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CA1 cell activity sequences emerge after 
reorganization of network correlation 
structure during associative learning
Mehrab N Modi, Ashesh K Dhawale†‡, Upinder S Bhalla*

National Centre for Biological Sciences, Tata Institute of Fundamental Research, 
Bangalore, India

Abstract Animals can learn causal relationships between pairs of stimuli separated in time 
and this ability depends on the hippocampus. Such learning is believed to emerge from alterations 
in network connectivity, but large-scale connectivity is difficult to measure directly, especially 
during learning. Here, we show that area CA1 cells converge to time-locked firing sequences that 
bridge the two stimuli paired during training, and this phenomenon is coupled to a reorganization 
of network correlations. Using two-photon calcium imaging of mouse hippocampal neurons we 
find that co-time-tuned neurons exhibit enhanced spontaneous activity correlations that increase 
just prior to learning. While time-tuned cells are not spatially organized, spontaneously correlated cells 
do fall into distinct spatial clusters that change as a result of learning. We propose that the spatial 
re-organization of correlation clusters reflects global network connectivity changes that are responsible 
for the emergence of the sequentially-timed activity of cell-groups underlying the learned behavior.
DOI: 10.7554/eLife.01982.001

Introduction
The mechanisms of memory formation have been the subject of considerable study (Morris et al., 
1988; Kandel, 2001). Much evidence points to Hebbian plasticity as the neural mechanism for the 
association of two co-occurring stimuli (Bliss and Collingridge, 1993; Morris, 2003). However, this 
mechanism alone is not sufficient to account for learning under conditions where the two stimuli are 
separated in time by more than 100 ms (Levy and Steward, 1983), as has been commonly observed 
(Solomon et al., 1986; Baeg et al., 2003).

One example of such a time-bridging task is trace eyeblink conditioning, where the goal is to 
associate a neutral tone or conditioned stimulus (CS) with a temporally separated, aversive puff of 
air to the eye, or unconditioned stimulus (US) (McEchron and Disterhoft, 1999). After many pairings 
of these stimuli, the subject learns to blink in response to the tone, even though the tone and puff 
never overlap in time (Tseng et al., 2004; Kalmbach et al., 2009). Lesion studies have shown that the 
hippocampus is required for learning the trace conditioning task, but not a related delay conditioning 
task, where the CS and US overlap in time (Büchel et al., 1999; Tseng et al., 2004). These observa-
tions indicate a role for the hippocampus during the association of temporally discontiguous events 
(Wallenstein et al., 1998), specifically during the ‘trace’ period separating stimulus pairs.

How might a network of neurons maintain a representation of the stimulus through time? Two 
possible models have been proposed. The first model hypothesizes that the representation of the 
first stimulus is maintained by the sustained firing of stimulus-selective cells through a trace interval 
(Solomon et al., 1986). Such a model is supported by observations of sustained firing by neurons 
in the medial prefrontal cortex (Fuster, 1973; Baeg et al., 2003) and the medial entorhinal cortex 
(Egorov et al., 2002) during working memory tasks. An alternative model proposes that sensory 
representations are maintained by the sequential activation of groups of neurons (Levy et al., 2005; 
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Howe and Levy, 2007; MacDonald et al., 2013). This view arose from modeling studies that trained 
simple hippocampal area CA3 network models on the trace conditioning task. Rather than observing 
sustained firing, the authors found that groups of neurons began to show activity in well-timed, 
sequential bouts. Neurons representing the CS kicked off this ‘relay’ of activation, which eventually 
activated US representing neurons at the appropriate time (Levy et al., 2005; Howe and Levy, 2007). 
However, this model awaits experimental verification.

Sequential activity in hippocampal CA1 cells has been seen previously, albeit in some very different 
behavioral contexts, including temporal memory tasks (Louie and Wilson, 2001; Pastalkova et al., 
2008; Gill et al., 2011). There has also been a series of recent, more closely related studies of hippoc-
ampal activity, in which rats or monkeys performed stimulus-retention tasks where they had to remember 
an odor or visual stimulus in order to receive a reward. Here too, hippocampal CA1 neurons were 
observed to be active in stimulus-triggered, time-locked sequences (MacDonald et al., 2011; Naya and 
Suzuki, 2011; Kraus et al., 2013; MacDonald et al., 2013). It is increasingly clear that hippocampal CA1 
cells adopt sequential activity patterns when subjects are placed in a behavioral context requiring the 
bridging of temporally separated stimuli. However, in all the studies where this has been observed, only 
well-trained subjects were used, leaving the time course and mechanism of the emergence of sequen-
tially timed activity entirely unknown.

Despite sequential activity having been implicated in several temporal memory tasks, there is 
little experimental data on the network changes that underlie its emergence. Functional connectivity, 
as measured by correlations between neuronal activity in the absence of stimulus presentation, is 
one way to monitor such network changes (Ts’o et al., 1986; Bair et al., 2001; Fujisawa et al., 2008). 
In a study using two photon calcium imaging of motor cortex pyramidal neuron activity, changes 

eLife digest Ivan Pavlov famously discovered that dogs would salivate upon hearing a bell 
that had previously been used to signal food, even when there was no food present. This ability 
to connect events that occur close together in time is known as associative learning. But how is it 
supported within the brain?

In the late 1940s, neuroscientist Donald Hebb proposed that if one neuron persistently and 
repeatedly takes part in firing a second neuron, the connection between the two neurons will be 
strengthened. Thus, if neurons that encode the sound of a bell are active at the same time as 
neurons that encode receiving food, connections between the two groups will be strengthened, 
and this might enable the dogs to associate the two events.

However, animals can also learn to associate events that do not overlap in time. For example, 
we can associate a bout of food poisoning with a meal we consumed several hours earlier. In 
rodents, this type of learning is often studied using a task known as trace eyeblink conditioning, 
in which a tone signals the delivery of a puff of air to the eye after a short delay. Rodents eventually 
begin to blink in response to the tone, even thought the tone and the air puff are never presented 
simultaneously.

Two possibilities have been proposed for how this might occur: either the neurons that encode 
the tone remain active until delivery of the air puff, or different groups of neurons are successively 
activated in a relay that spans the interval between the tone and the air puff. Now, Modi et al. have 
used in vivo imaging in awake mice to obtain evidence in favour of the second option.

Mice were trained on the conditioning task while imaging was used to follow the activity of 
neurons in a region of the brain known as the hippocampus. As animals learned the task, neurons in 
part of the hippocampus called CA1 began to reorganize their firing patterns so that distinct groups 
of cells were active at each time point in the interval between the tone and the air puff. By contrast, 
hardly any neurons were active across the entire delay. The organized firing became particularly 
apparent at the same time as the mice first began to blink in response to the tone, and was only 
ever seen in animals that learned the task successfully.

As well as providing evidence to distinguish between competing theories of associative learning 
across a delay, this study is the first to follow in real-time the reorganization of networks of neurons 
within the hippocampus during this common type of learning.
DOI: 10.7554/eLife.01982.002
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in spontaneous activity correlations have been inferred to indicate learning-related circuit plasticity 
(Komiyama et al., 2010). In another study where rats were exploring a novel track, correlations 
between pairs of place cells increased with increasing exposure to the novel environment (Cheng 
and Frank, 2008; Dragoi and Tonegawa, 2013). With the ability to measure changes in input from 
upstream circuits using spontaneous activity correlations across many cells in the network, two-photon 
recordings allow the testing of predictions from the model proposed for the emergence of sequen-
tial activity (Levy et al., 2005; Howe and Levy, 2007). Furthermore, such recordings provide 
relative cell locations within the hippocampus, allowing one to examine the spatial organization of 
activity patterns (Hampson et al., 1999; Brivanlou et al., 2004; Kjelstrup et al., 2008). As learning 
progresses, one should see changes in spontaneous correlations reflecting altered inputs and changes 
in network connectivity.

Two key questions remain unanswered in the absence of data recorded from large numbers of neurons 
during training on a temporal memory task – how do sequential activity representations in the hippo-
campus emerge during learning, and what are the underlying changes in network connectivity? In this 
study, we train mice on a trace eyeblink conditioning task while recording activity from populations of 
area CA1 neurons using two photon calcium imaging. In order to eliminate the influence of running or 
changing spatial position on hippocampal activity, we implemented a trace eye-blink conditioning task 
for head-fixed mice. Further, our activity measurements revealed CA1 network dynamics during learning, 
as we began with naïve mice and trained them to criterion within the recording session. We found that 
sequentially timed activity of groups of area CA1 cells emerged progressively during the course of 
learning. Additionally, mean spontaneous activity correlations at the network level rose transiently, 
while only the correlations between co-tuned cells remained elevated towards the end of the session. 
Finally, we observed spatially organized clusters of neurons that had elevated spontaneous activity 
correlations. These correlation clusters re-organized during learning.

Results
Using two-photon calcium imaging, we monitored the activity of large numbers of neurons in area CA1 
of the dorsal hippocampus in awake, head-fixed mice while they were trained on a trace eyeblink con-
ditioning task (Figure 1A).

Mice learn a trace eyeblink conditioning task within a single session
Head-restrained mice were trained on a trace eyeblink conditioning task (Tseng et al., 2004), where 
they learned to associate a neutral tone stimulus (Conditioned Stimulus–CS) with an aversive puff of air 
to the eye (Unconditioned Stimulus–US) within a single session (‘Materials and methods-Behavioral 
training’). Tone and puff were non-overlapping and separated by a 250 ms interval, thus requiring the 
subject to maintain a representation or ‘trace’ of the tone (CS) in order to associate it with the puff 
(US). Behavioral responses were measured by recording deflections in eyelid position (Figure 1B).

