723, 0.773 in TCGA entire set (Fig. 3D–F). Both the 
validation models demonstrated the excellent performance of the 
nomogram in predicting the prognosis of PC.

IL1R2 was associated with poor prognosis of PC

Among the 5 genes in the prognostic signature, IL1R2 possessed 
a relatively high coefficient and hazard ratio (HR) value, which 

Figure 3. Nomogram construction for predicting 1-, 1.5- and 2.0-y survival rate of PC. (A, B) Univariate Cox regression analysis and multivariate Cox regression 
analysis in training set. (C) Nomogram integrating 4 IRGs-based risk score, age, and N stage. (D, F) Time-dependent ROC analysis of the nomogram in training 
set, testing set and entire set. IRG = immune-related gene, PC = pancreatic cancer.

http://links.lww.com/JP9/A52
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made us consider that IL1R2 might play a pivotal role in pre-
dicting the prognosis of PC in the signature. Therefore, IL1R2 
was paid special attention in the further exploration.

First, pan-cancer analysis of IL1R2 revealed that IL1R2 was 
lowly expressed in most tumor tissues and highly expressed only 
in PC and glioblastoma (Fig. 4A–C), which might be related 
to the unique tumor microenvironment of these 2 tumors. 
Meanwhile, IL1R2 was associated with higher tumor stage, 
higher grade, and higher T stage, but no significant association 
with N stage, age, and gender (Fig. 4D–I). In addition, based 
on the PC cell line data in the CCLE database, it was found 
that the expression of IL1R2 was positively correlated with the 
expression of PD-L1 (Fig. 4J, K), suggesting that high IL1R2 
expression leading to poor prognosis of PC may be related to 
the immunosuppressive tumor microenvironment of PC.

IL1R2 promoted the proliferation, invasion, and 
metastasis of PC cells

In order to further explore why IL1R2 was associated with 
poor prognosis of PC, we first analyzed the single-cell dataset 
CRA001160, in which cancer cells were divided into IL1R2 
low expression group and IL1R2 high expression group. DEGs 
analysis was performed, which found that MUC13, MUCL3, 
CCND2, and KRT13 were significantly upregulated in the can-
cer cells with high expression of IL1R2 (Fig. 5A), suggesting 
that IL1R2 might promote PC progression by promoting the 
proliferation, invasion, and migration ability of PC cells.

Additionally, molecular biology experiments were conducted 
to explore whether IL1R2 could affect biological behavior of 
PC cells. We first knocked down the expression of IL1R2 in 
T3M4 and BXPC-3 cell lines, respectively, and then measured 

Figure 4. IL1R2 was significantly associated with poor prognosis of pancreatic cancer. (A) A pan-cancer analysis of IL1R2. Red represents a significant increase 
in tumor, green represents a significant decrease in tumor, and black represents no significant change. (B) Expression difference of IL1R2 between normal 
tissue and PC tissue according to RNA-seq data. (C) Kaplan-Meier analysis of OS between the high IL1R2 expression group and low IL1R2 expression group 
in GSE78229 dataset. (D–I) The correlation of IL1R2 expression with tumor grade, AJCC_stage, age, T stage, N stage and gender. (J, K) Correlation between 
expression of IL1R2 and PD-L1 in pancreatic cancer cell lines according to CCLE database. *P < .05; **P < .01. CCLE = Cancer Cell Line Encyclopedia, IL1R2 =  
interleukin 1 receptor type II, ns = no significance, OS = overall survival, PC = pancreatic cancer, PD-L1 = programmed cell death-ligand-1.
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its proliferation, invasion, and migration ability (Fig. 5B, C). The 
results indicated that the proliferation, invasion, and migration 
ability of PC cells decreased significantly after IL1R2 knock-
down (Fig. 5D–I), suggesting that IL1R2 was able to promote 
the proliferation, invasion, and migration ability of PC cells.

IL1R2 predicted the immunosuppressive 
microenvironment of PC

Subsequently, DEGs analysis and functional enrichment were 
performed between IL1R2 high and low expression groups in 

the TCGA dataset, which found that the immune-related signal-
ing pathway was significantly downregulated in the IL1R2 high 
expression group (Fig. 6A, B). In addition, the ESTIMATE algo-
rithm revealed that the immune infiltration scores were signifi-
cantly decreased in the IL1R2 high expression group (Fig. 6C, 
D). Therefore, we hypothesized that the poor prognosis of PC 
due to IL1R2 might also be related to its effect on the immune 
microenvironment of PC.

