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Abstract: This paper presents the results of research with regard to determining the conditions
of the thermoplastic processing of steel wire rod for cold upsetting, which ensures that a finished
product with an even and fine-grained microstructure, without a clear banding and with increased
cold deformability is obtained. The material used for the studies was 20MnB4 low carbon steel,
and the studies were carried out on wire rod with a final diameter of 5.5 mm. Numerical modelling
of the analysed process was carried out using commercial FORGE 2011® and QTSteel® programs,
based on the finite element method. The GLEEBLE 3800® metallurgical process simulator was used
for the physical modelling studies. The obtained theoretical and experimental results were then
verified in industrial conditions. Based on the obtained results, it was found that the optimum strip
temperature before deformation in the RSM finishing block of the rolling mill is about 850 ◦C. The best
cooling variant after the deformation process was the one in which the cooling rate was 10 ◦C/s.
Such parameters of thermoplastic processing ensure that a final product with a favourable complex
of mechanical and technological properties as well as a fine-grained, even microstructure, lacking
clear banding, is obtained.

Keywords: wire rod with increased cold deformability; thermoplastic processing; numerical
modelling; physical modelling; mechanical and technological properties

1. Introduction

Recently, huge progress has been made in rolling technology. In modern rolling mills, the final
rolling rate reaches values up to 140 m/s, and the control systems used in the controlled cooling
processes enable the treatment of rolled steel directly on the rolling line [1]. Many efforts have been
directed at improving the efficiency and quality of manufactured products. The main challenges of the
21st century are energy saving and environmental protection. They require the modernization of the
production technologies used to date or the development of new ones. Thermoplastic processing will
be used for an increasing number of steel grades [1,2].

A significant problem during research related to the rolling of wire rod in modern rolling mills
is the high dynamics of the process itself. Material deformation takes place in many passes (even
over 30 passes) with a high strain rate, of the order of 2500 s−1, while the break times between final
deformations are 0.05–0.02 s. For these reasons, precisely selected parameters of the deformation
process and controlled cooling play an important role in shaping the microstructure and mechanical
properties. These parameters must be adapted to the type of steel being processed, taking into account
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the required mechanical and technological properties of the finished product. Experimental studies
in industrial conditions are expensive and usually do not enable the optimization of the process
parameters. A rational way to significantly reduce the costs of modernization or implementation of
new technologies is to use modern methods of numerical and physical modelling, combined with
industrial verification [3].

Issues related to improving wire rod quality have been dealt with by the authors of papers [4–13].
In [5], several groups of steel for wire rod production were characterized, such as interstitial free,
ferritic/martensitic and micro-alloyed pearlite steels. The possibilities of shaping the microstructure of
these steels and the basic technological recommendations ensuring that a finished product with the
desired properties is obtained were described. Paper [12] mainly concerns the possibility of improving
the properties of low carbon steel wire rod by introducing niobium, boron and titanium into the
steel, which favourably affect the mechanical properties of the finished product. The authors of this
work showed that from the point of view of the area of application of the obtained wire rod, it is
important to significantly increase the capacity for further, direct cold processing. Works [4,6–11,13]
relate to the rolling processes of high carbon steel. In these works, the effect of the temperature and
cooling conditions on the microstructure and properties of wire rod were analysed. On the other hand,
works [14,15] presented a model of microstructure development during the rolling of C70D grade high
carbon steel wire rod and the results obtained using it.

Works [16–22] concern issues related to heat exchange during controlled cooling of the wire rod
on a roller conveyor. These works can be used during detailed studies of the cooling conditions of wire
rod, e.g., to improve the uniformity of wire rod properties over its length. Work [18] presented a model
to simulate wire rod cooling on a roller conveyor, taking into account all types of heat exchange as well
as the packing density of the wire loops on the conveyor. The system for testing and recording the
temperature of the wire rod during cooling on the roller conveyor was presented in [16]. It was used
during industrial research, the aim of which was, among others, to determine the relationship between
the cooling rate and the mechanical properties of the wire rod. In [22] a system for monitoring and
controlling the properties of wire rod during cooling on the roller conveyor is presented, based on TTT
(Time Temperature Transition) charts.