We found that naïve mice responded to tone presentation with small, but distinct and measurable 
eyelid movements early in training, even on trials prior to the introduction of the puff stimulus (Figure 1C). 
Following repeated pairings of tone and puff, however, blink responses to tone increased significantly 
(>2 standard deviations [SD]) in amplitude and duration, (n = 9 of 18 mice, Figure 1B,D). Conditioned 
Response (CR) trials were defined as those trials in the training session whose area under the eyelid–
position curve, during the interval spanning tone onset to puff onset, was significantly larger than the 
pre-training baseline (‘Materials and methods-Behavioral training’). We next established a performance 
score by measuring the ratio of CR blink rates to spontaneous blink rates (‘Materials and methods-
Data analysis’, Figure 1E,F). As a learning control, we randomized the relative timing of tone and puff 
from trial to trial, for a different set of mice. These pseudo-conditioned mice did not demonstrate an 
increase in blink amplitude or duration (performance scores, trace = 8.74 ± 2.73, pseudo = 1.96 ± 0.44, 
mean ± standard error of the mean (SEM); Figure 1E,F, two-sample t test, p=0.012). 9 of 18 trace 
conditioned mice had performance scores higher than those of the pseudo-conditioned mice.

We next examined the performance of each mouse, to assess which individual mice learned the 
task, and if so, at what trial number in the training session. We used a previously described expec-
tation maximization algorithm to assess whether each individual mouse had learned the association, 
and to obtain learning curves (Smith et al., 2004). Briefly, the algorithm uses the list of CR trials for 
a given mouse, along with the chance probability of the occurrence of a well-timed, significant blink to 
estimate the probability of CR production at each trial in the session (Figure 1G). Furthermore, the 
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Figure 1. Behavior: trace eye-blink conditioning of mice. (A) Cartoon schematic of experimental system. Two-photon 
calcium imaging was carried out in area CA1 of the dorsal hippocampus in a head-fixed mouse which underwent 
trace eyeblink conditioning. A speaker (yellow, b) was used for tone stimulus delivery, while a nozzle (red, a) directed 
the aversive air-puff. A magnetometer (black, c) was used to monitor eyelid position in order to detect blinks. Scale 
bars at the bottom of the figure indicate times of stimulus delivery (yellow and red bars for tone [350 ms long] and 
puff [100 ms long] respectively, along with the gap in-between [250 ms]) as well as data acquisition (green bar, 15 s 
long) during a single trial. (B) Sample eyelid position signal traces from a mouse undergoing trace eyeblink conditioning. 
The color scale indicates eyelid position in arbitrary units, with high values indicating eyelid closure (blink). This mouse 
started reproducibly showing significant blinks before the air-puff (e.g., green arrow) mid-way through the session. 
(C and D) Eyelid position traces in response to pre-training tone presentation (C), and both tone and puff stimuli during 
trace eye-blink conditioning (D). Gray traces are from individual trials and black traces are averages across trials. Yellow 
and red bars at the bottom indicate times of delivery of tone and air-puff respectively. (E) Distributions of performance 
scores for trace (blue) and pseudo (green) conditioned mice. (F) Average performance score, which is the ratio of tone 
evoked significant blink (CR) rates to spontaneous blink rates, is plotted for all trace conditioned mice (blue) and 
pseudo-conditioned mice (green). Error bars indicate SEM. * indicates p<0.05. (G) Learning curves (gray lines) for 
the nine mice that learned the association to criterion. The learning trial identified for each mouse is marked with a 
red circle. The black curve shows average performance across mice. The vertical, dotted line indicates the mean learning 
trial across mice (trial 26). Each learning curve was obtained by first obtaining a binary list of significant response 
trials for each mouse, and then using a previously described expectation maximization algorithm to calculate the 
CR probability on each trial, for individual mice. The horizontal, red line indicates the probability of CRs by chance.
DOI: 10.7554/eLife.01982.003
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trial at which a mouse has learned the task is statistically defined. It is the first trial when the lower 
95% confidence interval of the probability of CR production rises and remains above chance. As 
per this criterion, 9 out of 18 trace conditioned mice learned the association. The mean of the 
individual learning trials was 26 ± 5 (mean ± SD, n = 9 learners; for six of these learner mice, imaging 
data was also acquired, Video 1 shows high-speed video of mouse blinks before and after learning). 
These were the same nine mice that also had higher performance scores than pseudo-conditioned 
controls.

Half the mice trained on the trace eyeblink conditioning task failed to learn to criterion. In part, this 
was because we were restricted to training mice for only a single session due to the limited residence 
time of calcium indicator dye in cells (Stosiek et al., 2003). These non-learners most likely represent a 
heterogeneous population of mice at different stages of learning involving multiple brain regions 
(Kalmbach et al., 2009). In other words, given more training sessions, many of these mice would likely 
have learned this task to criterion. Consequently, the interpretation of area CA1 calcium imaging data 
from ‘non-learners’ is complicated by the uncertain state of learning of each mouse. Hence, in most 
analyses, we have not used data from these mice. However, for completeness, we have included data 
from non-learners in key figures.

Cells in hippocampal area CA1 imaged from awake, behaving mice 
exhibit temporal tuning
We surgically exposed the left, dorsal hippocampus of naïve mice and bolus loaded a synthetic 
calcium indicator dye. We then implanted cranial windows through which we imaged calcium responses 
from cells in area CA1 of the hippocampus (Figure 2A, Figure 2—figure supplement 1A, Video 2 
shows calcium responses from a sample field of view). Image acquisition was carried out within a 
field of view covering 96 ± 29 (mean ± SD) cells per mouse, imaged at frame rates ranging from 
11 Hz to 16 Hz. In parallel with calcium imaging, we simultaneously measured eyeblink responses 
of mice over the entire pre-training and training sections of the conditioning protocol (n = 14 trace 
conditioned and six pseudo-conditioned mice; ‘Materials and methods-Awake, two photon cal-
cium imaging of area CA1 cells’; Figure 2—figure supplement 1B). Cell bodies were imaged from 
the visually identified stratum pyramidale layer of the hippocampus (Figure 2—figure supplement 1C), 

at depths ranging between 135–150 µm below 
the hippocampal surface (supporting Video 2 
shows imaged calcium responses and Video 3 
shows a stack of optical, z-section images with 
the densely labeled cell-body layer visible). To 
ensure the reliability of our calcium fluorescence 
data, we carried out two checks. First, the fre-
quency of calcium transients was observed to 
be 1.3 ± 0.2 Hz (mean ± SD). While this need 
not accurately reflect spike rates in our experi-
mental system, it falls well within the range of 
spontaneous spike rates previously observed in 
CA1 cells, and was un-changed between early 
and late trials in the session (Figure 2—figure 
supplement 1D; Czurkó et al., 1999). Second, 
the summed area under the calcium curve was 
also calculated for all datasets, and those datasets 
that showed a significant drift between early and 
late trials were discarded (n = 1 of 21; Figure 2—
figure supplement 1E).

We first looked for evidence of sustained or 
sequentially timed neuronal activity in calcium fluo-
rescence traces for individual cells (ΔF/F,‘Materials 
and methods: Data analysis’), on trials following the 
CR learning peak. First, we determined whether 
or not cells showed sustained activity through the 
entire period of interest by measuring how wide 

Video 1. Mouse Behavior. Video of mouse eyeblink 
behavior acquired at 100 frames per second (fps) and 
played back at 10 fps (i.e. 0.1x speed). A yellow spot in 
the bottom-right corner indicates when tone is being 
delivered, and a red spot indicates when the air-puff is 
being delivered. Frames from three trials, at different 
points in the session are shown, depicting behavior 
early in the session, prior to learning, and late in the 
session after learning. The last portion of the video 
shows eyeblink behavior in a probe-trial, where the 
tone was presented but no air-puff was delivered.
DOI: 10.7554/eLife.01982.004
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Figure 2. Two-photon imaging of calcium-responses in area CA1 neurons from awake mice. (A) Schematic of the 
imaging preparation. o–objective lens, s–skull, cs–cover slip, hb–head bar, ag–agarose. (B) Histogram of neuron 
response widths in ms, calculated as the time for which a given neuron’s trial-averaged, ΔF/F trace remains above 
Figure 2. Continued on next page
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each cell’s response was at half the amplitude of the peak of the response. The mean response width 
measured in this manner was found to be 120 ms ± 81 ms (mean ± SD, n = 542 cells, Figure 2B). Only 
three cells (∼0.5%, of all cells) had response widths greater than 600 ms, the length of the period from 
tone-onset to puff-onset. Based on this analysis, we concluded that sustained cell activation is not the 
mechanism used by the hippocampus to maintain a stimulus representation. We next looked for indi-
cations of sequential activation. Prior to learning, calcium response peaks were not reliably timed 
across trials, relative to tone onset (Figure 2C, left panel). Post learning, however, we observed that 
area CA1 cells had activity peaks at fixed time-points relative to tone onset, seen consistently across 
multiple trials (Figure 2C, right panel). We further characterized this by averaging these ΔF/F activity 
traces over trials and identifying activity peaks within the time window from tone onset to 200 milliseconds 
after puff onset. We rank ordered cells based on the timings of their activity peaks and found that small 
groups of cells firing at each time-point, tiled the entire interval of interest (Figure 2D). When the same 
procedure (averaging followed by sorting by timing) was carried out on traces from the pre-training 
dataset, tiling was markedly skewed with most cells (66% in this case) showing activity peaks during 
the tone period (Figure 2E). Furthermore, if neurons in the pre-training dataset were ordered as 
per timing of peaks in the training session, no clear tiling was visible (Figure 2F). This indicated that 
timings of peak activity of area CA1 cells, relative to the onset of tone stimulus, changed during training. 
Furthermore, at the population level, these peak times appeared to tile the interval of interest between 
tone and puff.

