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SUMMARY
Understanding who is at risk of progression to severe coronavirus disease 2019 (COVID-19) is key to clinical
decision making and effective treatment. We study correlates of disease severity in the COMET-ICE clinical
trial that randomized 1:1 to placebo or to sotrovimab, amonoclonal antibody for the treatment of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (ClinicalTrials.gov 04545060). Laboratory pa-
rameters identify study participants at greater risk of severe disease, including a high neutrophil-to-lympho-
cyte ratio (NLR), a negative SARS-CoV-2 serologic test, and whole-blood transcriptome profiles. Sotrovimab
treatment is associated with normalization of NLR and the transcriptomic profile and with a decrease of viral
RNA in nasopharyngeal samples. Transcriptomics provides the most sensitive detection of participants who
would go on to be hospitalized or die. To facilitate timely measurement, we identify a 10-gene signature with
similar predictive accuracy.We identifymarkers of risk for disease progression and demonstrate that normal-
ization of these parameters occurs with antibody treatment of established infection.
INTRODUCTION

Sotrovimab is a human monoclonal antibody (mAb) derived from

an Ab isolated from a person recovered from severe acute respi-

ratory syndrome coronavirus (SARS-CoV) infection. This mAb

broadly neutralizes SARS-CoV-2, SARS-CoV, and other related

animal sarbecoviruses.1–3 Sotrovimab targets a highly con-

served epitope in the SARS-CoV-2 spike protein located in a

site outside the angiotensin-converting enzyme 2 (ACE2) recep-

tor-binding motif (RBM) within the receptor-binding domain

(RBD). Sotrovimab retains in vitro activity against many SARS-

CoV-2 variants of concern (VOCs) (Alpha, Beta, Gamma, Delta,

Omicron BA.1) and variants of interest (VOIs).4,5 Recent preclin-

ical studies have demonstrated a reduction of sotrovimab

neutralization by the Omicron BA.2 variant;6,7 however, studies

are underway to explore whether modified dosing can restore

clinical efficacy.

Sotrovimab was tested in a multi-center, double-blind, phase

3 clinical trial (COMET-ICE, ClinicalTrials.gov: NCT04545060)

that recruited non-hospitalized participants with symptomatic
Cell Rep
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coronavirus 2019 (COVID-19) and at least one known risk factor

(age and/or comorbidities) for severe disease progression. Par-

ticipants were randomized to a single intravenous infusion of

500 mg sotrovimab or placebo. In the interim analysis of the trial,

sotrovimab significantly reduced the risk of all-cause hospitaliza-

tion (>24 h) or death from COVID-19.1 The final data show that

among 1,056 participants randomized (sotrovimab, 528; pla-

cebo, 529), all-cause hospitalization longer than 24 h or death

was significantly reduced with sotrovimab (6/528 [1%]) versus

placebo (30/529 [6%]) by 79% (95% confidence interval [CI],

50%–91%; p < 0.001).2

While the impact of sotrovimabwasprofound, the relatively low

rate of hospitalization or death among participants considered at

risk for poor disease outcomes in the placebo arm led us to inves-

tigate if additional biomarkers or biomarker profiles beyond the

known demographic and comorbid conditions could be identi-

fied. The setting of a randomized, controlled clinical trial

presented a unique opportunity to identify signals of disease pro-

gression that resolved in response to treatment andcould thusbe

usedboth toprovide insights intoCOVID-19pathogenesis andas
orts Medicine 3, 100721, August 16, 2022 ª 2022 The Author(s). 1
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Table 1. Baseline demographic and disease characteristics

Full cohort Transcriptome cohort

All Sotrovimab Placebo p value All Sotrovimab Placebo p value

Demographics N 1,057 528 529 1 302 151 151 1

age 53.1 (18.0–97.0) 52.6 (19.0–97.0) 53.6 (18.0–89.0) 0.148 54.3 (19.0–97.0) 53.8 (19.0–97.0) 54.8 (20.0–89.0) 0.287

age R65 237 (22%) 113 (21%) 124 (23%) 0.491 76 (25%) 38 (25%) 38 (25%) 1

Age R70 142 (13%) 71 (13%) 71 (13%) 1 51 (17%) 27 (18%) 24 (16%) 0.77

female gender 572 (54%) 299 (57%) 273 (52%) 0.221 170 (56%) 85 (56%) 84 (56%) 1

BMI 32.3 (6.6) 32.3 (6.7) 32.2 (6.6) 0.44 31.9 (6.6) 31.7 (6.6) 32.0 (6.6) 0.357

risk age R55 512 (48%) 254 (48%) 258 (49%) 0.879 144 (47%) 70 (46%) 74 (48%) 0.775

diabetes mellitus 249 (24%) 130 (25%) 119 (22%) 0.5 69 (23%) 37 (25%) 32 (21%) 0.609

obesity (BMI >30) 670 (63%) 330 (62%) 340 (64%) 0.674 183 (60%) 88 (58%) 94 (62%) 0.557

chronic kidney disease 26 (2%) 12 (2%) 14 (3%) 0.844 9 (3%) 4 (3%) 5 (3%) 1

congestive heart failure 17 (2%) 8 (2%) 9 (2%) 1 6 (2%) 2 (1%) 4 (3%) 0.686

COPD 54 (5%) 26 (5%) 28 (5%) 0.891 16 (5%) 5 (3%) 11 (7%) 0.204

moderate to severe asthma 244 (23%) 126 (24%) 118 (22%) 0.634 79 (26%) 46 (30%) 33 (22%) 0.147

baseline log10 viral load 6.6 (1.7) 6.6 (1.6) 6.7 (1.7) 0.428 7.0 (1.7) 6.9 (1.7) 7.1 (1.7) 0.412

Race/ethnicity Latino 649 (62%) 326 (62%) 323 (61%) 0.925 153 (50%) 76 (50%) 76 (50%) 1

White 272 (26%) 132 (25%) 140 (27%) 0.649 105 (35%) 54 (36%) 51 (33%) 0.83

Black or African American 82 (8%) 40 (8%) 42 (8%) 0.91 27 (9%) 10 (7%) 17 (11%) 0.237

Asian 45 (4%) 24 (5%) 21 (4%) 0.764 18 (6%) 11 (7%) 6 (4%) 0.318

mixed race 4 (<1%) 4 (<1%) 0 0.125 0 0 0 1

Native American 3 (<1%) 1 (<1%) 2 (<1%) 1 1 (<1%) 0 1 (<1%) 1

No. risk factors 0 169 (16%) 80 (15%) 89 (17%) 0.521 51 (17%) 24 (16%) 26 (17%) 0.87