Therefore, CIBERSORT algorithm was applied to calculate 
the proportion of immune cells in the tumor microenvironment 
of the patients in IL1R2 high expression group and IL1R2 low 

Figure 5. IL1R2 was able to promote the proliferation, invasion, and migration ability of pancreatic cancer cell. (A) Expression of progression-related genes in 
pancreatic cancer cells with high or low IL1R2 expression in the single-cell dataset CRA001160. (B, C) Validation of IL1R2 knockdown efficiency in T3M4 cells 
and BxPC-3 cells. (D, E) CCK-8 assay of T3M4 cells and BxPC-3 cells after IL1R2 knockdown. (F–I) Invasion assays and migration assays of T3M4 cells and 
BxPC-3 cells after IL1R2 knockdown. *P < .05; **P < .01; ***P < .001. CCK-8 = Cell Counting Kit-8, IL1R2 = interleukin 1 receptor type II.
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expression group, respectively (Fig. 6E). It was discovered that 
CD8+ T cell infiltration was significantly decreased in the IL1R2 
high expression group (Fig. 6F). Consistently, the analysis of 
GSE71729 dataset showed that IL1R2 was significantly neg-
atively correlated with CD8+ T cells, M1 macrophages, while 
remarkably positively associated with neutrophils, M0 mac-
rophages, and activated dendritic cells (Fig. 6G–K). Combined 
with the results that the expression of IL1R2 was positively 
correlated with the expression of PD-L1 (Fig. 4J–K), we made 
hypothesis that high IL1R2 expression leading to poor prog-
nosis of PC may be related to the immunosuppressive tumor 
microenvironment of PC.

Single-cell sequencing analysis showed interaction 
between IL1R2 high expression PC cells and CD8+T cells 
in tumor microenvironment of PC

To further validate the above results, the single-cell dataset 
CRA001160 was accessed and analyzed. First, CRA001160 
dataset was divided into 10 cell clusters by dimensional reduc-
tion clustering (Fig. 7A), in which we extracted epithelial cells and 
performed further analysis. By dimensional reduction clustering, it 
was found that there were significant differences between PC cells 
and normal ductal cells (Fig. 7B), and the expression of IL1R2 was 
significantly higher in PC cells than in normal ductal cells (Fig. 7C).

Subsequently, the patients in CRA001160 were divided 
into IL1R2 high expression group, median expression group, 
and low expression group according the expression of IL1R2 
in cancer cells of each patient (Fig. 7D). It was found that the 
infiltration of CD8+ T cells was significantly higher in patients 
in IL1R2 low expression group than in IL1R2 high expression 
group (Fig. 7E), suggesting that high expression of IL1R2 in 
cancer cells might inhibit CD8+ T cell infiltration in PC micro-
environment. To explore the underlying mechanisms in depth, 
the CellChat algorithm was applied to explore potential inter-
actions pathways between cells (Fig. 7F), resulting in significant 
differences between the effects of IL1R2 high expression cancer 
cell and IL1R2 low expression cancer cells on various types of 
immune cells (Fig. 7G–J).

IL1R2 was able to predict the efficacy of immunotherapy 
for PC

The results above proved that IL1R2 may be related to the 
immunosuppressive microenvironment in PC. Next, we 
wondered whether IL1R2 was able to predict immunother-
apy efficacy in patients with PC. Due to the high correlation 
between TMB and tumor immunotherapy efficacy, mutation 
profiles of both the IL1R2 high expression group and low 
expression group were analyzed and visualized. For the IL1R2 