After learning, area CA1 cells show reliably timed, sequential calcium-
responses
Having observed that area CA1 cells were active at fixed time-points relative to tone onset, we next 
wanted to quantify the reliability with which cells fired at these times. For each cell, we defined the 
timing of the peak in its averaged ΔF/F trace as its peak response time (PT). We then quantified the 
reliability with which cells fired at their respective PTs, from trial to trial (Figure 3A shows a cell reliably 
firing at a particular PT). First, we reasoned that if cells show time-aligned activity, the peak of the trial-
averaged ΔF/F trace would be higher than if activity were not reliably timed. Hence, we computed 
the peaks of the averaged ΔF/F traces during the tone-onset to puff-onset period (Figure 3—figure 
supplement 1A). The mean peak amplitude for cells from trace conditioned mice was significantly higher 
than for cells from pseudo-conditioned mice or for spontaneous activity data (trace = 0.022 ± 0.007, 

50% of the peak value. The red, dotted line indicates a response width of 600 ms, which is the time of interest 
between tone-onset and puff-onset. (C) Area CA1 cell responses show sequentially timed activity peaks after learning. 
Calcium response (ΔF/F) traces for six exemplar neurons from a single mouse, for sets of three trials before (panel 
on the left), and after (panel on the right) task learning. Neurons have been sorted as per the timing of the peak in 
the averaged trace. The yellow and red bars at the bottom represent the times of delivery of tone and puff 
respectively. The gray shading to the left covers the period of spontaneous activity prior to the onset of the tone. 
The red asterisks indicate the peak in each individual trace. Scale bars indicate 0.4 ΔF/F and 500 ms along the time 
axis. (D) Area CA1 cell activity peaks tile the entire CS-on to US-off interval. Area CA1 calcium response traces from 
an example dataset, sorted by the peak times of the responses. Each response trace has been averaged over all 
trials following the learning trial (Figure 1G), and has been normalized to the peak ΔF/F response value for each 
neuron. The yellow and red bars below indicate times of delivery of tone and air-puff respectively. 50% of the 
neurons from the field of view, with the most reliably timed responses have been shown. This is to make this plot 
comparable to the ones from subsequent analyses, where neurons have been similarly chosen. (E and F) Cell 
activity peak timings change during learning. In E, pseudo-colored ΔF/F traces for the period of interest during 
and after tone delivery, are plotted using data acquired during the pre-training session, where tones without 
air-puff were delivered. Cells have been sorted as per the timings of peaks in pre-training session data. The yellow 
bar at the bottom indicates time of delivery of tone (350 ms). In F, the same averaged activity traces as in E have 
been re-ordered according to each cell’s activity peak timing after learning has occurred, as shown in (D) Plotted in 
Figure 2—figure supplement 1, are panels depicting the surgical preparation, the numbers of mice from each 
treatment group, images of dye-loaded tissue taken at multiple depths and basic data quality control analyses.
DOI: 10.7554/eLife.01982.005
The following figure supplements are available for figure 2:

Figure supplement 1. Imaging preparation and calcium response data. 
DOI: 10.7554/eLife.01982.006

Figure 2. Continued
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pseudo = 0.017 ± 0.009, spontaneous = 0.015 ± 
0.008; mean ± SEM; one way Analysis of Variance 
(ANOVA), followed by Tukey Kramer honest sig-
nificant difference (h.s.d.) p<0.01). The difference 
seen was a small one, but this measure does not 
control for differences in cell response sizes or 
average activity. Hence, to more rigorously char-
acterize activity timing reliability, we computed 
a reliability score for each cell.

The reliability score was computed by compar-
ing each cell’s time-tuning to that of control data 
obtained by artificially disrupting any trial to-trial 
timing relationships in calcium activity. We achieved 
this by pseudo-randomly shifting single-trial ΔF/F 
traces for each cell in time (Figure 3B). For every 
cell, a reliability score was then computed as the 
ratio of the peak area of averaged ΔF/F traces 
to the peak area of averaged, random time-offset 
traces (Figure 3C). Hence, the reliability score 
refers to the size of a time-aligned peak, expressed 
in multiples of that seen after random shifting. To 
aid in the intuitive understanding of this score, 
we report here the reliability score of the exam-
ple neuron whose traces have been shown in 
Figure 3A, which is clearly firing reliably at a 
particular time (RS = 2.5). That is, the area under 
the peak of the averaged curve for this cell is more 
than double that obtained after giving random 
offsets to individual trials.

Reliability scores for area CA1 cells in mice 
that learned the task (n = 542 cells from 6 mice), 
were significantly higher than reliability scores 
for neurons from pseudo-conditioned mice (n = 498 
cells from 6 mice), non-learners (n = 612 cells 
from 8 mice) and for spontaneous activity data 
from the trace learners (trace = 3.12 ± 0.20, 
pseudo = 1.35 ± 0.08, spontaneous = 0.84 ± 0.07, 
non- learners = 1.72 ± 0.13; mean ± SEM; ANOVA 
followed by h.s.d., p<0.01; Figure 3D). Since 
the peak timing reliability scores for cells from 
trace learners were significantly higher than those 
for controls, we concluded that only neurons from 
trace conditioned, learner mice had reliably time-
tuned peaks in the ΔF/F trace. On plotting the 
distribution of all reliability scores obtained for 
cells from trace learners, we found that 44% of 

neurons had reliability scores close to 1, that is they displayed no time-locked activity (Figure 3—
figure supplement 1B). Hence, for all subsequent analysis involving time-tuned activity, 50% of the 
neurons with the lowest reliability scores were discarded so that we could focus on the cells that did 
have significant time-tuning. The same treatment (calculation of reliability scores and then discarding 
the poorest 50%) was also given to control data from the spontaneous activity period, from pseudo-
conditioned mice, or from non-learner mice.

Having seen that reliable time-tuning emerges only in trace conditioned mice we next examined 
the emergence of time-tuning during training. We quantified how the reliability in peak-timing changed 
as the training session progressed. The same reliability score (Figure 3A–C) was calculated for the 50% 
most reliable neurons in five-trial blocks (‘Materials and methods: Data analysis’). We found that the 

Video 2. Calcium responses. Video showing a 
time-series of images of a single field of view of area 
CA1 cells. Brighter colors in the gray-scale indicate 
higher fluorescence intensities. Flashes visible are 
calcium responses.
DOI: 10.7554/eLife.01982.007

Video 3. z-stack of dye-loaded hippocampal tissue. 
Video showing optical sections through a typical, 
dye-loaded imaging preparation of the dorsal 
hippocampus. Optical sections were acquired 
beginning at the dorsal hippocampal surface and 
moving ventrally in steps of 2 µm/frame. The scale bar 
represents 50 µm. The densely-packed cell-bodies of 
the curved, stratum pyramidale cell-body layer appear 
near the 7 s time-point in the video. The frames of this 
video show some motion—they were not motion 
corrected as each frame was taken at a different depth 
and thus, differed from the others.
DOI: 10.7554/eLife.01982.008
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Figure 3. After training, area CA1 cells show reliably timed, sequential calcium responses. (A) Calcium response 
traces for an example neuron, aligned to the time of stimulus delivery (tone and puff indicated by yellow and red 
bars at bottom respectively). Warmer colors in the traces indicate higher ΔF/F values. The blue rectangle on the 
Figure 3. Continued on next page
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reliability scores for neurons from trace learners increased over the training session (Figure 3E) and 
that this increase was significantly greater than that seen in pseudo-conditioned mice or in sponta-
neous activity data from trace conditioned mice (Figure 3F, ANOVA followed by Tukey–Kramer h.s.d., 
p<0.01). Interestingly, the first trial bin where the increase in reliability scores is seen is for trials 21–25. 
This coincides well with the mean behavioral learning trial (24 ± 1 for imaged mice, 26 ± 2 for all mice 
mean ± SEM).

The peak reliability score seen in Figure 3E is lower than that seen in Figure 3D. This is because 
the number of trials used to calculate the score in each case is different (bin-widths of 5 and 24 respec-
tively). The size of the peaks in the averaged trace from randomly time-shuffled trials depends on 
the number of trials averaged together since averaging time-shuffled traces would cause isolated 
peaks to collapse in proportion to the number of trials averaged. On the other hand, peaks aligned 
in time across trials would reinforce each other upon averaging. We computed reliability scores for 
different bin sizes and found that mean reliability score increases with the number of trials used to 
compute it (Figure 3—figure supplement 1C). This explains the difference in peak reliability scores 
seen in Figure 3D,E.

We concluded that time-selective area CA1 cell activity emerged progressively, as the mouse learned 
an association between two stimuli separated in time. Furthermore, the time-course of their emergence 
matched the average time taken by mice to learn the association.

We next considered two possible phenomena that might account for the improvement of reliability 
scores with learning. First, a cell may have a fixed activity peak timing from the beginning of the session, 
but not fire on every trial. In such a case, if the cell gradually started firing at the same, fixed peak-
timing on a greater fraction of trials, its reliability score would increase. The cell in Figure 3A is such 
a cell. Alternatively, the timing of peak activity of the cell might change (e.g., the cells in Figure 2C). 