1 263 (25%) 134 (25%) 129 (24%) 0.792 80 (26%) 37 (25%) 43 (28%) 0.549

2 190 (18%) 98 (19%) 92 (17%) 0.704 43 (14%) 24 (16%) 19 (12%) 0.527

R3 435 (41%) 216 (41%) 219 (41%) 0.914 130 (43%) 66 (44%) 63 (42%) 0.816

Numbers in parentheses represent the percentage of all study participants in that category when denoted with ‘‘%’’; otherwise, they represent the standard deviation. The numbers outside the

parentheses are counts when represented with ‘‘%’’ in the parentheses. Otherwise, they are the mean value of that variable. COPD, chronic obstructive pulmonary disease; VL, viral load.
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Figure 1. Response to sotrovimab in high-risk group defined by neutrophil-to-lymphocyte ratio (NLR)

The time trend of NLR for sotrovimab- versus placebo-treated patients (hue) in the full cohort and low- and high-risk groups as defined by NLR >6. Error bars

indicate the 95% confidence interval on the mean. The Mann-Whitney U test for the difference between study arms at day 5 in the high-risk group was 0.02.
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potential surrogate endpoints in the design of future trials. Thus,

the present study aimed at identifying baseline correlates of hos-

pitalization and severe disease/death in an at-risk population

based on routine laboratory parameters, SARS-CoV-2 serology,

and transcriptomeanalysis. It then sought to assess the impact of

Ab treatment on these parameters. This approach enabled

assessment of the impact of Ab treatment on populations with

different intrinsic risks of disease progression and the identifica-

tion and testing of surrogates of treatment response.

RESULTS

Identification of study participants at high risk of
progression of COVID-19 using clinical laboratory
values
COMET-ICE included 1,057 adults with a positive local polymer-

ase chain reaction or other molecular SARS-CoV-2 test result

and onset of symptoms within the prior 5 days (Table 1).2 The

study population represented patients at high risk for COVID-

19 progression according to previously identified clinical param-

eters (see STAR Methods for details). We analyzed 63 available

central laboratory parameters for their association with hospital-

ization or death (Data S1). On day 1, predose, white blood cell

proportions were most predictive of eventual hospitalization or

death. White blood cell proportions were also quantified by the

neutrophil-to-lymphocyte ratio (NLR). NLR obtained an overall

predictive performance, summarized by the area under the

receiver operating characteristic curve (AUC), of 0.81. Ferritin

(AUC 0.74), eosinophils percentage (AUC 0.74), spO2 in blood

(AUC 0.73), serum glucose (AUC 0.73), and interleukin (IL)-6

levels (AUC 0.71) were also predictors of severity at baseline

(Data S1).

For comparison, a baseline risk model of age, body mass in-

dex (BMI), and number of comorbidities yielded an AUC of

0.71. These variables did not add to predictive performance

when combined with NLR, suggesting that NLR captures a

superset of the risk signals ascertained by these variables. Viral

load obtained an AUC of 0.65 on its own. Combining viral load

and serology information along with NLR and baseline risk vari-

ables improved AUC slightly to 0.83 but, compared with NLR
alone, decreased performance at high specificities, which is un-

desirable for maintaining high positive predictive value (AUC-

Spec>90 of 0.63 versus 0.66 for NLR alone). In summary, we found

that NLR alone outperformed a range of popular signals for risk

stratification, even when combined in a multivariate analysis

setting. We did not observe that these signals provided appre-

ciable complementarity to NLR.

We found that an NLR greater or equal to 6 provided an

optimal cutoff for the highest enrichment for disease progression

and is hereafter defined as ‘‘high NLR.’’ This threshold was cho-

sen based on a natural threshold in the data that also maximized

association to hospitalization (Figure S1). Although this cutoff

was chosen purely based on the data within this study, it has

been proposed independently elsewhere.8 High NLR was signif-

icantly associated with a viral load greater than 6 log units (odds

ratio [OR] = 3.2, p = 1e�4) and an age greater than 65 (OR = 2.6,

p = 1e�3).

Of the 36 hospitalizations or deaths that occurred in the

COMET-ICE study, 29 of these were observed among the 901

participants with available hospitalization status and NLR at

day 1, the day of dosing. NLR had a sensitivity of 36.1%

(22%–52%) and a specificity of 95% (94%–96%) for the predic-

tion of all-cause hospitalization or death (Fisher’s exact

p < 0.001). NLR normalizedmore rapidly in participants receiving

sotrovimab (Figure 1). The sensitivity and specificity for predict-

ing hospitalization in the full trial and in the placebo arm alone are

presented in Table S1.

The role of SARS-CoV-2 serostatus in defining risk of
progression of COVID-19
Serology data (anti-nucleocapsid Abs) were available for 942

study participants (89%). In the current study, seropositivity at

baseline may indicate prior natural infection by SARS-CoV-2 or

that a participant is already seroconverting during an acute infec-

tion episode. The baseline demographics were similar between

the seropositive and seronegative groups who received placebo

versus sotrovimab (Table 2). Seropositivity was also associated

with lower viral RNA in nasopharyngeal swabs at baseline at time

of enrollment into study: mean 4.2 versus 6.4 log10 viral RNA in

seropositive versus seronegative participants (Mann-Whitney U
Cell Reports Medicine 3, 100721, August 16, 2022 3



Table 2. Comparison of representative baseline values between seropositive and seronegative patients

Seropositive (n = 202) Seronegative (n = 740) p value

Demographics age 54.1 (23.0–89.0) 52.9 (18.0–97.0) 0.18 (N.S.)

female gender 118 (58%) 401 (54%) 0.30 (N.S.)

Risk factors age R65 51 (25%) 163 (22%) 0.34 (N.S.)

COPD 10 (5%) 41 (6%) 0.86 (N.S.)

chronic kidney disease 6 (3%) 19 (3%) 0.80 (N.S.)

congestive heart failure 3 (1%) 13 (2%) 1.00 (N.S.)

diabetes mellitus 54 (27%) 173 (23%) 0.35 (N.S.)

moderate to severe asthma 58 (29%) 163 (22%) 0.06 (N.S.)

obesity (BMI >30) 116 (57%) 479 (65%) 0.07 (N.S.)

Race/ethnicity Asian 5 (2%) 37 (5%) 0.18 (N.S.)

Black or African American 18 (9%) 57 (8%) 0.56 (N.S.)