Figure 6. Immune cell infiltration difference between IL1R2 high and low expression groups. (A) Heatmap of top 30 DEGs in PC between IL1R2 high and 
low expression groups. (B) GSEA between IL1R2 high and low expression groups. (C, D) Immunity score obtained by ESTIMATE algorithm in high and low 
IL1R2 expression groups in TCGA dataset and GSE71729 dataset. (E, F) The abundance difference of the 22 types of immune cells between IL1R2 high and  
low expression groups. (G–K) Correlation analysis between the IL1R2 expression and the proportion of immune cells in GSE71729 dataset. Immune cell types 
with P < .05 were displayed. *P < .05; **P < .01. DEG = differentially expressed gene, GSEA = Gene Set Enrichment Analysis, IL1R2 = interleukin 1 receptor 
type II, PC = pancreatic cancer, TCGA = The Cancer Genome Atlas.
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high expression group, the genes with the highest mutation 
rate were KRAS, TP53, SMAD4, CDKN2A, TTN, RNF43, 
FLG, PEG3, ADAMTS12, and NTF3 (Fig. 8A). And for the 
IL1R2 low expression group, the top 10 frequently mutation 
genes were KRAS, TP53, SMAD4, TTN, CDKN2A, MUC16, 
DNAH11, GNAS, HECW2, and RNF213 (Fig. 8B). Notably, 
the mutation frequency of the 4 driver genes of PC, KRAS, 
TP53, SMAD4, and CDKN2A, were all significantly elevated 
in the IL1R2 high expression group (Fig. 8C, 86%: 68% for 
KRAS, 73%: 60% for TP53, 25%: 22% for SMAD4, 22%: 
12% for CDKN2A).

Additionally, it was found that patients with high IL1R2 
expression possessed higher TMB (Fig. 8D), although there was 
no significant correlation between TMB and patients’ prog-
nosis (Fig. 8E). Furthermore, according to the comprehensive 

analysis of IL1R2 expression and IPS algorithm, patients with 
high expression of IL1R2 were more likely to benefit from 
anti-PD-1 therapy, anti-CTLA-4 therapy, and the combination 
of anti-PD-1 and anti-CTLA-4 therapy (Fig. 8F–K). Therefore, 
IL1R2 is expected to be one of the biomarkers to predict the 
efficacy of immunotherapy for PC.

Discussion
PC is a highly malignancy with an extremely poor prognosis,[29] 
and a crucial reason for the dismal status is the lack of reliable 
prognostic signature and biomarkers. Therefore, we constructed 
an accurate immune-related prognostic signature of PC and the 
corresponding nomogram in this study. In the prognostic signa-
ture, CHGA CXCL10, DEFB1, and MET were demonstrated 

Figure 7. Analysis of IL1R2 expression and immune cell infiltration in single-cell dataset CRA001160. (A) The UMAP plots of diverse cell types in CRA001160 
colored by major cell lineage. (B) The UMAP plots of epithelial cells in CRA001160. (C) Comparison of IL1R2 expression in normal ductal and PC cells. 
(D) Relative expression of IL1R2 in cancer cells of each patient (ranked from high to low). (E) Comparison of infiltration of CD8+T cells, CD4+T cells, and 
macrophages in IL1R2 high, medium and low expression group. (F–J) Interactions between tumor cells with high or low IL1R2 expression and cells in the 
tumor microenvironment and their potential pathways in the single-cell dataset CRA001160. *P < .05; ***P < .001. IL1R2 = interleukin 1 receptor type II, PC = 
pancreatic cancer, UMAP = Uniform Manifold Approximation and Projection.
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to be involved in cancer proliferation, metastasis, chemore-
sistance, and immune microenvironment.[30–35] However, the 
role of IL1R2 in PC development has not been reported yet. 
Considering its high coefficient and HR value in the prognostic 
signature of PC, we next further explored the role of IL1R2 in 
PC development and its in-depth mechanism.

IL1R2 was a decoy receptor of interleukin-1 (IL-1), which 
acted as a competitive inhibitor of IL-1 and prevented its bind-
ing to IL1R1, blocking the IL1β signaling in inflammation 
diseases.[36,37] In addition, it was also reported that IL1R2 was 
able to act as an intracellular inhibitor for pro-IL1α in necrosis- 
induced sterile inflammation.[38] At the same time, some studies 

have preliminarily identified the role of IL1R2 in the develop-
ment of cancers. Mar et al[39] found that intracellular IL1R2 was 
able to acts with c-Fos to enhance the transcription of IL-6 and 
vascular endothelial growth factor (VEGF)-A, which promoted 
angiogenesis in colon cancer cells. And blocking IL1R2 with 
neutralizing antibody was proved to inhibit breast cancer pro-
gression by targeting breast tumor initiating cells.[40] However, 
the role of IL1R2 in the development of PC, including its own 
oncogenic potential and its effect on the microenvironment of 
PC, has not been reported yet.

