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Abstract: Electron beam melting (EBM) is gaining rapid popularity for production of complex
customized parts. For strategic applications involving materials like superalloys (e.g., Alloy 718),
post-treatments including hot isostatic pressing (HIPing) to eliminate defects, and solutionizing and
aging to achieve the desired phase constitution are often practiced. The present study specifically
explores the ability of the combination of the above post-treatments to render the as-built defect
content in EBM Alloy 718 irrelevant. Results show that HIPing can reduce defect content from as
high as 17% in as-built samples (intentionally generated employing increased processing speeds in
this illustrative proof-of-concept study) to <0.3%, with the small amount of remnant defects being
mainly associated with oxide inclusions. The subsequent solution and aging treatments are also found
to yield virtually identical phase distribution and hardness values in samples with vastly varying
as-built defect contents. This can have considerable implications in contributing to minimizing
elaborate process optimization efforts as well as slightly enhancing production speeds to promote
industrialization of EBM for applications that demand the above post-treatments.

Keywords: additive manufacturing; electron beam melting; defects; microstructure; hardness; alloy
718; hot isostatic pressing; post-treatment

1. Introduction

Electron beam melting (EBM) is a powder bed fusion-based metal additive manufacturing (AM)
technique bearing capability to produce components with high design flexibility. The material systems
which can significantly benefit from EBM technology include high-performance materials such as
Ni-based superalloys, e.g., Alloy 718, and Ti-alloys [1,2]. In the beginning, a vast majority of the research
activity relating to EBM was focused on Ti and its alloys, particularly Ti-6Al-4V [3,4]. Since incorporation
of defects (typically gas and shrinkage porosity, and lack of fusion) is a concern during EBM production,
there have been several reported efforts with emphasis on process understanding and optimization to
curtail defect formation in EBM manufactured Ti-6Al-4V [5–8]. Moreover, use of unoptimized process
parameters has been shown to result in extensive defect formation [8].

Such defect formation in EBM Alloy 718 can also have particularly adverse consequences, as
defects can degrade mechanical behavior of the EBM-built material. For instance, anisotropy in tensile
behavior of heat-treated EBM Alloy 718 has been attributed to remnant defects [9,10]. The formation
of the above defects is not only attributable to the use of unoptimized process parameters but can
also occur due to stochastic instabilities in the process. These can include a temporary decrease in
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electron beam power, non-uniform spread of powder, poor sintering of the powder prior to melting,
spattering of powder from the build layer due to excessive electrostatic forces in an event called
“smoking”, etc. [11–13]. All of these have been reported to cause formation of lack of fusion defects [13].
Consequently, a set of post-treatments are typically considered to enhance the properties of the as-built
material [14–16] and are deemed particularly necessary in the case of the demanding applications that
Alloy 718 is routinely employed for.

In this context, even with use of optimized parameters, defects, to some degree, are inherent to
EBM processed Alloy 718 [17]. Consequently, the as-built material is subjected to hot isostatic pressing
(HIPing) to close the defects present in the material [18]. In addition, the HIP’ed material is typically
subjected to solution treatment and aging to achieve the required phase composition. In this context, it
is pertinent to mention that the typical recommended parameters for HIPing are 1120–1185 ◦C, 100 MPa,
4 h, to be followed by a 1 h solutionizing treatment and a two-step aging involving a 8 h treatment for
each step, which is perhaps “borrowed” from what has been the practice with wrought Alloy 718 [19].
Therefore, a holistic approach of optimizing the process, together with applied post-treatments, is
relevant from a technology industrialization standpoint. In this context, prior work in the authors’
group has shown that the aging treatment can potentially be shortened considerably to (4 + 1) h instead
of (8 + 8) h [20]. Reduction in processing time and costs are also pivotal to industrial exploitation of
the EBM technology. Sames et al. [18] have reported that a major limitation is the processing speed.
However, faster production speeds are known to lead to poor surface finish and/or increased defect
content [18,21]. Specifically, in cases where such post-treatment involving HIPing is deemed inevitable,
there could be an opportunity to increase the EBM processing speed without being constrained by the
need to eliminate or minimize defects.