Latino 156 (77%) 412 (56%) 2E�8

mixed race 0 3 (<1%) 1.00 (N.S.)

Native American 1 (<1%) 1 (<1%) 0.38 (N.S.)

White 22 (11%) 229 (31%) 2E�9

Laboratory log10 viral load 4.2 (1.4) 6.4 (2.0) 3E�36

hemoglobin 133.0 (16.2) 140.1 (15.1) 1E�7

lymphocytes 2.0 (0.7) 1.6 (0.7) 5E�13

neutrophils 4.9 (4.9) 3.7 (1.8) 1E�12

NLR 3.0 (4.4) 2.8 (2.2) 0.34 (N.S.)

platelets 274.7 (75.3) 230.7 (67.9) 1E�12

APTT 24.9 (2.8) 26.1 (3.0) 6E�7

spO2 blood 97.7 (1.3) 97.5 (1.4) 0.05 (N.S.)

Numbers in parentheses represent the percentage of all participants in that category when denoted with ‘‘%’’; otherwise, they represent the standard de-

viation. Thenumbers outside the parentheses are countswhen representedwith ‘‘%’’ in the parentheses. Otherwise, they are themean value of that variable.

p value significance thresholds are based on a Bonferroni correction (p = 0.05/23 comparisons). p values are calculated using either Mann-Whitney U or

Fisher’s exact test depending on whether the variable is continuous or binary, respectively. N.S., not significant. NLR, neutrophil-to-lymphocyte ratio.
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p = 1e�36) (Table 2). This finding is broadly consistent with pre-

vious reports.9,10

4% (4/97) of participants who were seropositive at baseline

and received placebo progressed to hospitalization and/or death

compared with 7% (25/375) of the seronegative participants who

received placebo and progressed to hospitalization and/or death

before day 29. Among participants who received placebo, there

were no deaths or intensive care unit (ICU) admissions in those

who were seropositive at baseline compared with 4 deaths (2

deaths before day 29 and 2 additional deaths that occurred after

day 29) and 9 ICU admissions (2.4%) in thosewhowere seroneg-

ative at baseline. This is consistent with established findings that

having SARS-CoV-2 anti-nucleocapsid Abs indicating prior

infection may be associated with protection against SARS-

CoV-2 re-infection and severity of symptoms.11

Of the 202 seropositive participants at baseline, 6 (3%) were

hospitalized or died: 4/97 (4%) received placebo, and 2/105

(2%) received sotrovimab. Notably, as the COMET-ICE study

captured all-cause hospitalizations or death, the 2 seropositive

participants in the sotrovimab arm were hospitalized with events

potentially unrelated to COVID-19 (one instance of diabetic foot,

and one instance of non-small cell lung cancer), while only 1 of 4

seronegative participants who received sotrovimab was

admitted for potentially non-COVID-19-related hospitalization
4 Cell Reports Medicine 3, 100721, August 16, 2022
of small intestinal obstruction. All other hospitalizations were

due to COVID-19. No sotrovimab-treated participants died or

were admitted to the ICU. The sensitivity and specificity for pre-

dicting hospitalization in the full trial and in the placebo arm alone

is presented in Table S1.

Identification of high-risk cluster using transcriptomics
We used whole-blood transcriptomics to define additional labo-

ratory-based predictors of disease progression and response to

treatment. Transcriptomics is the measurement of the complete

set of messenger RNA molecules (transcripts) in a cell or popu-

lation of cells. This measurement can be used to establish the in-

ternal biological state of the cells and is a common tool for the

identification of biomarkers. In theory, such transcriptome signa-

tures could provide complementary insight into the biology of

risk and recovery. The substudy included samples collected

prior to treatment on day 1 and at day 8 from 302 patients.

Among these 302 patients, 6/151 (4.0%) participants were hos-

pitalized in the placebo group, and 2/151 (1.3%) participants

were hospitalized in the sotrovimab group.

We visualized the transcriptomes of each patient using uniform

manifold approximation and projection (UMAP). We noted that

from day 1 to day 8, the distribution of all transcriptome profiles

tended to shift toward higher values of UMAP component 2



Figure 2. High-risk cluster defined by blood

transcriptome profile

UMAP projection of transcriptomic profiles across

day 1 and day 8 samples with hospitalized patients

outlined in red (placebo) or blue (sotrovimab) circles.

(A) A two-dimensional (2D) kernel density, pre-

sented as a contour plot, highlights distribution of

transcriptomics profiles in UMAP by visit day.

(B) A threshold on the density difference between

day 1 and day 8 distributions defines a high-risk

cluster (red fill), which encompasses day 1 and day

8 transcriptomics profiles for 6 of 8 hospitalized

patients.

(C) Day 1 and day 8 distributions of baseline sero-

positive patients (n = 69).

(D) Distribution of day 1 and day 8 transcriptomics

profiles for patients in putative risk cluster at day 1

split by treatment.
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(Figure 2A).We defined a putative risk cluster based on the differ-

ences in the distributions of day 1 andday 8 samples in theUMAP

(seeSTARMethods).While the contrast between day 1 and day 8

transcriptomes was used to generate the initial hypothesis, high-

risk status is assessed at day 1 and tested against variables other

than the time point variable (hospitalization, NLR, viral load, etc.).

In other words, we tested the hypothesis on variables that were

not used to generate the hypothesis in the first place.

The described risk cluster includes Day 1 and Day 8 transcrip-

tomics profiles for 6 of 8 hospitalized participants (Figure 2B).

Participants in the high-risk cluster were significantly older and

White, with a higher NLR and higher viral RNA levels in nasopha-

ryngeal samples (Table S2). The cluster analysis also highlighted

that baseline seropositive participants were less likely to be

associated with the high-risk transcriptome cluster on day 1,

and no seropositive patient remained in the high-risk cluster by

day 8 (Figure 2C). While most patients who are in the high-risk re-

gion at day 1 have exited it by day 8, themigration toward the pu-

tatively low-risk state is less pronounced in the placebo group

(Figure 2D).