‘trial number’ axis indicates the trial averaging window comprising all trials after the learning trial. (B) The same data 
as in A, except with each trial’s ΔF/F trace given a random time offset. (C) Averaged calcium response curves obtained 
from aligned, as well as random time-offset traces. The averaged curve from time-aligned traces (blue curve) has a 
prominent peak, which is absent in the random time offsets case (red curve). This indicates that the neuron fires 
reliably at a fixed time relative to stimulus delivery. The area under the shaded region (peak ± 1 frame) was used to 
calculate the reliability score. (D) Area CA1 cells from trace learners show significantly higher activity-timing reliability 
scores. Average reliability scores for all neurons in the entire dataset for learners of the trace-conditioning task 
(blue), pseudo-conditioned mice (green) spontaneous activity data (red) and data from non-learners (cyan; * 
indicates p<0.01). (E) Change in reliability score with learning for neurons from trace conditioned (blue), pseudo-
conditioned (green) and spontaneous activity data (red) respectively. Reliability of firing at the final peak response 
time (PT) gradually increased over the training session. Reliability scores were computed in five-trial bins. The 
shaded regions represent SEM. (F) Change in reliability scores between early and late blocks of training trials. The 
increase over the training session for trace-learners was significantly higher than for spontaneous activity data or for 
pseudo-conditioned mice (* indicates p<0.01). This increase was calculated by subtracting reliability scores of the 
first half of the session from those of the second half. (G and H) Distributions of single-cell peak response times (PT) 
at different stages of learning: pre-training (G) and early in training (H). The distribution shifts from one showing 
distinct peaks at the time of tone delivery in the pre-training stage (G), to one showing a peak at the time of the 
air-puff during early training (H). Only the PTs of cells with high reliability scores were included in these plots. The 
red and yellow bars at the bottom indicate times of delivery of tone and air puff respectively. (I) Distribution of 
single cell peak response times (PT) after the learning trial in trace conditioned mice. For trials after the learning 
trial, PT is uniformly distributed across all times in the trace interval between tone and puff. Only the PTs of cells 
with significant reliability scores were included in this plot. (J) Average, time-decoder performance score, pooled 
across all trace conditioned mice (blue), pseudo-conditioned mice (green), spontaneous background activity (red) 
and non-learners (cyan). Dotted line indicates chance level scores, error bars indicate SEM (* indicates p<0.01). 
Figure 3—figure supplement 1, presents further characterization of the reliability score increase. A schematic 
explaining the time-decoder algorithm is depicted in Figure 3—figure supplement 2.
DOI: 10.7554/eLife.01982.009
The following figure supplements are available for figure 3:

Figure supplement 1. Activity peak times change during learning. 
DOI: 10.7554/eLife.01982.010

Figure supplement 2. Time-decoder algorithm. 
DOI: 10.7554/eLife.01982.011

Figure 3. Continued
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Such a cell too, would show an increase in reliability score. We therefore computed scores that distin-
guished between these phenomena, to establish that the predominant effect of learning involves 
changes in cell activity peak timings, and not their response probabilities.

First, we assessed the extent to which increases in trial to trial response probability affected relia-
bility scores, ignoring changes in peak timing. We calculated local reliability scores as training pro-
gressed (Figure 3—figure supplement 1D). Here, the timings at which reliability scores were calculated 
were re-estimated for each five-trial bin. Hence, if peak-timing were to shift during training, it would 
not affect the reliability score. On the other hand, if cells began to show activity on a larger proportion 
of trials, the score would increase. On average, no training-related increases in local reliability score 
were detectable. This indicates that most cells do not increase their response probability with training.

We next quantified how local activity peak timings for each neuron differed from the peak timings 
found after learning. Half the trials after the learning trials were used to estimate post-learning activity 
peak timings for all cells. Then, we computed local peak timings for 10-trial bins through the entire 
session and computed the absolute difference between these local peak timings and the post-learning 
peak timings. These differences served to estimate how far, on average, cell peak timings were from their 
values after learning. We observed a gradual decrease in absolute peak timing difference as training 
progressed (Figure 3—figure supplement 1E) for cells from learners. Such a decrease was not seen 
for peak timing differences computed for cells from pseudo-conditioned mice, spontaneous activity 
data or non-learners. We also calculated the same peak timing differences, binning all trials before and 
after learning. The difference in peak timings from the post-learning peak timings was high prior to 
learning, and reduced to the order of a single frame-time post learning (Figure 3—figure supplement 
1F) for trace learners. For mice that learned the association, the absolute difference in peak timings 
prior to, and post learning, were significantly different (ANOVA followed by Tukey Kramer h.s.d, 
p<0.01). No such decrease in peak timing difference was seen for any of the control cases. Hence, we 
concluded that reliability scores increase as learning progresses and that this increase is mainly due to 
changes in the peak-timings of cell activity during learning.

To characterize the changes in peak timings of cell populations due to learning, we next examined 
the distributions of the PTs of all neurons pooled across trace conditioned mice, at various stages of 
learning. The distribution was clearly non-uniform both before (χ2 goodness of fit test with uniform 
expected distribution; χ2 = 69.14, p<10−4, Figure 3G) as well as at an early stage of trace conditioning 
(χ2 = 61.92, p<10−4, Figure 3H). However, for the group of trials after the learning trial, the distribution 
was much closer to a uniform distribution (χ2 = 20.53, p=0.015, Figure 3I). Thus, the highly non-uni-
form PT distributions prior to and early in training became more uniform, effectively tiling the entire 
period of interest as a result of trace conditioning.

If neuronal activity is indeed sequential and time-locked, it should be possible to use activity data 
to decode time since tone onset. Thus, as an independent test of time-locking of activity, we formu-
lated a simple time-decoding algorithm based on template matching (Fenton and Muller, 1998; 
Zhang et al., 1998; ‘Materials and methods: Data analysis’; Figure 3—figure supplement 2). The 
decoder uses single-frame, ΔF/F fluorescence values from cell-populations on single trials to decode 
time elapsed since tone presentation. The time-decoder prediction accuracy scores (normalized to 
decoder accuracy for control, time-shuffled data) for data from trace learners were significantly higher 
than those for data from pseudo-conditioned mice, spontaneous activity data from trace learners and 
data from non-learners (trace = 2.28 ± 0.27, pseudo = 1.26 ± 0.10, spontaneous = 1.37 ± 0.06, non-
learners = 1.59 ± 0.16, mean ± SEM; ANOVA, followed by Tukey Kramer h.s.d., p<0.01; Figure 3J). As 
with the activity timing reliability score, the time decoder prediction score is also expressed in multi-
ples of the score achieved using temporally randomized, control data. Hence, a decoder score of 2 
would indicate prediction capability twice as good as that obtained with randomized data. To aid an 
intuitive understanding of the score, we also calculated the percentage of decoder frame-number 
predictions that were within one frame of the correct frame. For activity data from trace learners, the 
percentage was 70.3%, for pseudo-conditioned mice it was 32.4%, for spontaneous activity data it was 
47.6%, and for non-learners it was 53.1%. The mean correct prediction percentage by random chance 
was 28.8%. The mean performance scores reported in Figure 3J closely match the values obtained by 
taking the ratio of these prediction percentages to the chance prediction percentage.

We also checked if neurons sharing time-tuning were spatially clustered within the hippocampus. 
The mean pair-wise distance between neurons sharing time-tuning was not significantly different from 
the mean distance between random pairs of neurons, that is neurons sharing time-tuning were not 
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spatially clustered together (mean ± SEM distance for same time-tuning 71.27 ± 1.53 µm, random 
70.89 ± 0.62 µm; Figure 3—figure supplement 1G,H; two-sample t test p=0.73).

Together, these data suggested that prior to training, area CA1 cells responded in a manner that 
was stimulus locked. These cells began to show reliably timed, sequential activity when mice were 
learning a task that required the maintenance of a sensory representation through a trace time-interval. 
Training caused a shift in the distribution of these activity peak times towards more uniform coverage 
of the interval of interest, spanning tone and puff stimulus durations as well as the intervening trace 
period.

Noise-correlations increase transiently during learning, especially 
between similarly time-tuned neurons
Trial by trial correlations in spontaneous activity (noise correlations or NC) have been used previously 
as a measure of functional connectivity and have been thought to indicate the presence of direct (mon-
osynaptic) or indirect, polysynaptic connections between correlated neurons (Ts’o et al., 1986; Bair 
et al., 2001; Fujisawa et al., 2008). Noise correlations, as measured by slower calcium recordings, 
are also thought to be indicative of shared presynaptic input, and therefore, changes in correlations 
are thought to imply changes in common input (Komiyama et al., 2010). We calculated correlation 
coefficients between the spontaneous activity traces of pairs of neurons (more than 4 s away from 
any stimuli), (Figure 4A, dashed, blue curve). Interestingly, for trace conditioned learners, mean NC 
increased during the training session, with a peak at trial bin 16-20 (19 ± 2, mean ± SEM). This peak 
precedes the peak in time-tuning (trial bin 21–25, Figure 3E) and the averaged learning trial (24 ± 1 
for imaged mice, trial 26 ± 2, for all mice; mean ± SEM). This relationship was also observed at the level 
of individual mice (Figure 4—figure supplement 1A, mean learning trial = 24 ± 1, trial of peak relia-
bility score = 25 ± 2, peak NC trial = 19 ± 2 mean ± SEM; ANOVA p=0.03).

Furthermore, the NC calculated for cell-pairs where both cells had the same activity peak timing 
was significantly higher than for random cell-pairs (same time-tuning = 0.22 ± 0.01, random pairs = 
0.14 ± 0.01 (mean ± SEM), ANOVA followed by Tukey–Kramer h.s.d., p<0.01, n = 56 peak-timing 
points with an average of 25 cell-pairs in each group; Figure 4B). Towards the end of the session, NC 
declined, although, even at this stage, NC for neurons sharing the same peak times remained signifi-
cantly higher than for randomly chosen cell pairs (same PT = 0.16 ± 0.01, random pairs = 0.10 ± 0.01; 
mean ± SEM; ANOVA followed by Tukey–Kramer h.s.d., p<0.01; Figure 4B). Cells from pseudo-
conditioned mice showed no such increase in NC (same PT = 0.13 ± 0.02, random pairs = 0.12 ± 0.01; 
mean ± SEM; ANOVA followed by Tukey–Kramer h.s.d., p>0.01; n = 48 time-tuning points with an 
average of 25 cell-pairs in each; Figure 4B).