In this project, IL1R2 was identified as a pivotal factor in 
the progression of PC, which was significantly associated with 

Figure 8. IL1R2 was able to serve as a biomarker to predict the efficacy of immunotherapy for pancreatic cancer. (A, B) Mutation profile of PC patients in IL1R2 
high expression group and low expression group. (C) Mutation rate comparison of genes with high mutation rate between IL1R2 high and low expression group. 
(D) The comparison of TMB between IL1R2 high, median, and low expression groups. (E) Kaplan-Meier analysis of OS between high and low TMB group. (F–K) 
The relationship between IL1R2 expression and the relative probabilities of responding to immunotherapy, including anti-PD-1 therapy, anti-CTLA-4 therapy, 
and the combination therapy. *P < .05; ***P < .001. IL1R2 = interleukin 1 receptor type II, OS = overall survival, PC = pancreatic cancer, TMB = tumor mutation 
burden.



129

Wang et al • Journal of Pancreatology (2024) 7:2 www.jpancreatology.com

higher stage, higher grade, and higher T stage. Meanwhile, 
knockdown of IL1R2 inhibited the proliferation, invasion, and 
migration of PC cell lines, suggesting that IL1R2 itself was able 
to promote the progression of PC by promoting the prolifera-
tion and metastasis of PC. And the results were consistent with 
the previous results in other cancers.[41]

Meanwhile, as patients with IL1R2 high expression pre-
sented an immunosuppressive tumor microenvironment, such 
as fewer CD8+ T cells and M1-type macrophages, both of 
which have been reported to exhibit pronounced anti-tumor 
effects.[42,43] Additionally, based on cell line transcriptomic 
data from the CCLE database, it was found that the expres-
sion of IL1R2 in PC cells was positively correlated with the 
expression of PD-L1, suggesting that PC cells might suppress 
the activation of CD8+ T cells by upregulating PD-L1 on the 
cell membrane surface,[44,45] resulting in an immunosuppres-
sive tumor microenvironment. According to previous studies, 
we found that IL1R2 was able to promote the expression of 
hypoxia-inducible factor (HIF)1α,[46] which was one of the key 
factors in the formation of immune suppressive tumor micro-
environment.[47] Therefore, we considered that the IL1R2-
HIF1α axis was one of the mechanisms of the reduction of 
CD8+T cells in the PC microenvironment.

Finally, since we have demonstrated the strong association of 
IL1R2 expression with the immune microenvironment of PC, 
we next wondered whether IL1R2 expression could predict the 
efficacy of immunotherapy for PC. First, it was found that the 
mutation frequency of all 4 driver genes of PC (KRAS, TP53, 
CDKN2A, SMAD4) were significantly elevated in the IL1R2 
high expression group. Additionally, TMB, a biomarker closely 
associated with improved immunotherapies,[48] was proved to 
be increased in the IL1R2 high expression group. Combined 
with the IPS algorithm, it was found that patients in IL1R2 high 
expression possessed a relatively higher probability of respond-
ing to anti-PD1 therapy, anti-CTLA4 therapy and the combina-
tion of anti-PD1 and anti-CTLA-4 therapy.

Conclusions
In conclusion, an immune-related prognostic signature and the 
corresponding nomogram for PC were established and vali-
dated in different datasets. Furthermore, IL1R2 was identified 
as the gene occupying the most paramount position in the risk 
signature. IL1R2 was significantly associated with poor prog-
nosis of PC and was proved to promote the progression of 
PC by promoting the proliferation, invasion, and migration 
of PC cells. Meanwhile, both single-cell analysis and bulk-seq 
analysis demonstrated that the expression of IL1R2 may be 
associated with decreased infiltration of CD8+ T cells in PC 
microenvironment, which might result from the high expres-
sion of PD-L1 in IL1R2-high expressing PC cells. Finally, it 
was demonstrated that patients with high IL1R2 expression 
possessed a higher TMB and higher probability to benefit 
from immunotherapy, suggesting that IL1R2 was able to serve 
as a potential biomarker for predicting PC immunotherapy 
efficiency.
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