The two hospitalized participants misidentified by the baseline

transcriptome analysis were in the sotrovimab arm. One of the

two participants had undetectable viral RNA in nasopharyngeal

swabs at enrollment and through 8 days post-enrollment when

blood was drawn for the transcriptome analysis. This patient

was then hospitalized by Day 21 with elevated viral load in naso-
Cell Rep
pharyngeal samples, suggestive of a

unique clinical course that may have

included nosocomial infection. The second

misidentified patient treated with sotrovi-

mab was hospitalized due to a small intes-

tinal obstruction deemed unrelated to

COVID-19. Therefore, we found support

for the hypothesis that the area outlined

in red in Figure 2 corresponded to

a UMAP-defined high-risk cluster for

COVID-19 progression where protective

responses had failed to engage appropri-

ately between day 1 and day 8. Although
statistical power was limited due to only 8 hospitalizations in

the transcriptomic substudy, the transcriptome high-risk group

demonstrated a strong association with all-cause hospitalization

and death (Fisher’s exact p = 0.004) with a sensitivity of 75%

(41%–94%) and a specificity of 76% (71%–80%).

Using logistic regression on baseline risk factors, we found

that this transcriptome signature was associated most strongly

with viral load in nasopharyngeal samples, higher NLR, and older

age (Table S3). We see the association of known risk factors to

the transcriptome risk signature as validating the benefit of this

data source of an aggregator of diverse biological signals and

as a rich representation of the health status of the patient.

Response to treatment identified by transcriptomics
Given the effect of sotrovimab demonstrated in COMET-ICE, we

determined whether treatment altered the probability of remain-

ing in the transcriptome-defined high-risk cluster. To perform

this analysis, we compared the rate of exiting the high-risk clus-

ter for participants receiving sotrovimab versus placebo (Fig-

ure 2D). Among those who were high risk on day 1, on day 8,

29% of placebo-treated (n = 11, including the hospitalized

participants) versus 10% of sotrovimab-treated participants

(n = 4) remained high risk as defined by the transcriptome anal-

ysis. This corresponds to a 2.8-fold lower prevalence of risk-

correlated transcriptional signatures for sotrovimab relative to

placebo (Fisher’s exact p = 0.045). Receipt of sotrovimab was
orts Medicine 3, 100721, August 16, 2022 5



Figure 3. Viral RNA response to sotrovimab

in high-risk transcriptome cluster

The high-risk transcriptome cluster associates with

higher viral RNA concentration in respiratory se-

cretions at both day 1 and day 8. The red dotted line

highlights viral load differences at baseline between

the groups. Error bars indicate the 95% confidence

interval on the mean. At baseline, the high-risk

group had a viral load 1.1 [0.69–1.55] log units

higher than the cohort as a whole. At day 5, the high-

risk cluster had a log viral load of 6.1 [5.6–6.6] units

in the placebo group compared with 5.4 [4.9–6.0]

units in the sotrovimab group. The Mann-Whitney U

test for the difference between study arms at day 5

in the high-risk group was 0.03.

Article
ll

OPEN ACCESS
also associated with a more rapid decline in viral RNA in naso-

pharyngeal samples by day 8 (Figure 3).

Examining the biology of the transcriptome-defined
high-risk cluster
For both day 1 and 8 visits, we scored genes for differential

expression between high- versus low-risk clusters. We found a

widespread transcriptional shift with thousands of genes identi-

fied as differentially expressed after adjusting for multiple com-

parisons (Figure 4A; Data S2). We characterized differentially ex-

pressed genes via gene set enrichment analysis using the

MSigDB Hallmark Gene Set annotation.12 The most enriched

Hallmark Gene Sets were associated with innate immune re-

sponses, in particular the complement system set and the in-

flammatory response set, as well as the interferon alpha and

gamma response gene-expression modules (Figure 4B). Over-

expression of genes in these pathways agrees well with previous

work showing strong associations between increased innate im-

mune system activation and disease severity.13 We confirm this

concordance by showing that the high-risk grouping can be

approximated using inflammatory response genes (particularly

interferon alpha), as well as gene sets known to be involved in se-

vere influenza (Figure S2).14 There is also agreement based on a

gene set previously found to be active and biologically informa-

tive across a range of viral and bacterial pathogens (Figure S2).15

These results point to generalizable aspects of transcriptomic

abnormalities in severe SARS-CoV-2 and other pathogen-

induced disease states.

In summary, whole-transcriptome analysis is consistent with a

significant inflammatory response and identifies participants on

day 1 that have a high risk of disease progression, a finding

that is further supported by the lack of normalization of the

high-risk transcriptome profile in participants who were subse-

quently hospitalized.

Identifying a set of genes whose expression captures
the risk-defining elements of the overall transcriptome
Having established a transcriptomic profile associated with risk

of COVID-19 progression, recovery, and treatment response,

we next determined whether a smaller number of mRNAs that

might practically be measured by RT-PCR captured the predic-

tive power of the overall transcriptome. Such an approach is

preferable due to lower cost and greatly reduced turnaround

time relative to whole-transcriptome sequencing. To select a
6 Cell Reports Medicine 3, 100721, August 16, 2022
gene panel, we clustered genes into 10 groups according to

their co-expression patterns across participants (Figure S3).

This was accomplished using UMAP and K-means clustering.

We then selected the top gene from each group as a candidate

for identification of a risk-predictive set of 10 genes. The

10-gene panel (CD38, DAB2, EFHC2, EIF2D, EIF4B,

MYO18A, NUDT3, OAS2, RPL10, TADA3) accurately recapitu-

lated the whole-transcriptome risk clusters at both days 1

(AUC = 0.95) and 8 (AUC = 0.99; Figure 5A). The expression

of each gene in the panel is shown in Figure 5B. Expression

of the 10-gene panel was highly associated with viral load in

nasopharyngeal samples and hospitalization and was strongly

affected by sotrovimab (Figure S4). On the transcriptomic sub-

set, the 10-gene risk stratification had a sensitivity of 75%

(41%–94%) and a specificity of 76% (72%–82%) for the predic-

tion of all-cause hospitalization and death (Fisher’s exact p =

0.003). The sensitivity increased to 83% and specificity to

80% when the analysis was limited to the placebo arm, reflect-

ing the real case scenario where there is no modification of the

outcome by sotrovimab. The 10-gene transcriptomic panel

identified 74 patients at risk compared with 78 for the full tran-

scriptome panel. A comparison of this performance across risk

predictors is presented in Table S2.

As an exploratory analysis, we compared the univariate pre-

dictive performance of panel genes with other baseline risk

factors. We found that EIF2D and EIF4B had AUCs of 0.82

(p = 0.004) and 0.80 (p = 0.006), respectively. On this subset

of the data, NLR had an AUC of 0.79 (p = 0.008), viral load

had an AUC of 0.71 (p = 0.03), and age had an AUC of 0.66

(p = 0.08); a complete list of univariate performances is pre-

sented in Table S3. The Fisher’s p value for the association

of seropositivity to hospitalization status in this subcohort

was 0.34.