We also checked if the spontaneous activity correlations were higher for cells with high activity peak 
timing reliability scores. Neurons with high reliability scores had significantly higher noise correlations 
than neurons with low reliability scores (Figure 4—figure supplement 1B; high RS 0.24 ± 0.03, low RS 
0.14 ± 0.02; mean ± SEM; * indicates p<0.01, two sample t test).

Finally, we checked if activity sequences seen during the stimulus period were re-capitulated during 
spontaneous activity. We gave the spontaneous period activity trace of each neuron a time-offset 
equal to the relative timing of its activity peak timing within the stimulus period sequence. Then, we 
calculated the correlation coefficients between all such peak-time offset traces. If the same sequence 
indeed recurred during spontaneous activity, these correlations would be higher. As a control, we gave 
these spontaneous activity traces randomly chosen time-offsets from the set of peak-timings observed. 
Correlations for peak-timing offset traces were not significantly different from those for randomly 
offset traces (Figure 4—figure supplement 1C; peak-time offset 0.048 ± 0.0012, random offset 0.047 ± 
0.0009, means ± SE; two sample t test, p=0.71). However, it must be pointed out that if sequence 
replay events are rare in comparison to spontaneous activity of area CA1 cells, then the correlation 
analysis described above, coupled with the limited size of our dataset (to minimize calcium indicator 
dye photo-bleaching) might not have the statistical power to detect them. Furthermore, spontaneous, 
sequential replay activity could still be occurring, but at an accelerated time-scale, as has been 
observed before (Lee and Wilson, 2002). Such fast replay events would not be resolvable, given our 
temporal resolution capability.

Surprisingly, spontaneous activity correlations for trace learners were observed to drop towards 
pre-training levels in the second half of the session (Figure 4A,B). This has been observed previously 
in the context of rats repeatedly exploring a novel track (Cheng and Frank, 2008). Here, the reduction 
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in spontaneous activity correlations was ascribed 
to a reduction in the novelty of the particular con-
gruence of stimuli related to the track being 
explored. Hence, the reduction in noise correla-
tions we observe could also be a post-learning 
phenomenon, related to a reduction in the nov-
elty of the specific congruence of the paired CS 
and US stimuli. To support this interpretation, we 
ruled out possible technical contributors to the 
reduction in correlations. First, the reduction in 
correlations were not due to a gradual decline in 
the quality of optical activity recordings, since we 
found that recordings remained stable through 
the training session, as discussed in ‘Results: Cells 
in hippocampal area CA1 imaged from awake, 
behaving mice exhibit temporal tuning’; Figure 2—
figure supplement 1D,E. Second, this effect was 
not due to mice paying less attention to the task 
or fatiguing towards the end of the session. We 
tested this by measuring the sizes and peak 
latencies of the significant blinks before and after 
trial 25, where the decline in spontaneous correla-
tions was seen to begin. Mean significant blink sizes 
before and after trial 25 were not significantly 
different (mean normalized early blink size = 1.03 ± 
0.06, late = 0.95 ± 0.03, mean ± SEM; two sample 
t test p=0.62; Figure 4—figure supplement 1D). 
Additionally, mean significant blink peak latency 
from the time of tone onset did not change from 
the first to the second half of the session (early 
latency = 565.3 ± 68.5 ms, late latency = 538.7 ± 
92.3 ms; mean ± SEM; two sample t test p=0.80; 
Figure 4—figure supplement 1E). Hence, we 
concluded that blink responses remained stable 
across the two halves of the session, and that a 
lack of sustained attention was not likely to be the 
cause of the reduction in noise correlations.

To summarize, spontaneous activity was seen 
to become more correlated as a result of trace 
conditioning, following which time-tuning peaked 
and mice learned the temporal association. 
Furthermore, neurons that eventually shared the 
same time-tuning, showed the greatest increases 
in NC.

Correlated cell-groups are 
organized into spatial clusters that 
are re-organized by training
We next checked if area CA1 cells could be  
separated into groups sharing high within-group 
NC and low across-group NC. We used the pre-
viously described ‘meta k-means’ clustering algo-
rithm to identify groups of neurons that showed 
highly correlated spontaneous activity (Figure 
5A–D; Ozden et al., 2008; Dombeck et al., 
2009). We observed that neurons clustered into 

Figure 4. Area CA1 cell noise-correlations increase 
transiently during training. (A) Average neuron-pair 
noise correlations plotted as a function of training trials 
for task learner mice (blue curves), pseudo-conditioned 
mice (green curves) and non-learners (cyan curves). 
Solid lines represent average noise correlations 
between neurons that share similar time tuning (same 
PT), whereas dashed lines indicate average noise 
correlations between random neuron pairs. Pair-wise 
noise correlations have been determined from 
spontaneous activity traces over five trial windows. 
Shaded regions indicate SEM. (B) Summary statistics 
comparing average noise correlations across early (trials 
1–10), middle (trials 21–30) and late (trials 36–45) stages 
of training, between task learner mice (blue bars) and 
pseudo-conditioned mice (green bars). Solid bars 
represent average noise correlations between neurons 
that share similar time tuning (same PT) whereas 
hatched bars represent average noise correlations 
between random neuron pairs. Error bars represent 
SEM. (* indicates within condition [same time-tuning v/s 
random cell-pairs], # indicates across conditions [trace 
Figure 4. Continued on next page
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distinct groups. As expected, within-cluster NC 
was higher than across cluster NC (Figure 5B,D, 
two-sample t test, p<10−4). Interestingly, in con-
trast to the groups of neurons sharing the same 
activity peak-timings (Figure 3—figure supple-
ment 1G,H), neurons belonging to the same 
correlation cluster were spatially clustered within 
the imaged fields of view (examples of peak-
timing groups and correlation clusters are shown 
in Figure 5E). The mean distance between neuron 
centroids for pairs of neurons belonging to the 
same cluster was significantly lower than for pairs 
of neurons taken from different clusters (intra-
cluster = 72.10 ± 1.00 µm, n = 1694 pairs, inter-
cluster = 106.79 ± 0.90 µm, n = 3418 pairs, mean ± 
SEM; two-sample t test p<10−4, Figure 5F). 
Furthermore, NC and cell–cell distance were also 
found to be significantly, inversely correlated 

(correlation coefficient = −0.178, p<10−4, n = 24,522 cell pairs; Figure 5—figure supplement 1A). This 
indicates that neuronal NC are indeed spatially organized.

To examine how these cell-groups or clusters changed over the session, we calculated a similarity 
score for clusters identified from different sections of the training session (‘Materials and methods: 
Data analysis’). We considered spontaneous activity data from three segments of the session compris-
ing early, middle and late blocks of trials. We then measured the similarity between pairs of matched 
clusters obtained using data from different trial blocks. The similarity score measured the mean frac-
tion of neurons belonging to clusters matched across these blocks, normalized to the mean overlap 
between random cell-clusters of the same sizes. For example, a high similarity score for a cluster 
(>> 1) would indicate a similarity much greater than chance, implying that this cluster is well preserved 
from one trial block to the next. Interestingly, we found highly reliable groupings (i.e., high similarity 
scores) in the pre-training session datasets, indicating stable patterns of input from upstream neuronal 
populations (example in Figure 6A) prior to training. In contrast, cell-groupings changed drastically 
during the trace conditioning session (Figure 6A,C), and were significantly less stable than those in 
the pre-training datasets. For pseudo-conditioned mice, cell groupings were reliable throughout the 
training session datasets (ANOVA followed by Tukey Kramer h.s.d., p<0.01; Figure 6B,C). Thus, 
spatially organized, correlated cell-clusters exist prior to and during learning. These correlated cell-
groups remain stable in the absence of training, but undergo continuing re-organization during the 
process of learning the trace conditioning task.

Are groups of time-tuned neurons organized into these correlation clusters? We calculated a cluster 
similarity score for neurons grouped by correlated activity and neurons grouped by time-tuning, during 
the tone to puff period. We found that this similarity was close to chance (mean overlap score = 2.08, 
SD = 0.6, in multiples of similarity expected by chance; ‘Materials and methods: Data analysis’).

Discussion
We showed that, during trace eyeblink conditioning, groups of area CA1 neurons progressively began 
to fire in sequences that spanned the interval from tone onset to 200 ms after the puff (figures 2D, 
3D,E). This phenomenon became prominent at the same trial in the session at which mice learned the 
association (Figure 1G). The emergence of activity sequences and learning were closely preceded 
by a transient increase in noise-correlations, and was accompanied by modifications to spatially 
organized clustering of correlated neurons (Figure 4A,B, 5F, 6A–C). As has been seen before in the 
context of place cells, we found that neurons related to sequential activity were not spatially organized 
within the hippocampus (Dombeck et al., 2010; Figure 3—figure supplement 1F,G).