In the available literature, no papers were found in which the authors explained in detail the
impact of the strain rate during rolling of the wire rod, e.g., on the yield stress of the deformed material,
development of the microstructure or the properties of the finished product. The impact of high strain
rates on the yield stress of various steel grades was briefly described in [23–30].

Only two studies were found in the available literature [31,32] in which the problems of producing
wire rod in rolling blocks were extensively described. According to the authors of [31], in the case of
low carbon steels, the most advantageous properties are obtained by using slow cooling of the wire
rod on the roller conveyor. As is clear from the research presented in this paper, cooling 20MnB4 steel
at low rates promotes the formation of a ferritic–pearlitic banded microstructure, which reduces the
technological properties of the finished product. Therefore, it is justified to accurately determine the
cooling rate after the rolling process, which will ensure the receipt of a finished wire rod with the
required complex of mechanical and technological properties, whose microstructure will be devoid of
clear banding.

The authors of papers [33–35] were also involved in improving the quality of steel wire rod
for cold upsetting. They stated that in the case of the studied steel, the best complex of mechanical
properties of the finished product can be obtained after rolling in the final passes at 750 ◦C and
subsequent cooling of the wire rod at a rate of 5 ◦C/s. The technological studies carried out made it
possible to upset the studied steel with a relative plastic strain of 66% without losing the consistency of
the material. However, no technological studies of the obtained wire rod were carried out in these
works. The research results presented in this work are consistent with the results published in [33–35].
Nonetheless, as the research published in [3] showed, after the deformation of 20MnB4 steel for cold
upsetting, at a rolling end temperature of about 750 ◦C, microstructure banding is obtained, which
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reduces the technological properties of the wire rod, regardless of the cooling rate used on the roller
conveyor. For this reason, it is also justified to determine the correct temperature of the end of the
rolling process, which, in combination with the appropriate cooling rate after rolling, will ensure that
the finished product has the required microstructure and properties.

In the available technical literature, there are few papers on the rolling process of wire rod which
describe the possibilities of shaping and improving the mechanical and technological properties of the
finished product using numerical methods and physical modelling taking into account the limitations
of the available testing apparatus and the verification of such studies in industrial conditions. Therefore,
the research issues undertaken at work are current. An important achievement of the work is the
solution of the numerical and physical modeling problems of the analyzed rolling process using
commercially available software and test equipment, taking into account its limitations in terms of
the applied total strain, strain rate and break times between successive deformations. The proposed
methodology for modelling the rolling process of the wire rod reflects with high accuracy the actual
technological process and the changes occurring in the microstructure of the deformed material.
The proposed parameters of the thermo-plastic processing of wire rod from 20MnB4 steel grade with
diameter of 5.5 mm ensure that a finished product with a microstructure and properties comparable
with the products offered by leading world producers is obtained. The obtained results and their
analysis should be helpful in developing changes in the currently used methods of wire rod production,
or in the design of new technological lines for rolling wire rods.

2. Materials and Methods

2.1. Materials

The research presented in the work was carried out on 20MnB4 low-carbon steel (Table 1) for cold
upsetting, with the chemical composition according to PN-EN 10263-4:2004 [36].

Table 1. Chemical composition of 20MnB4 steel [36].

Steel
Grade

Steel
Number Melt Analysis, mass%

20MnB4 1.5525
C Si Mn Pmax, Smax Cr Cumax B

0.18–0.23 ≤0.30 0.90–1.20 0.025 ≤0.30 0.25 0.0008–0.005

In the case of wire rods intended for further cold working, an important parameter is the cold
working capacity, determined in the upset test. In accordance with the applicable standards, such wire
rods should have a minimum relative plastic strain of 50% and a sample height index after upsetting
of 0.5 [37]. The wire rod for further cold forming produced by leading global manufacturers is
characterized by a high level of mechanical and technological properties and the possibility of relative
plastic strain of about 80% [38,39].