Finally, to independently validate the 10-gene panel, we exam-

ined gene-expression profiles reported by Hu et al.16 We chose

this study because it had similar enrollment criteria, time points,

sample handling, and sequencing and it had over 100 patients.

Compared with Hu et al.,16 we find that, with the exception of

MYO18A, the trends in expression that we observe for low-

versus high-risk participant clusters closely match the trends

by disease severity in this external cohort (Figure S5). Given

the methodological differences between the studies and the

known sensitivity of RNA sequencing (RNA-seq) to these devia-

tions, this result further supports the robustness of the 10-gene
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Figure 4. Transcriptome characteristics of high-risk group

(A) Summary of differential expression analysis results comparing high-risk group with recovery group, accounting for visit day and subject gender, shown per

gene with labels for top 10 among down- (blue) and up-regulated (red) genes by statistical significance, respectively (q < 0.05, absolute LFC > log2(1.5)). For

display, abs(LFC) % 8.

(B) Gene set enrichment analysis results using Hallmark Gene Sets (top 10 gene sets with q < 0 for NES >0; q < 0.05 for NES <0). LFC, log fold change. NES,

normalized enrichment score. q: false discovery rate (FDR)-adjusted p value.
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panel. Slight variations in absolute gene expression between

studies also underline the importance of proper calibration and

quality control if deploying a test such as this across multiple

sites.

DISCUSSION

We defined clinical laboratory and molecular biomarkers that

can potentially identify participants with mild to moderate

COVID-19 who are at the highest risk for progression to severe

disease and hospitalization or death using data collected

in the prospective, phase 3 pivotal study COMET-ICE.

Baseline NLR and a 10-gene transcriptomic signature associ-

ated with all-cause hospitalization or death with respective

sensitivity and specificity of 36% and 95% (NLR) as well as

75% and 76% (10-gene panel), respectively, on the transcrip-

tomics subcohort. Changes in these biomarkers were also

associated with response to treatment with the monoclonal

Ab sotrovimab.

Currently, the risk of developing severe COVID-19 has been

associated with a number of demographic factors such as

age and specific comorbidities. However, there is considerable

heterogeneity in disease outcome that would benefit from addi-

tional stratification of risk. NLR, the simple ratio of neutrophil

over lymphocyte counts, could be informative and easy to

implement, an observation supported by other studies.17–19

Though NLR sensitivity is low, the high specificity suggests

that high NLR could be used as a triage test for persons at

high risk of progressing and could prioritize those individuals

for closer monitoring.
Serostatus, defined here as immunoglobulin G (IgG) Ab

response to nucleocapsid, could also be a predictor of disease

severity. The rate of hospitalization was lower among seroposi-

tive participants who received placebo. None of the participants

that were seropositive at baseline, whether because of previous

infection or because of ongoing seroconversion,20 died or were

admitted to the ICU. Seropositive participants had lower levels

of viral RNA in nasopharyngeal samples and were less likely to

present or maintain a risk transcriptome profile. One important

caveat of the serostatus analysis is that VOCs have continued

to emerge and there are ongoing re-infections and declining pro-

tection of vaccine-elicited seropositivity. Therefore, additional

analysis may be needed to confirm the protective effect of sero-

positivity as a result of prior infection in the context of evolving

VOCs. Furthermore, the utility of serostatus as a diagnostic or

predictive tool is complicated by a lack of standardization in as-

says and consensus in thresholds of seropositivity or protective

immunity, especially as VOCs continue to emerge.

Whole-blood transcriptome analysis revealed a signature of

disease severity that encompassed overexpression of genes

involved in interferon response, inflammation, and the comple-

ment system. We showed that a full transcriptome signature

can be captured faithfully with a 10-gene panel. Use of a simple

expression signature lowers the bar for an eventual implementa-

tion, as recently shown by work to make a three-gene tubercu-

losis signature using point-of-care rapid testing.21

An important effort of the present work was to define

whether the set of predictive parameters of hospitalization

and disease severity was also modified by treatment with

sotrovimab, i.e., whether these parameters could serve as
Cell Reports Medicine 3, 100721, August 16, 2022 7
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Figure 5. Surrogates to predict both risk of COVID-19 disease and response to sotrovimab using a 10-gene panel

(A) In cross-validation, the 10-gene panel accurately predicts risk groups assigned by the full transcriptome at both day 1 and day 8.

(B) Changes in expression for each of the genes in the 10-gene panel from day 1 to day 8.

(C) Performance of each of the genes in the same 10-gene panel to track the response (change in expression from day 1 to day 8) to sotrovimab versus placebo.

The whiskers in (B) and (C) are 1.5 times the difference between the 25th and 75th percentiles (interquartile range or IQR)
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surrogate markers of sotrovimab response because they are

modified by treatment and strongly associated with the study

clinical endpoints of interest. Indeed, sotrovimab accelerated

the normalization of NLR and the transcriptome profiles in a

statistically significant manner. In particular, hospitalized par-

ticipants in the placebo group retained the transcriptome pro-

file associated with risk by day 8 at a time when the majority of

study participants normalized their peripheral blood gene-

expression profiles.

One topic of discussion in the field is the value of measuring

the levels of viral RNA in nasopharyngeal samples. In the present

study, viral RNA levels measured by RT-PCR were of modest

value as a baseline predictor. However, there was an association

between viral RNA levels and the predictors of risk that we

explored: NLR, serology, and transcriptome profiles. Partici-

pants at risk of severe disease and hospitalization present higher

levels of baseline nasopharyngeal viral RNA.10 Weinreich et al.22

reported that mAb therapy had a significant effect on partici-

pants with a high viral load at baseline. Chen et al.23 reported a

decreased viral load at day 11 did not appear to be a clinically

meaningful endpoint since the viral load was substantially

reduced from baseline for the majority of patients, including

those in the placebo group, a finding that is consistent with the

natural course of the disease. Gottlieb et al.24 reported that treat-

ment with mAb combination therapy, but not monotherapy, re-

sulted in a reduction in SARS-CoV-2 log viral load at day 11 in

participants with mild to moderate COVID-19. US FDA autho-

rized the monoclonal bebtelovimab under EUA primarily on the

symptomatic improvement and day 5 reduction in viral load

versus placebo. In the present work, resolution of disease was

associated with decrease of viral load, in particular for partici-

pants receiving sotrovimab.