Stimulus representation by activity sequences–the ‘trace’ in trace 
eyeblink conditioning
The objective of this study was to shed light on the role played by the hippocampus in the association 
of stimuli separated in time, specifically during trace eyeblink conditioning. Previous work had identified 

learners v/s pseudo-conditioned] and @ indicates 
comparisons across stages of learning [early v/s 
middle v/s late], p<0.01; n.s. indicates not significant). 
Figure 4—figure supplement 1A depicts the point 
in the session at which behavioral CR rates, CA1 cell 
timing reliability and spontaneous activity correlations 
reach their peaks, on an individual mouse basis. It also 
presents further characterization of the changes in NC 
during learning.
DOI: 10.7554/eLife.01982.012
The following figure supplements are available for 
figure 4:

Figure supplement 1. Peaks of CR rate curve, CA1 
activity timing reliability and NC; characterization of NC 
changes during learning. 
DOI: 10.7554/eLife.01982.013

Figure 4. Continued
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Figure 5. Correlated neurons are spatially clustered. (A) Neurons within clusters show within-group, correlated 
activity. Spontaneous, ΔF/F calcium activity traces for neurons from an example dataset. Neurons are sorted as per 
clusters identified by meta k-means clustering. Cluster boundaries are indicated by red, dotted-lines. The color 
scale represents ΔF/F amplitude. A short, 6 s stretch of the traces outlined by the yellow box have been re-plotted 
on the right for clearer visibility. The white asterisk indicates a bout of correlated activity in a cluster. (B) Pair-wise 
noise correlation matrix for neurons sorted as per cluster identity, for the dataset in (A). Color scale represents the 
pairwise correlation coefficient during spontaneous activity (noise correlation). Boxes indicate within-cluster 
spontaneous activity correlations. (C) Masks of neuron ROIs for the dataset shown in A and B, color coded as per 
cluster identity. (D) Comparison of distributions of within cluster (gray) and across cluster (black) correlation-coefficients. 
The distributions are significantly different (p<10−4). (E) The same field of view, with neuron ROIs color-coded by 
timing of their activity peak in post-training trials (top) and by correlation cluster number (bottom). The number 
of cells in the top panel is smaller as only 50% of the cells with the highest reliability scores were found to be 
time-tuned. (F) Correlated cell-clusters are spatially organized. Inter-cell distances or the distances between the 
centroids of pairs of neurons, when both belong to the same noise-correlation cluster (Intra-Cluster) or when 
they belong to different clusters (Inter-Cluster). Error bars indicate SEM. (* indicates p<10−4). Figure 5—figure 
supplement 1 shows that the spontaneous activity correlations between pairs of cells fall off with increasing 
distance between the cells being considered.
DOI: 10.7554/eLife.01982.014
The following figure supplements are available for figure 5:

Figure supplement 1. Spontaneous activity correlations fall with increasing inter-cell distance. 
DOI: 10.7554/eLife.01982.015
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Figure 6. Correlated neuron-groups are spatially re-distributed during trace conditioning. (A and B) Sample 
trace-conditioned (A) and pseudo-conditioned (B) mouse neuron-clusters, identified in early (left), middle 
(center) and late (right) trials, for pre-training (top) as well as training (bottom) sessions. Neurons have been 
color-coded as per the noise-correlation cluster they belong to, and cluster numbers have been sorted for 
maximum cluster member overlap across trial-groups. (C) Spatial organization of correlated cell-clusters changes 
during learning. Summarized statistical testing of stability of clusters over the training session. A cluster similarity 
score (SS) was computed to measure the similarity between clusters from different parts of the session. Mean 
similarity scores for clusters of neurons from trace conditioned mice are shown in blue, pseudo-conditioned mice 
in green, and non-learners in cyan. Pre-training session scores are displayed as hatched bars and training session 
scores, solid bars. Error-bars denote SEM. The black, dotted line denotes chance level overlap score, and the 
red, dotted line indicates mean overlap score with perfectly overlapping clusters (* indicates p<0.01).
DOI: 10.7554/eLife.01982.016
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neurons that were primarily air-puff responsive early in training, but became progressively more 
tone responsive as training proceeded. This process was thought to ascribe US valence to the CS 
(McEchron and Disterhoft, 1999). The progressive changes in neuronal activity timing we 
observed are consistent with this finding, as a small subset of neurons did indeed shift from being 
tone to puff responsive (Figure 2E,F, Figure 3G–I). However, the predominant learning-related 
change we observed was the emergence of sequentially timed activity of groups of neurons 
(Figure 3D,E,J, Figure 3—figure supplement 1D–F). Here, we note that calcium response record-
ings typically have a time resolution of about 100 ms, a time window within which entire sequences 
of neuronal activation have been known to occur (Foster and Wilson, 2006). Hence, we interpret 
our data to be indicative of sequential activity with respect to time-windows comparable to the 
average frame time (74 ms) of our recordings. Even at our lower time resolution, the total space 
of possible sequences is very large. Our study thus indicates that a very small fraction of all pos-
sible sequences is important for successful trace conditioning. Grouped by activity peaks within 
∼70 ms time-windows, neurons might show finer-scale sequences or even fluctuations that would 
not be visible in our recordings. However, at the time-scale of a few hundred milliseconds relevant 
to trace conditioning, area CA1 cells show progressively emerging activity sequences after network 
re-organization during learning.

Another suggested model for stimulus trace representation involves sustained neuronal activity 
(Solomon et al., 1986). We saw no evidence to support this model. Our observation of the progres-
sive formation of cell activation sequences (Figure 2C,D, 3E,J) significantly extends our understanding 
by revealing how the representation of the tone stimulus is maintained over the tone-puff interval in 
the trace conditioning task.

Time-tuned firing has previously been interpreted to imply that neurons encode time (MacDonald 
et al., 2011) or that they encode a triggering stimulus in the form of a well-timed sequence, 
effectively bridging two temporally separated stimuli (Itskov et al., 2011; MacDonald et al., 
2013). Stimulus representation by sequential activity would also allow for the association of two 
temporally separated stimuli, by maintaining a representation of the first stimulus until the arrival of 
the second one. This would then allow Hebbian plasticity to strengthen synapses linking the neu-
rons associated with the non-stationary, sequential stimulus representation. This stimulus mainte-
nance is necessary since Hebbian plasticity cannot occur with stimuli separated by over ∼100 ms (Levy 
and Steward, 1983).

Simulation studies of the hippocampal CA3 network, have shown that stimuli separated in time can 
be ‘bridged’ (Wallenstein et al., 1998). Simple recurrent network models of the hippocampal CA3 
region have also been trained on a close proxy of the trace conditioning paradigm (Howe and Levy, 
2007; Levy et al., 2005). Notably, in these studies, the tone stimulus triggers a well-timed relay of 
CA3 cell activation that culminates in the activation of US representing neurons. Our experimental 
observations are in agreement with this model, if we assume that qualitatively, grouping in area CA1 
cell activity reflects grouping of upstream CA3 activity (Brivanlou et al., 2004). We suggest that the 
progressive emergence of sequentially timed activity we observe in our study is a signature of such 
network changes.

Sequential activity has been observed before, in subjects that have already learnt a temporal 
memory task (Lee and Wilson, 2002; Pastalkova et al., 2008; MacDonald et al., 2011). While 
sequentially-timed activity has also been observed in un-trained mice (Luczak et al., 2009; Dragoi 
and Tonegawa, 2011), these sequences of activation were very short, only 100–200 ms long. Post 
training, we observed sequential activation over an 800 ms period, which is a task relevant time-
scale (Figure 2D). Importantly, to our knowledge, our study is the first to monitor the emergence 
of these sequences over the entire process of learning a temporal memory task (schematic in 
Figure 7A). As we discuss below, this has allowed us to identify transient, learning-related network 
changes in spontaneous activity correlations that could underlie the emergence of the longer lasting 
sequential activity.

As discussed earlier (‘Results: Mice learn a trace eyeblink conditioning task within a single session’), 
area CA1 activity data pooled from non-learners is probably confounded by contrary effects due to the 
uncertain state of learning of each mouse. However, for the sake of completeness, we have included 
data from non-learners in some key figures. These panels show that the data from non-learners is con-
sistent with our interpretations and that trace learners are significantly different from non-learners as 
well as from pseudo-conditioned mice, in all cases.
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Figure 7. Summary and model schematics. (A) Schematic summarizing findings: early in the session (top), neuron 
activity peaks are tuned to stimuli. Spontaneous activity is largely un-correlated. By the middle of the session 
(center), time-tuned activity during the stimulus period begins to emerge, after spontaneous activity correlations 
have risen. At the end of the session (bottom), stimulus–period activity is time-tuned, but spontaneous correlations 
have fallen back towards baseline levels. (B) Cartoon model of possible network changes occurring at the synaptic 
level: early in training (top), CA3 to CA1 synapses (gray circles) are at baseline strengths. As training progresses, 
specific synapses are strengthened (larger gray circles), towards the middle of the session (middle). At this point, 
neurons that share time tuning also begin to display increased noise-correlations as they receive more common 
input. Late in the training session (bottom), after repeated re-organization of the network, synapses undergo 
homeostatic normalization (gray circles reduced in size), thus causing total common input and spontaneous activity 
correlations to drop. (C) Schematic diagram depicting network changes at the level of groups of cells. CA1 cell 
clusters (horizontal row at bottom of each panel; clusters are color-coded) have high correlations in spontaneous 
activity, receiving shared input (direction indicated with black arrows) from groups of CA3 cells that are also 
correlated in their spontaneous activity. These correlation-groups of cells are spatially clustered. As learning 
progresses, the clusters of correlated CA3 cells change, resulting in changes in the groups of correlated CA1 cells. 
These new groups are also spatially organized, but differ significantly from pre-training groups.
DOI: 10.7554/eLife.01982.017

Network reorganization during learning is reflected in changes in 
spatially organized noise correlations
Correlations between neurons during periods of spontaneous activity or noise correlations (NC) have 
been thought to be indicative either of shared inputs, or of direct or indirect connectivity (Ts’o et al., 
1986; Bair et al., 2001; Fujisawa et al., 2008). While high temporal resolution measurements of neu-
ronal activity are required to infer direct, synaptic connectivity, we, in our study, infer changes in NC to 
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be indicative of changes in clustering of inputs to CA1 cells from upstream CA3 cells (Komiyama 
et al., 2010). This view is consistent with earlier findings where the correlations between place cell 
pairs were seen to increase as rats explored a novel track (Cheng and Frank, 2008). Importantly, this 
increase in correlations was dependent on the expression of N-methyl-D-aspartate receptors and, 
therefore, the capacity for synaptic plasticity in area CA3 (Dragoi and Tonegawa, 2013). We found 
that cell-pairs that eventually share the same time-tuning show significantly higher increases in NC 
than do random cell-pairs, though on average, all cell-pairs show a significant increase in pair-wise cor-
relations (Figure 4A,B). We interpret this to be due to increased common input from changing group-
ings of inter-connected CA3 neurons. However, this increase is temporary as average NC declines 
near the end of the session, although neurons sharing the same time-tuning still maintain significantly 
elevated NC. This is consistent with a previous observation that novelty-induced increases in sponta-
neous correlations gradually reduce with repeated exposure to the novel environment (Cheng and 
Frank, 2008). The transient, global increase in NC may arise from a network-wide increase in synaptic 
weights during learning, and the subsequent decline may reflect weakening of mean synaptic 
weights due to synaptic re-normalization (schematic in Figure 7B). Consistent with this interpretation, 
we observed that mean NC peaked just prior to the peaks in behavioral responsiveness and reliability of 
sequential activity, even on an individual mouse basis (Figure 4—figure supplement 1A).