The present study explores the potential of the combined post-treatments involving HIPing,
solutionizing and aging treatment to test the hypothesis of whether they can render the as-built defect
content in EBM Alloy 718 irrelevant. The defect content in the samples was intentionally tailored
by systematically increasing the hatch line spacing (LS), which refers to the spacing between raster
scanning lines during EBM processing. The extent of defects thus incorporated far exceeded those
typically encountered in EBM builds for the sake of this illustrative proof-of-concept study.

2. Experimental Procedure

Samples were EBM built with different defect contents by varying LS to assess their response to
identical post-treatments, particularly HIPing. Plasma atomized Alloy 718 powder (AP&C, Québec,
Canada) [5] recycled ~20 times was used. Six different samples (15× 15× 15 mm3) (Figure 1), henceforth
referred to as AB#1 to AB#6, were built using EBM (Model A2X, Arcam AB, Gothenburg, Sweden)
with varying LS corresponding to different processing speeds (expressed as relative melting time and
relative melted area per unit time by normalizing with the “standard” values), as summarized in
Table 1. All the samples were melted by a snake hatch method during which the electron beam was
moved in a back-and-forth raster scan pattern [18]. All the other process parameters were kept constant
as per the EBM process theme version 4.2.205, and some of the key process parameters associated with
this theme are listed in Table 2. It is worth mentioning that the parameter speed function dynamically
adjusts the electron beam scan speed depending on the scan length [22].

Selected samples were further subjected to two different HIPing treatments (HIP1, HIP2).
The choice of parameters for HIP1 (1120 ◦C/100 MPa/4 h/rapid cooling) and HIP2 (1185 ◦C/100
MPa/4 h/rapid cooling) was based on recommendations of the ASTM (F3055) standard for post-treatment
of powder bed fusion-produced Alloy 718 [19]. For one of the HIPing conditions selected based on
ensuing results, the samples were also subjected to solution treatment (954 ◦C/1 h/water cooling), and
double aging (740 ◦C/4 h, cool at 55 ◦C/h to 635 ◦C, held at 635 ◦C/1 h/air cooling) called HIP1 + STA.
Details of the above mentioned post-treatments are summarized in Table 3. It is relevant to mention
here that the aging protocol reflected above corresponds to a shortened heat treatment compared to
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the schedule recommended in the above ASTM standard and is based on prior work carried out in this
group [20].Materials 2020, 13, x FOR PEER REVIEW 3 of 10 
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Figure 1. Schematic of the CAD model of one of multiple identical blocks comprising the electron 
beam melting (EBM) build (a), and cross-section view of the block revealing the cubes (marked by 
hatched lines) processed with different line spacing (b). The arrow on the right shows the build 
direction, BD. 

Table 1. EBM process parameters. 
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#1 75 167% 0.6 

#2 1 125 * 100% 1 1 
#3 175 71% 1.4 
#4 225 56% 1.8 
#5 275 45% 2.2 
#6 325 38% 2.6 

1 Arcam recommended setting. 2 Values normalized with respect to the Arcam recommended setting. 

Table 2. Process parameters in the Inco 4.2.205 theme for EBM Alloy 718. 

Parameter Value 
Layer thickness (µm) 75 

Acceleration voltage (kV) 60 
Hatch scan rotation (°) 72 

Pre-heat temperature (°C) 1025 
Speed function 63 

Focus offset (mA) 15 
Max. beam current (mA) 18 

Selected samples were further subjected to two different HIPing treatments (HIP1, HIP2). The 
choice of parameters for HIP1 (1120 °C/100 MPa/4 h/rapid cooling) and HIP2 (1185 °C/100 MPa/4 
h/rapid cooling) was based on recommendations of the ASTM (F3055) standard for post-treatment of 
powder bed fusion-produced Alloy 718 [19]. For one of the HIPing conditions selected based on ensuing 
results, the samples were also subjected to solution treatment (954 °C/1 h/water cooling), and double aging 
(740 °C/4 h, cool at 55 °C/h to 635 °C, held at 635 °C/1 h/air cooling) called HIP1 + STA. Details of the above 
mentioned post-treatments are summarized in Table 3. It is relevant to mention here that the aging 
protocol reflected above corresponds to a shortened heat treatment compared to the schedule 
recommended in the above ASTM standard and is based on prior work carried out in this group [20]. 