The strengths of the current study reside on thewell-character-

ized, geographically diverse, prospective clinical trial with whole

blood/RNA collected at multiple time points to evaluate response

to treatment and disease characteristics over time. This dataset

enabled the implementation of machine-learning methods for

predicting disease severity from both clinical and transcriptomic

markers. In conclusion, this study identifies laboratory parame-

ters associated with COVID-19 disease progression and hospi-

talization and shows that sotrovimab treatment effectively

contributed to normalization of these parameters. By providing
8 Cell Reports Medicine 3, 100721, August 16, 2022
general tools for COVID-19 risk stratification, these results may

prove useful independently of the treatment in use.

Limitations of the study
A limitation of the study is that it included a predefined risk

population of adults based on demographic and comorbid fac-

tors. A second limitation is the low number of study endpoints

(e.g., hospitalizations) in the transcriptomic substudy. However,

if validated in additional studies, this approach could expand the

definition of risk to include participants that might otherwise not

be considered for treatment based on risk criteria currently in use.
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Lemmenmeier, E., Möller, J.C., Rieder, P., Ruetti, M., et al. (2021). Impact

of baseline SARS-CoV-2 antibody status on syndromic surveillance and

the risk of subsequent COVID-19-a prospective multicenter cohort study.

BMC Med. 19, 270. https://doi.org/10.1186/s12916-021-02144-9.

12. Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J.P., and
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the day and treatment information

This work 10.6084/m9.figshare.20323416

Transcriptome data: counts.tsv contains

the tpm (transcripts per million) matrix

for the respective accession ids.

This work 10.6084/m9.figshare.20323416

Additional Supplemental Items This work https://data.mendeley.com/

datasets/mfj7t3wfk3/1

Software and algorithms

Trimmomatic (v 0.39) Bolger et al., 201425 http://www.usadellab.org/

cms/?page=trimmomatic
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babraham.ac.uk/projects/fastqc/

Picard (v 2.20.2) Broad Institute https://github.com/broadinstitute/picard

DupRadar (v 1.12.1) Sayols et al., 20163 https://bioconductor.org/packages/

release/bioc/html/dupRadar.html

RSeQC (v 3.0.1) Wang et al., 201228 https://github.com/MonashBioinformatics

Platform/RSeQC

Tximport (v 1.20.0) Soneson et al., 201529 https://bioconductor.org/packages/

release/bioc/html/tximport.html

DESeq2 (v 1.32.0) Love et al., 201430 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

msigdbr (v 7.4.1) Dolgalev (2022) https://igordot.github.io/msigdbr/

Gencode GRCH38, release 30 Frankish et al., 201931 https://www.gencodegenes.org/human/

Ensembl (ASM985889v3) Howe et al., 202132 https://uswest.ensembl.org/index.html

UMAP Mclnnes et al., 2018 https://umap-learn.readthedocs.

io/en/latest/

fgsea (v 1.18.0) Korotkevich et al., 2019 https://bioconductor.org/packages/

release/bioc/html/fgsea.html
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Amalio

Telenti (atelenti@vir.bio).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Data: We have released transcriptomic count data from the clinical trial since they do not not include identifiable genetic data.

Links to these data can be found in the Key resources table.

d Code: Software packages used in the analysis are also presented in the Key resources table.

d General statement: Any additional information required to reanalyze the data reported in this work paper is available from the

Lead Contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Characteristics of clinical trial population
COMET-ICE included 1057 adults with a positive local polymerase-chain-reaction or other molecular SARS-CoV-2 test result and

onset of symptoms within the prior 5 days (Table 1).2 Recruitment was between August 2020 and March 2021, during which time

Alpha, Epsilon, and Gamma were the predominant circulating variants in countries where this study was recruited. Participants

were required to be at risk for COVID-19 progression based on previously identified clinical parameters: age R55 years or adults

with at least one of the following comorbid conditions: diabetes requiring medication, obesity (body mass index >30 kg/m2), chronic

kidney disease (estimated glomerular filtration rate <60mL/min/1.73 m2), congestive heart failure (New York Heart Association class

II or higher), chronic obstructive pulmonary disease, or moderate to severe asthma. Participants with already severe COVID-19,

defined by shortness of breath at rest, oxygen saturation less than 94%, or requiring supplemental oxygen, were excluded. Partic-

ipants were randomized 1:1 to receive either a single 500-mg infusion of sotrovimab or equal volume saline placebo. A subset of

participants (n = 302) consented for peripheral whole blood transcriptome analysis. Participants who opted-in to the transcriptome

sub-study had similar demographic, clinical and laboratory characteristics to those in the overall study. They were evenly divided

between placebo and sotrovimab arms (Table 1). In-person study visits occurred on days 1, 5, 8, 11, 15, 22 (W3), and 29 (W4) to

assess adverse events and worsening of COVID-19. During study visits, blood samples and nasopharygeal swabs were collected

for routine laboratory assessments and viral load, respectively. Samples for transcriptome analysis were collected twice: at the

time of treatment (referred to as Day 1 herein) and a week later at the Day 8 visit.

All necessary patient/participant informed consent has been obtained and the appropriate institutional forms have been archived.

The details of the IRB/oversight body that provided approval or exemption for the research are provided in the Additional Resources/

clinical trial information section below.

METHOD DETAILS

Clinical data analysis
The associations between laboratory values, and treatment response and hospitalization were measured using the area under a

receiver operating characteristic curve (AUC). For single variable analyses, this metric was computed by directly ranking participants

with no model fitting step, to avoid overfitting. Significance of AUC was assessed by the Mann-Whitney U test, relying on the equiv-

alence between the Mann-Whitney U statistic and AUC. All reported AUCs were significant after a Bonferroni adjustment for multiple

comparisons. The significance threshold was calculated as 0.05 divided by the number of clinical variables tested. For binary vari-

ables such as baseline risk factors, significance was assessed by Fisher exact test. Assessing complementarity of features was

complicated by varying missingness patterns, leading to sample size loss. This was minimized by looking at only pairs of variables,

and by median imputation of missing values.33 Neither approach significantly improved on the single most predictive variable, indi-

cating that single variable predictors are sufficient for accurate risk prediction.

SARS-CoV-2 viral load and serology
Nasopharyngeal swabs were collected in universal transport media, and viral load was measured using the CDC 2019-nCoV Real-

Time RT-PCR method run at central lab (https://www.fda.gov/media/134922/download). Serum samples were analyzed for anti-

SARS-CoV-2 antibody by the Abbott SARS-CoV-2 IgG assay run on the Architect i2000SR immunoassay analyzer (https://www.

fda.gov/media/137383/download). This assay qualitatively measures IgG anti-SARS-CoV-2 antibodies against the nucleocapsid

protein that are present as a result of endogenous immune response to natural infection. Due to the potential for cross-reaction

of sotrovimab with anti-spike antibody assays, only analysis of anti-nucleocapsid serostatus was conducted.