Similar results have also been observed in previous studies. Cortical neurons sharing task-specific 
tuning were seen to increase their spontaneous correlations as learning progressed on a sensory asso-
ciation task (Komiyama et al., 2010). In recordings from rodent CA1 neurons, place cells were seen to 
show gradually increasing spontaneous correlations as a novel environment was explored (Cheng and 
Frank, 2008; Dragoi and Tonegawa, 2013). Furthermore, over extended exposure to the same novel 
track, these elevated correlations gradually reduced (Cheng and Frank, 2008).

Interestingly, when neurons were divided into clusters that shared high NC, these clusters turned 
out to be spatially organized even prior to training (Figure 5E,F). This might indicate that area CA1 
cells receive spatially segregated input from bundles of area CA3 cells. This is borne out by the obser-
vation of spatially segregated connectivity from CA3 to CA1 cells in hippocampal slices (Brivanlou 
et al., 2004). Importantly, we observed that these spatially segregated clusters changed only during 
learning, while in pseudo-conditioned mice and in data collected prior to training, NC clusters 
remained relatively constant (Figure 6C). This indicates that during learning, area CA1 cells (and 
probably also, by extension, CA3 cells) enter a dynamic state, where neurons change from one 
spatially-organized, correlated grouping to another (schematic in Figure 7C). In our view, these fluctuating, 
spatial groupings reflect network changes that underlie the emergence of spatially un-organized, 
behavior-related sequentially timed activity.

We propose that when learning the trace eyeblink conditioning task, and perhaps more generally 
when associating temporally separated stimuli, the hippocampus is recruited as follows:

Through a network-wide, transient increase in specific synaptic strengths within the CA3 and in the 
CA3 to CA1 network, changing groups of CA3 cells remodel the strengths of their connections to CA1 
cells (Figure 7B,C). This is reflected in changing clusters of area CA1 cells showing increased noise-
correlations. Progressively, these groups stabilize into a sequence of stimulus-activated cell-groups, 
after which global synaptic re-normalization causes average noise correlations to move back towards 
baseline levels (Figure 7C). Only neurons sharing the same timing in the sequence maintain signifi-
cantly elevated noise correlations (Figure 4B, schematic in Figure 7B). Importantly, these spontane-
ously correlated clusters of cells are also spatially clustered and changes in these clusters underlie the 
emergence of sequentially activated cell-groups. These sequential groups allow CS-representing 
neurons to be indirectly connected to US-representing neurons, thereby forming an association 
between stimuli separated in time.

Materials and methods
Mice and surgical procedure
All experimental procedures were approved by the National Centre for Biological Sciences Institutional 
Animal Ethics Committee (Protocol number USB–19–1/2011), in accordance with the guidelines of the 
Government of India (animal facility CPCSEA registration number 109/1999/CPCSEA) and equivalent 
guidelines of the Society for Neuroscience. All recordings and behavioral experiments were carried 
out on male, 30 to 45 day old C57BL/6 mice. Data acquired from a total of 35 mice is included here. A 
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total of 18 mice were trace conditioned, and 17 mice pseudo-conditioned. Of the 18 trace conditioned 
mice, 9 learned the task to criterion and the other 9 failed to learn. Imaging data was acquired for 14 
of the trace conditioned mice. Of these, 6 were learners and 8 were non-learners. Of the 17 pseudo-
conditioned mice, imaging data was acquired for 6 mice (Figure 2—figure supplement 1B).

Surgical Procedure
Surgery was carried out on a mouse anaesthetized using isoflurane (Abbott, North Chicago, IL, USA) 
gas anesthesia (3% induction dose and 2% initial maintenance dose (in 95% O2, 5%CO2), gradually 
reduced over a ∼3 hr long procedure). Temperature was maintained using a heating-pad (TR-200, Fine 
Science Tools, Canada). Dexamethasone 5 mg/kg body weight was injected sub-cutaneously to mini-
mize swelling and bleeding prior to the surgery. The mouse was then head-fixed (Item 51547; Stoelting, 
Wood Dale, IL, USA) and a custom designed brass head-bar was affixed to the skull using skull-screws 
(83,438; Micro-Mark, Berkeley Heights, NJ, USA) and dental acrylic. The dorsal hippocampal surface 
(ipsi-lateral to the side of tone and air-puff delivery) was exposed through a craniotomy (2.0 mm pos-
terior to bregma, 1.5 mm lateral to the mid-line [ipsi-lateral to the side of stimulus delivery]; diameter 
∼ 1–1.5 mm) after gently aspirating away over-lying cortex to expose the external capsule (Dombeck 
et al., 2007). Exposed brain-matter was constantly irrigated with cortex buffer (CB; in mM: NaCl–125, 
KCl–5, glucose–10, HEPES–10, CaCl2–2 and MgCl2–2. pH set to 7.35 with NaOH) (Holtmaat et al., 
2005). A fluorescent indicator of calcium (O6807; Oregon Green BAPTA-1 AM ester, Molecular Probes 
- Life Technologies, Grand Island, NY, USA) was bolus loaded by pressure injection into the hippo-
campus, at a depth of ∼100 µm. Pressure injections were delivered using glass pipettes with tip imped-
ances of 2–3 Mohms and pressure pulses of 5–10 psi for 3 to 5 min (Picospritzer-III, Parker-Hannifin, 
Cleveland, OH, USA). Dye solution was prepared by solubilizing 50 µg of dye (one vial) in 5 µl of a 
detergent (P-3000MP; 20% Pluronic acid, Invitrogen - Life Technologies), and then diluting down to 
1 µg/µl by adding 45 µl of CB. The gap left behind by aspirated cortex was then filled by pouring 
molten, low-melting agarose solution (A9414; 5% in CB, Sigma, St. Louis, MO, USA) into the crani-
otomy and covering with a 5 mm, circular cover-slip (CS-5R; Warner Instruments, Hamden, CT, USA). 
The cover-slip was then fixed in place with dental acrylic. A fragment from a freshly shattered 
Neodymium magnet was affixed to the left, upper-eyelid using cyano-acrylate glue. Dexamethasone 
(5 (± 2) µg/g body weight) was injected sub-cutaneously to minimize swelling and bleeding at the 
beginning of the surgery. Fortwin (Pentazoncine, 5 µg/g body weight) was administered sub-cutaneously 
at the end of the surgery, as an analgesic. The mouse was then released and given 95% O2 to breathe 
until vigorous toe-pinch responses were seen and was then transferred to a closed cage with food and 
water for 1.5–2 hr, to recover before imaging began. OGB-1 dye, once loaded into neurons, allows 
imaging for a limited period before clearance from neurons (Stosiek et al., 2003). This limited the 
viability of the imaging preparation to a few hours, corresponding to a single behavioral session.

Behavioral training
1.5 to 2 hr after recovery from anesthesia, mice were head-fixed on a custom-designed clamp (gift from 
the Albeanu Lab, Cold Spring Habor Laboratory, New York, NY, USA) and mounted onto the stage of a 
custom-built, two-photon microscope. Left eyelid blink responses were recorded using a custom-made 
magnetometer (Koekkoek et al., 2002) positioned close to (1–3 mm away) the neodymium magnet 
fragment glued to the eyelid and was left un-disturbed throughout the experiment. The magnetometer 
was constructed using a magneto-resistive sensor (HMC1051Z; Honeywell, Linden, NJ, USA), whose 
output was further amplified (SR560; Stanford Research Systems) and digitized at 10 KHz using a data 
acquisition card (PCI-6221; National Instruments, Austin, TX, USA). The tone, conditioned stimulus was 
delivered using a speaker positioned to the left of the mouse. The stimulus was a pure tone of fre-
quency 9.5 KHz, delivered at an intensity of 80–90 dB at the microscope stage and of 350 ms duration. 
In a pre-training session, only tones were delivered for 30 trials. Blink responses were acquired for 5 s 
prior to tone onset and terminated 10 s after tone onset. The inter-trial interval was randomized 
between 15 and 30 s, making the total duration between tone-presentations 30 to 45 s. Thereafter, a 
single trace conditioning session of 50 trials was carried out. On training trials a 100 ms air-puff (aver-
sive, un-conditioned stimulus), was delivered 250 ms (trace interval) after the end of the tone. Pressurized 
air at 5 psi was passed through a nozzle of tip-diameter 1–1.5 mm positioned ∼1–2 cm away and aimed 
at the mouse’s left eye. Air-flow was switched on and off with a computer-controlled electronic, sole-
noid valve (EV mouse valve, Clippard, Cinncinati, OH, USA). Every fifth trial was a probe trial (on which 
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no puff was delivered) however as these amounted to only 10 probe trials per mouse, data from these 
trials have not been used for any specific analysis. Only one training session of 50 trials was carried out 
per mouse. Longer sessions were seen to cause blinking fatigue and discomfort to the mice. Additional 
sessions over multiple days were not possible due to the acute nature of the imaging preparation 
(‘Materials and methods: Mice and surgical procedure’). All trained mice were imaged, irrespective of 
usability of imaging data, while training was carried out. Microscope scan-mirrors continued to oscillate 
during the inter-trial interval, to remove auditory cues signaling the beginning or end of a trial.