All the investigated samples were sectioned along the build direction using an alumina cutting blade. 
The sample cross-sections, each 15 × 15 mm2, were hot mounted, ground, and polished. Microstructural 
investigation of the prepared samples was carried out using an Olympus BX60 M optical microscope 
(OM), and HITACHI TM3000 (equipped with energy-dispersive X-ray spectroscopy (EDS)) and LEO 1550 
Gemini scanning electron microscopes (SEMs). Quantification of defects was done using OM micrographs 

Figure 1. Schematic of the CAD model of one of multiple identical blocks comprising the electron beam
melting (EBM) build (a), and cross-section view of the block revealing the cubes (marked by hatched
lines) processed with different line spacing (b). The arrow on the right shows the build direction, BD.

Table 1. EBM process parameters.

Sample
Nomenclature

Hatch Line Spacing Relative Melting
Time Per Layer 2

Relative Melted
Area Per Unit Time 2(LS, µm)

#1 75 167% 0.6
#2 1 125 * 100% 1 1

#3 175 71% 1.4
#4 225 56% 1.8
#5 275 45% 2.2
#6 325 38% 2.6

1 Arcam recommended setting. 2 Values normalized with respect to the Arcam recommended setting.

Table 2. Process parameters in the Inco 4.2.205 theme for EBM Alloy 718.

Parameter Value

Layer thickness (µm) 75
Acceleration voltage (kV) 60

Hatch scan rotation (◦) 72
Pre-heat temperature (◦C) 1025

Speed function 63
Focus offset (mA) 15

Max. beam current (mA) 18

Table 3. Details of post-treatments.

Designation Cycle

HIP1 1120 ◦C/100 MPa/4 h/RC
HIP2 1185 ◦C/100 MPa/4 h/RC

HIP1 + STA HIP1: 1120◦C/100 MPa/4 h/RC
+STA: 954 ◦C/1 h/WC to RT, 740◦ C/4 h/cool at 55 ◦C/h to 635 ◦C, hold at 635 ◦C/1 h/AC to RT

Note: The abbreviations RC, WC, AC, and RT denote rapid cooling, water cooling, air cooling, and room
temperature, respectively.

All the investigated samples were sectioned along the build direction using an alumina cutting
blade. The sample cross-sections, each 15 × 15 mm2, were hot mounted, ground, and polished.
Microstructural investigation of the prepared samples was carried out using an Olympus BX60 M
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optical microscope (OM), and HITACHI TM3000 (equipped with energy-dispersive X-ray spectroscopy
(EDS)) and LEO 1550 Gemini scanning electron microscopes (SEMs). Quantification of defects was
done using OM micrographs of unetched polished samples processed using ImageJ software. In
each case, more than 10 images were analyzed to get a representative value of the defect content
(magnification: 50×, analyzed area: ~21 mm2). For characterization of secondary phases using SEM
imaging, the selected samples were electrolytically etched using 50% diluted (in ethanol) Kalling’s 2
reagent (2–3 V applied for 3–5 s). Vickers micro-hardness testing (HMV-2, Shimadzu Corp., Japan) on
selected samples was performed using a 500 g load which was applied for 15 s in ambient conditions.
Up to 25 random indents were made on each of the samples. Since some of the defect sizes in the
intentionally prepared high-defect-content builds were very large (as shown in Figure 2) and exceeded
the indent size, few extreme outliers exhibiting “zero” hardness were noted whenever the indent
happened to coincide with or be in the immediate vicinity of a very large defect. Average hardness
values (excluding only such extreme outliers) are reported herein.Materials 2020, 13, x FOR PEER REVIEW 5 of 10 
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Figure 2. Defect content in as-built samples intentionally built with varied hatch line spacing (LS). The
size and amount of defects are visualized in the insets. Arrows in the inset indicate build direction.

3. Results and Discussion

Since the main theme of the paper was to assess whether defects in the as-built condition matter if
the subsequent post-treatment steps involve HIPing in any case, results pertaining to as-built conditions
are presented first, followed by their response to post-treatments.