RNA isolation and sequencing
Peripheral whole bloodwas collected into PAXgene Blood RNA tubes (PreAnalytiX), identified by a sample accession number. Imme-

diately after blood collection, samples were inverted 8-10 times to fully mix the Paxgene RNA stabilizing agent with the collected

blood. Tubes were stored upright and on the day of collection were frozen to �20C for 24 h before being transferred to �70C for

long term storage. Day 1 andDay 8 samples for the same patient were sent for processing in the same batch. RNA purification, library

preparation and sequencing were performed byQ2 Solutions (Morrisville, NC). Total RNAwas isolated according to the Paxgene pro-

tocol. Briefly, sample tubes are centrifuged to pellet nucleic acid which is washed and treated with protease under denaturing con-

ditions followed by purification via a Paxgene RNA 96 well plate to remove contaminants. The purified total RNA is then eluted with

nuclease-free water and quantified via spectrometry and analyzed by Agilent Bioanalyzer for integrity. Recovery of >1.25 ug of total

RNA and anRNA Integrity (RIN) score >7.0 was required for each sample to proceed through further sample processing. Isolated total

RNA was then depleted of globin mRNA using the GLOBINclear kit (Invitrogen); total RNA is incubated with biotinylated oligos

capable of hybridizing to globin mRNA which allows depletion of globin mRNA by flowing the mixture over streptavidin beads and

collecting the unbound RNAs.

The globin-depleted RNA was used to generate a sequencing library using the TruSeq Stranded mRNA method (Illumina). Briefly,

globin-depleted total RNA samples are concentration normalized and incubated with poly(T) oligonucleotides in order to select
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poly-adenylated RNAs from the total RNA population. The selected RNA is then fragmented using heat in the presence of divalent

cations. The fragmented RNA is converted to double stranded cDNA using random primers in two steps to maintain strand specific

information. This is enabled by using dUTP in place of dTTP in the second strand master mix; during sequencing the presence of

uracil in the DNA sequence causes the polymerase to stall leaving only the first strand as a viable amplification template. The double

stranded cDNA undergoes end-repair, A-tailing and ligation of adapters that include index sequences. cDNA libraries are PCR am-

plifed and purified, then are assessed for quantity and quality using qPCR and TapeStation prior to sequencing.

Normalized libraries of cDNA were pooled and sequenced on Illumina NovaSeq 6000 instruments to a target sequencing depth of

25 million paired-end reads per sample at a minimum read length of 50 bp. Samples were automatically selected by Q2 Solutions for

repeat library preparation and sequencing based on pre-defined quality control metrics for ribosomal RNA fraction (>10% rRNA

aligned reads threshold for repeat).

RNA-seq analysis
701 sequenced libraries from 638 whole blood samples were delivered from Q2 Solutions by processing batch and sequencing run.

Readswere cropped to a common read length of 50 bp and low-quality bases and adapters were further trimmed using Trimmomatic

(v. 0.39).25 Trimmed reads less than 31bpwere discarded. Trimmed sequenced reads per library were then aligned to a custom refer-

ence genome using STAR (v 2.7.3a)26 and to a custom reference transcriptome using Salmon (v. 1.0.0)28. The custom reference

genome and transcriptome annotation was based on combining the human reference genome and annotation from Gencode

(GRCh38, release 30) with the SARS-CoV-2 reference genome and annotation from Ensembl (ASM985889v3 version). Libraries

were assessed for total reads (minimum, maximum, and median of 23.4, 94.4, and 33.2 million read pairs), average read length

(49 bp), and adapter content, post-trimming with FASTQC (v. 0.11.8). Alignment metrics, such as total aligned reads, aligned reads

by feature type, gene body coverage and 30 bias, were assessed using Picard CollectRnaSeqMetrics (v 2.20.2–0). We profiled dupli-

cation rate versus reads per kbp and verified that low read counts were not associated with high duplication at the library level using

DupRadar (v 1.12.1). Known junction saturation rate as a function of sequencing depth was also profiled for all libraries using RSeQC

(v 3.0.1). Transcript-level counts from Salmon were converted to gene-level counts and gene-level transcripts-per-million (TPM) us-

ing the R package tximport (v. 1.20.0). As genes with consistently low supporting read counts across libraries are unlikely to be called

differentially expressed, a filtering step to remove genes with few to no supporting read counts across libraries was performed.34

Conservatively, only genes with a minimum of 10 read counts in at least 4% (n = 24) of the libraries were considered for further anal-

ysis (n = 23,540 genes).Whenmultiple libraries (due to repeated library preparation and sequencing) were available for the same sam-

ple accession number (whole blood sample), a representative library with the higher median TPM value was selected as libraries with

outlier values for alignment quality metrics were associated with (low) outlier median TPM values. Only libraries representingmatched

Day 1 and Day 8 whole blood samples for a patient were included for downstream analysis. No other library exclusion criteria were

applied. Inclusion in this sub-cohort was based on opt-in on day 1. We found that, as expected with this format, the day of hospi-

talization was not significantly associated to inclusion in the transcriptome subcohort (c2 p = 0.14). The study was not powered

to predict early versus late hospitalization.

The transcriptomic data to validate the 10-gene signature were obtained from theGEO under the accession number GSE178967.16

The data were processed through the same analytical pipeline as described above.

Data analysis transcriptome
Using the R package DESeq2 (v 1.32.0),30 variance-stabilizing transformation was applied to gene-level counts.34 For exploration of

transcriptome signatures, UMAP was run on the variance-stabilizing transformed RNA-seq count data. Prior to UMAP projection,

data were pre-conditioned and de-noised using principal component analysis (PCA). The first 20 PCs were selected based on the

point at which explained variance tended towards zero (Figure S6). For this baseline analysis, UMAP (from the umap-learn python

package; https://umap-learn.readthedocs.io/en/latest/) was run with default parameters.

To test the robustness of the embedding, this analysis was repeated for the full transcriptome (without PCA) for pathogen-asso-

ciated transfer genes identified by di Iulio et al.,15 and for immune-related pathway gene sets (Hallmark Gene Sets annotation).12 In

each case, a variety of nearest neighbor values were tried, and the embedding was run multiple times to ensure repeatability. In all

cases, the embeddings were similar. For example, the observed gradient between Day 1 and Day 8 samples, as well as the relative

placement of the hospitalized was always consistent.