Awake, two photon calcium imaging of area CA1 cells
Hippocampal area CA1 cells were imaged in parallel with eye-blink acquisition and training. We used 
a custom-built two-photon microscope, built around a Tsunami, Ti-Sapphire, 80 MHz pulsed laser 
(Spectra Physics, Mountain View, CA, USA) tuned to 810 nm for excitation with a water dipping 
objective lens (5CFI75 LWD 16x, NA 0.8, Nikon, Japan). Emitted fluorescent light was detected using 
an analog GaAsP PMT (H7422P-40; Hamamatsu, Japan). The amplified signal was binned over 2 µs 
pixel times. Imaging and training were carried out in complete darkness.

Data analysis
All analysis was carried out using custom-written programs (Matlab, Mathworks, Natick, MA, USA), 
unless otherwise mentioned. Matlab code for the behavioral learning curves analysis (Wirth et al., 2003; 
Smith et al., 2004) and meta k-means analysis (Ozden et al., 2008; Dombeck et al., 2009) is available 
with the authors of the studies to first use it. Code for the main analyses carried out for this study is avail-
able for download at https://github.com/mehrabmodi/CA1-sequences-data-analysis-code.git.

Behavioral analysis
Magnetometer trace baseline was calculated as the median of values recorded in a 2.4 s time window 
just prior to tone stimulus delivery. The entire trace was baseline-subtracted using this value. Blink 
response to tone was calculated by summing data values acquired from tone onset to air-puff onset 
(600 ms in total). Significant or conditioned blink responses (CR) were identified using a threshold given by,

threshold = µ(blinkpre) + 2σ(blinkpre) (1)

where blinkpre is the area under the pre-training blink response curves in the time interval between 
tone onset and puff onset. Using this threshold, each trial was classified as either a blink (1) or a non-
blink (0) trial, yielding a binary response vector for each mouse. CRs were identified in a 600 ms time-
window after tone onset.

Hence, the probability of blink responses by chance was calculated as below.

( )chance time windowsp =1 n = 0.11 (2)

Here, pchance is the probability of a well-timed CR by chance and ntime windows is the number of 600 ms 
time windows before puff onset (5600/600 = 9.33). We then used a previously described expectation 
maximization algorithm to calculate learning curves for each mouse, as well as the learning trial if the 
mouse was identified as a learner (Smith et al., 2004). For the purposes of analysis, the mean ‘learning-
trial’ across trained learners was assigned to all pseudo-conditioned mice. As an independent analysis 
of behavioral performance, we also calculated a performance score (PS) for each mouse. PS was 
defined as the ratio of CR frequency to spontaneous blink frequency. For the identification of sponta-
neous blinks, four 600 ms time-windows (2400 ms totally) before tone onset were considered. The same 
criterion for significant blinks was applied to these time windows and the fraction of windows (4 × 50 
= 200 total windows) containing significant blinks was calculated as the spontaneous blink fraction.

Image analysis
An averaged image from the first five frames of the first trial was used to manually draw regions of 
interest (ROIs) around cell-bodies. An averaged image from the first five frames of each trial was then 
used as a reference image for that trial. Each frame in the trial was aligned to this reference image 
using the TurboReg plugin for ImageJ (Thevenaz et al., 1998) to correct for movement of the imaged 
field during the trial. This registration method does not correct for within-frame motion. For each frame, 
cell intensity was calculated as the mean intensity of pixels within its ROI. Normalized, background-
subtracted ΔF/F traces were calculated from these according to the equation,
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( ) = −1i
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where Fi is cell fluorescence on frame-i and Fbaseline is the median fluorescence intensity of the cell on 
that trial. Only 4 s of data around the time of tone delivery were considered for this analysis, wherein 
the baseline was considered to be stable. Two metrics of cell activity during a 4 s long, spontaneous 
activity period (5 s away from any stimulus) were used to test for stability of imaging datasets. The 
summed area under the curve and the number of peaks detected were both calculated for the first and 
last 25% of trials. Datasets from mice showing statistically significant differences (two sample t test, 
p<0.05) between early and late scores for both metrics were discarded. For all activity-timing related 
analyses, unless otherwise mentioned, ∼50% of neurons were discarded as they had close to chance 
level timing-reliability scores (‘Results: After learning, area CA1 cells show reliably timed, sequential 
calcium-responses’).

Peak time reliability score
The time of peak response (PT) for each cell was identified in averaged ΔF/F traces in the tone-onset 
to puff-onset period. Only every alternate trial, after the learning trial was used for this calculation 
(Figure 3A). The rest of the trials after learning trial were used to calculate the ridge to background 
ratio scores for calculating the reliability score. These trials were averaged and the summed area under 
PT and the two neighboring points was computed. The ratio of this area to that under all other points 
in the averaged trace was defined as the ridge to background ratio (Figure 3C). As a control condition, 
these traces were given random time-offsets and then averaged. An independent PT was identified for 
each random-offset, averaged trace and ridge to background ratio calculated for it (Figure 3B,C). This 
was repeated 5000 times for each cell’s data and averaged. The reliability score was then calculated 
individually, for each cell, as the ratio of the ridge to background ratio for aligned traces to that of 
random-offset traces (Figure 3D). To capture trends in peak timing reliability, the same score was 
calculated for blocks of five trials each. For these and all other calculations, pseudo-conditioned animal 
data was aligned by time of delivery of the tone stimulus (Figure 3F).

Time-decoder analysis
Only data from trials after the learning trial was considered. The decoder first built a template of  
average, expected population response vectors (prv) for each frame after tone-onset, up to the frame 
just prior to puff onset. The decoder then made time-predictions by comparing individual prvs from a 
non-overlapping test trial set to the template prvs. ΔF/F values from frames between tone onset and 
puff onset were taken for every alternate trial after the learning trial and averaged to obtain a set of 
expected prvs, corresponding to each frame in the period of interest. The prv for a single frame  
(current frame) from one of the remaining trials was taken. The dot product of the current frame prv with 
each of the expected prvs was then computed. The decoder’s performance was scored by taking the 
dot product corresponding to the current frame number (correct frame) and dividing it by the summed 
dot products corresponding to in-correct frame numbers, weighted by distance from the correct frame. 
The correct frame dot product was given a weight equal to the total weight given to incorrect frame dot 
products. Incorrect frame dot product weights increased linearly with distance from correct frame, 
starting two frames away. As a control, dot-product vectors were randomly scrambled and performance 
score calculated. This was repeated 500 times and averaged to get the mean random-control perfor-
mance score. In this manner, prediction scores were calculated for all single-frame prvs from all the 
remaining trials, not used to construct the expected population response template.

Noise-correlation analysis
Spontaneous period correlations in activity were calculated for all neurons in a given dataset. A 4 s long 
stretch of the ΔF/F trace for each cell was taken from a period >4 s away from tone or puff delivery 
from each considered trial. The traces for a cell were stitched together for groups of trials and correlation 
coefficients were calculated for each pair of these, extended traces. In this way, noise correlations were 
computed for all appropriate cell pairs in each dataset. Trial-groups were considered as described in 
Figure 4A, and 6A,B. Note that for most analyses involving spontaneous activity correlations, cells 
were not discarded on the basis of their reliability scores as in the case of time-tuning analyses. The only 
exception is the analysis for Figure 4—figure supplement 1B. Here, neurons were classified into two 
groups, one with high activity timing reliability scores, and the other with low activity timing reliability 
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scores. Spontaneous activity correlations were then calculated for pairs of neurons within each group 
that shared the same activity peak timing.

Clustering analysis
Meta k-means was employed to sort neurons into groups, so as to maximize within group correlations 
while minimizing across group correlations (Ozden et al., 2008). Briefly, the k means ++ algorithm 
(Arthur and Vassilvitskii, 2007) was initialized with k = 3 and was run 2000 times to generate clusters, 
after which cell-pairs falling into the same k-means ++ cluster for >80% of iterations were placed into 
‘meta-clusters’. We also initialized k-means ++ with k = 2 and k = 4, and similar results were obtained. 
These meta-clusters were then iteratively combined using pair-wise correlation coefficient as a crite-
rion, as described previously (Dombeck et al., 2009) to yield the final clusters. Since the final clusters 
are formed by iterative pooling of meta-clusters, the number of clusters does not need to be pre-
specified. The number of clusters obtained ranged from 2 to 8, while the k-value used to initialize 
k-means ++ in the reported data was 3.

Grouping or cluster similarity score
The cluster similarity score was calculated for pairs of cell correlation clusters, with an aim to characterize 
how similar the two clusters were. First, the proportion of neurons belonging in common to both 
clusters was calculated, followed by calculating the overlap seen by chance, when random neurons 
were assigned to equal sized clusters. This is because overlap expected by chance depends on the 
numbers and sizes of clusters. The ratio of these two overlap measures was defined as the similarity 
score. In order to match clusters across trial sets, all possible combinations of cluster pairing in the two 
datasets were considered, and the one with the highest overlap proportion was used to calculate the 
similarity scores.

Statistical testing with multiple comparisons
When making comparisons between more than two samples, we used the Tukey-Kramer honest significant 
difference test in conjunction with a one-way analysis of variance. The test calculates 99% confidence 
intervals around the mean of each sample, and reports significant differences between any pair of 
samples if the intervals do not overlap. The calculation of intervals accounts for the increased chances 
of type-1 errors due to multiple comparisons. Since 99% confidence intervals were calculated, the 
chance of error is smaller than 1%. Hence, p values were reported as <0.01.
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