The as-built microstructures of samples processed with varying LS corresponding to different
melting speeds (Table 1) are depicted in Figure 2. Increase in LS above the “recommended” value
resulted in a rise in the defect content, as shown in Figure 2. The defect contents stated represent
the sum of all types of defects observed in the as-built samples, i.e., gas and shrinkage porosity, and
lack of fusion. Incidentally, these defects were also present in samples produced at the recommended
LS = 125 µm (AB#2) as well as at lower LS = 75 µm (AB#1). Samples intentionally produced with
higher LS exhibited defect contents up to 17%, as shown in Figure 2 and also visualized in accompanying
micrographs. In a word, a systematic increase in line offset (processing speed) from 75 to 325 µm
resulted in an increased defect content ranging from 0.1% to 17% in the investigated samples. It is
worth mentioning that large defects such as those observed in samples AB#5 (LS = 275 µm) and AB#6
(LS = 325 µm) are not typical of an EBM built even with not fully optimized processing conditions [23].
However, these samples were produced for the present ‘proof of concept’ investigation regarding the
extent of defect closure enabled through HIPing.
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Samples with distinct defect contents, i.e., AB#2, AB#4, and AB#6 were subjected to two HIPing
treatments to investigate the efficacy of defect closure. The defect contents in as-built samples
AB#2, AB#4, and AB#6 (corresponding to LS = 125, 225, and 325 µm, respectively) were 0.5%, 2.6%,
and 17%, respectively. After both the HIPing treatments, the defect content in all samples was
significantly reduced, regardless of the original extent, as summarized in Table 4. Moreover, the
difference in the extent of defect closure accomplished at 1120 ◦C (HIP1) and 1185 ◦C (HIP2) was not
significant. The considerable densification of samples achieved by HIPing is also visualized from the
microstructures in Figure 3. Furthermore, the small amount of remnant defects in all HIP’ed samples
discussed were found to be typically associated with the presence of Al-rich oxide, which can inhibit
complete defect closure. This is clearly evident from the representative EDS results given in Figure 4.
It is worth mentioning that Al-rich oxides are thermodynamically very stable and not removed by
HIPing, as previously observed in HIP’ed EBM Alloy 718 [24].

Table 4. Defect content (vol.%) in various samples in as-built and HIP’ed conditions.

Sample
Condition

As-built HIP1 HIP2

#2 (LS = 125 µm) 0.5 ± 0.3 0.1 0.1
#4 (LS = 225 µm) 2.6 ± 4.1 0.2 ± 0.1 0.3 ± 0.2
#6 (LS = 325 µm) 16.9 ± 11.3 0.2 ± 0.1 0.2 ± 0.1Materials 2020, 13, x FOR PEER REVIEW 6 of 10 
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Figure 4. Representative EDS analysis showing inclusions typically associated with many remnant
defects in sample #4 (LS = 225 µm) after HIP1. The arrow indicates the build direction.

It is pertinent to note that concerns regarding thermally induced porosity (TIP), i.e., regrowth of
apparently “closed” defects during subsequent heat treatment, have been reported [25,26]. Therefore,
the samples HIP1#2, #4, and #6 were also subjected to heat treatment at 1180◦ C/4 h under vacuum, as
previously studied by Benn et al. [26]. The results showed no significant difference in defect content
before and after the heat treatment. Therefore, the TIP phenomenon was not discernible in the present
HIP’ed EBM built Alloy 718 samples, at least to a statistically discernible limit, thereby indicating
the efficacy of defect closure achieved by HIPing. It is worth mentioning that TIP plausibly did not
happen in the present case because of insignificant gas entrapment in the defects owing to the vacuum
conditions employed during EBM processing [27]. This is in contrast to LPBF processing, during which
there have been concerns related to process gas infiltration because the builds are carried out in an
inert atmosphere, typically using argon [28].

Such extensive and efficient reduction in the defect content by orders of magnitude (as evident from
Table 4 and Figure 3) prima facie provides an opportunity to also potentially increase productivity—at
least to some reasonable extent—during EBM processing. It is worth mentioning that the melting step
typically comprises ~35% (the exact value depends on the build design [22]) of the layer heating time
(preheat + melt + post-heat), which corresponds to 15% of the total layer processing time (also including
lowering of build platform + powder raking) spent during the EBM process. Therefore, decreasing the
melting time (by increasing the LS, as done in this study) would also have a corresponding effect on
the overall EBM processing time.