High risk due to laboratory parameters vs low risk categorizations were derived as follows. Two-dimensional kernel density esti-

mation with a bandwidth of 1 was applied to Day 1 and Day 8 UMAP values separately. High risk participants were defined as those

within an area where the Day 1 density exceeded the Day 8 density by 0.005. This cutoff was derived by choosing a round positive

number near the beginning of the tail of the distribution (Figure S7). As a validation of this approach, we also performed a line search

on this cutoff to optimize the separation between Day 1 and Day 8, as measured by Fisher’s exact p-value. This yielded an optimal

cutoff of 0.006. To be conservative, we did not use this optimized value since the selection of cutoffs for the line search could be

influenced by information beyond Day 1 vs Day 8 status.

Differentially expressed genes associated with the putative high-risk cluster were scored using a model accounting for gender and

visit day (DESeq2, v. 1.32.0).30 Differentially expressed genes were characterized via gene set enrichment analysis (fgsea, v 1.18.0)35

using the Hallmark Gene Sets annotation (msigdbr, v. 7.4.1).12 For selection of a gene signature, we conducted diversity-based
Cell Reports Medicine 3, 100721, August 16, 2022 e3
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selection according to top ANOVA F-scores within 10 empirically identified gene clusters. Gene clusters were derived by performing

UMAP dimensionality reduction on the transpose of the transcriptomematrix (with genes as rows instead of patients). This created a

similarity map of genes based on their co-expression patterns across patients. We then defined 10 gene clusters from this map using

K-means clustering (Figure S3). From each cluster, we selected the gene most associated with risk according to its ANOVA F-score.

Diversity-based selection using gene clustering significantly improved on greedy selection based on F-score alone (Figure S8A) and

yielded comparable performance to transfer-learned15 and hallmark gene sets (Figure S8B). To assess performance of this set of 10

genes representing co-expression clusters, we repeated this entire process within a five-fold cross-validation loop, including gene

clustering. In this procedure the dataset is partitioned into five folds. For each of the five folds, we trained a model on the other four

chunks to predict its values in an unbiased manner. To avoid overfitting due to patient-specific attributes, samples from the same

patient on different days were always kept in the same fold.

QUANTIFICATION AND STATISTICAL ANALYSIS

Therewas no analysis plan for this work in COMET-ICE; this was post-hoc analysis of the trial data. Analyses conformwith the STARD

2015 reporting guideline for diagnostic accuracy studies. Specific analytical approach of clinical data and of transcriptome data are

described in their respective sections above. We checked that transcriptome data were not dominated by batch effects by principal

component analysis (PCA) and profiling the distribution of batches Transcriptomics samples for the same patient were processed in

the same batch. Similarly, clinical variables which checked to have the expected ranges to rule out differences in units, errors in data

entry or extraction, etc. Clinical variables were also plotted pairwise to ensure that expected correlations between variables were

observed without notable outliers. Finally, observed associations to disease were checked against reports in the literature to verify

the consistency of the findings.

Statistical analysis
Differences in NLR and log viral load between study arms were assessed by Mann-Whitney U test, as described in the figure legends

of Figures 1 and 3. For binary variables such as baseline risk factors, significance was assessed by Fisher’s exact test. Classification

accuracy was measured by the area under the receiver operating characteristic curve. Sample sizes for analyses for each clinical

variable are presented in Table S1. Differential gene expression was assessed using DESeq2, as described above. P-values were

adjusted for multiple comparisons using a false discovery rate control strategy. Sample sizes for the full and transcriptome cohorts

are presented in Table 1. Table 2 presents sample sizes for the serology analysis.

ADDITIONAL RESOURCES

Clinical trial information
Registration: NCT04545060 (https://clinicaltrials.gov/ct2/show/NCT04545060)

Study Type: Interventional (Clinical Trial)

Actual Enrollment: 1057 participants

Allocation: Randomized

Intervention Model: Parallel Assignment

Masking: Quadruple (Participant, Care Provider, Investigator, Outcomes Assessor)

Primary Purpose: Treatment

Official Title: A Randomized, Multi-center, Double-blind, Placebo-controlled Study to Assess the Safety and Efficacy of Mono-

clonal Antibody VIR-7831 for the Early Treatment of Coronavirus Disease 2019 (COVID-19) in Non-hospitalized Patients

Actual Study Start Date: August 27, 2020

Actual Primary Completion Date: April 8, 2021

Actual Study Completion Date: September 2, 2021

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Ethics approval was obtained from the following ethics review boards: Research Ethical Committee of the Universidade De Passo

Fundo/Office Of The Assistant Dean Of Research And Graduate Studies, Brazil (454545/249305), Research Ethical Committee of the

Liga Norte Riograndense Contra O Cancer, Brazil (356987/249067), Comite de Etica em Pesquisa do Hospital Leforte, Brazil

(454407/249306; 454407/249306), Research ethical Committee of the Hospital de Clinicas de Porto Alegre of the Federal University

of Rio Grande do Sul, Brazil (412641/249076), Research Ethical Committee of the Brotherhood of the Holy House of Mercy of Porto

Alegre, Brazil (452132/249278), Advarra, Canada (125285/249219; 233252/249074), Comite Nacional Transitorio de Etica en Inves-

tigacion para la evaluacion y supervision eticas de los Ensayos Clinicos de la enfermedad COVID-19 (CNTEI COVID-19), Peru

(453319/249281), CEIm Corporacio Sanitaria Parc Tauli Parque del Tauli, Spain (466003/249291; 010074/249923; 230601/

249242), Advarra, United States (316647/249611; 393090/249560; 320687/249555; 427380/249631; 093073/249546; 449583/

248364; 009334/249320; 021490/248894; 457707/249681; 076115/248362; 457712/249682; 354044/249803; 171466/248900;

458530/249910; 457765/249683; 408728/249251; 458692/249844; 176292/249239; 006879/248345; 347052/249553; 455576/

249387; 455582/249389; 456034/249493; 053521/249195; 455575/249386; 028996/249554; 458529/249909; 370717/249241;
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331745/249072; 453800/249220; 459369/249998; 429263/248346; 455578/249390; 457328/249637; 259973/249632; 023446/

249253; 457766/249684; 456703/249634; 014897/248899; 306670/249073; 306670/249073; 007907/250048; 373940/248347;

419336/249556; 455826/249420. I confirm that all necessary patient/participant consent has been obtained and the appropriate

institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone

(e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
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