Consistent with the idea of taking a holistic approach to optimize the processing chain for
EBM-built Alloy 718 components, the present study also sought to evaluate the role of shortened
solutionizing and aging treatment (mentioned earlier) following HIPing. For this purpose, the samples
HIP1#2, HIP1#4, and HIP1#6 were first subjected to a standard solution treatment followed by a shorter
aging treatment (Table 3) in comparison to ASTM F3055 [19] specification, as previously suggested
in a recent study carried out in the authors’ group [20]. The shortened aging treatment refers to a
(740 ◦C/4 h cool at 55 ◦C/h to 635 ◦C, hold at 635 ◦C/1 h/AC to RT) cycle compared to the conventional
(740 ◦C/8 h cool at 55 ◦C/h to 635 ◦C, hold at 635 ◦C/8 h/AC to RT) cycle suggested in the ASTM
F3055 [19] specification.

Since the solution treatment was carried out at 954 ◦C, all the HIP1 + STA samples #2, #4,
and #6 (corresponding to LS = 125, 225, and 325 µm, respectively) exhibited a virtually similar
distribution of grain boundary δ phase, as shown in Figure 5a–c. This is in accordance with the
reported time–temperature-transformation diagram of Alloy 718 [29], and has also been previously
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observed in solution-treated EBM Alloy 718 that was not subjected to prior HIPing [10]. The effect of
aging treatment can be readily seen from the similar distribution of γ” phase as shown in Figure 6a–c.
These microstructural similarities in the three samples (HIP1 + STA #2, #4, #6) were also reflected in
the microhardness results, as described below.
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The average microhardness values of the as-built and post-treated samples, determined as
previously described in the experimental procedure, are shown in Figure 7. It can be seen that, although
the defect contents in the as-built samples were vastly different, they exhibit similar hardness values
of ~430 kgf/mm2. This can be explained by the similarity in local melting conditions for the three
as-built specimens, as the electron beam parameters were unchanged, and only the line spacing was
varied. This contrasts a previous reported study by Lee et al. [23], where hardness was observed to
vary (405–450 kgf/mm2) with defect content (4.5%–0.5%) of the EBM Alloy 718 samples. In the study
by Lee et al. the local melting conditions were varied between the different specimens by changing
the focus offset, thereby influencing energy density. The HIP1 treatment caused a reduction in the
hardness of all the samples to nearly identical values of ~200 kgf/mm2. This is consistent with the
previous observations on EBM and LPBF Alloy 718 [30,31]. After HIP1 + STA, all the samples exhibited
similar hardness values (~475 kgf/mm2), which were higher than in the as-built condition. This value
is close to the reported peak hardness (~490 kgf/mm2) of Alloy 718 [10]. Previous studies on EBM
Alloy 718 have also reported an increase in hardness in the as-built condition from 410 kgf/mm2 to
470 kgf/mm2 after aging [32–34]. Thus, the foregoing results amply reveal that, regardless of the vastly
different defect content in the as-built condition, the final post-treated condition exhibits a very similar
density (Figure 3), phase constitution in terms of δ phase and γ” phase distribution (Figures 5 and 6),
as well as microhardness values (Figure 7).
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4. Conclusions

The present study on EBM Alloy 718 intentionally built with varied defect contents (by increasing
hatch line spacing) clearly shows that regardless of the quantum of defects in the as-built condition,
after HIPing, the material exhibits a nearly completely densified structure. The results are suggestive of
the possibility of appropriate thermal post-treatments nullifying the influence of defects incorporated
during EBM processing, thereby reducing elaborate process optimization efforts. A spin-off prospect
of these findings can also be an opportunity to EBM print parts somewhat faster compromising defect
content, if the production protocol is to involve an ensuing HIPing step in particular. In addition,
subsequent solution treatment and ‘shortened’ aging compared to the conventional long aging yields a
phase constitution and hardness that are virtually identical despite a vast difference in as-built defect
contents. The resultant hardness was close to the peak hardness of Alloy 718. The above demonstrates
the ability of thermal post-treatments involving HIPing, solutionizing and short aging treatments to
render the defect content in as-built EBM Alloy 718 irrelevant. Such optimization of the build process
and post-treatment together can have significant implications on industrialization of EBM technique.
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