2.2. Process Characteristics

The research presented in the work was carried out for the entire production cycle of rolling the
wire rod with a final diameter of 5.5 mm, for an example of a combined rolling mill (combination
of bar rolling mill and wire rod rolling mill). The rolling process in the continuous rolling mill
took place in 17 passes, while rolling in the wire rod rolling mill took place in 2 blocks: a 10-stand
No-Twist Mill (NTM) block and a 4-stand Reducing Sizing Mill (RSM) block. According to the
guidelines published in [31,40–43], in order to obtain a finished material with an even, fine-grained
ferritic–pearlitic microstructure without clear banding, the final stage of deformation should take place
in the austenitic range, when its temperature is about 30–80 ◦C higher than the temperature at the
beginning of Ar3 austenite transformation. For the studied steel, the Ar3 temperature was 780 ◦C.
In addition, according to work [31], in the case of low-carbon and low-alloy steels, intended for further
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cold forming, the most favourable temperature of loop arrangement is about 850–900 ◦C. This way of
arranging the loops ensures that the increased plasticity of the metal is obtained, which is beneficial for
the cold drawing process and makes it possible to shorten the recrystallizing annealing time after the
drawing process [31]. Nevertheless, the temperature increase caused the deformation of the material
in the RSM block, with high strain rates, which for 20MnB4 steel was about 50 ◦C, which should be
taken into account here. Therefore, during the studies, the temperature of the rolled strip in the RSM
block was 850 ◦C. Controlled cooling of the studied steel grade was applied after the rolling process.
The heat treatment parameters are given in Table 2.

Table 2. Parameters of heat treatment after rolling 20MnB4 steel rod with diameter of 5.5 mm 1.

Surface Temperature before RSM Block
850 ◦C

1 Cooling Stage 2

Desired Surface
Temperature Tsurf, ◦C

Cooling Rate
Cr, ◦C/s

Cooling variant in
STELMOR® line (Primetals

Technologies USA LLC,
Alpharetta, GA, USA)

W1-1 575 0.6
W1-2 500 1
W1-3 500 3
W1-4 500 5
W1-5 500 10
W1-6 500 15

1 Table based on data published in work [3]; 2 In second cooling stage, studied steel was cooled to 200 ◦C at a rate of
1 ◦C/s.

2.3. Numerical Modelling

The programs FORGE 2011® (Transvalor, Sophia-Antipolis, France) and QTSteel®

(ITA-Technology and Software, MSL-Metaltech Services Ltd., Ostrava, Czech Republic) were used
for the numerical modelling of the rolling process of the wire rod. The deformation parameters
calculated in the FORGE 2011® program were used to perform numerical modelling of microstructure
development using the QTSteel® program and to perform physical modelling using the GLEEBLE
3800 simulator (Dynamic Systems Inc. Poestenkill, NY, USA).

2.3.1. Mathematical Model of FORGE 2011® Program

In the FORGE 2011® program, a mathematical model is used for the numerical modelling of the
three-dimensional plastic flow of metal during rolling in grooves, in which the mechanical state of the
deformed material is described using the Norton–Hoff law [44,45]:

Si j = 2K(T,
.
εi, εi)(

√

3
.
εi)

mm−1 .
εi j, (1)

where Sij—strain tensor deviator,
.
εi—strain rate intensity,

.
εi j—strain rate tensor, εi—strain intensity,

T—temperature, K—consistency depending on yield stress σp, mm—coefficient characterizing hot
metal deformation (0 < mm < 1).

The friction conditions prevailing on the contact surface of the material with the tools are
described using the Coulomb and Treska friction models, in which the appropriate coefficient values
are assumed [46]:

τ j = µ·σn for µ·σn ≤
σp0
√

3
, (2)

τ j = m
σp0
√

3
for µ·σn > m

σp0
√

3
, (3)

where τj—unit friction force vector, σp0—base yield stress, σn—normal stress, µ—coefficient of friction,
m—friction factor.
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The temperature fields are calculated on the basis of differential equations describing temperature
changes with transient heat flow [46]:

∂
∂x

(
kx
∂Ts

∂x

)
+

∂
∂y

(
ky
∂Ts

∂y

)
+
∂
∂z

(
kz
∂Ts

∂z

)
+

(
Q− cpρ

∂Ts

∂t

)
= 0, (4)

where kx, ky, kz—distribution functions of anisotropic thermal conductivity coefficients in x, y, z
directions, Ts—function describing the temperature in the zone in question, Q—rate distribution
function for generating strain heat, cp—specific heat distribution function of the deformed material,
ρ—density distribution function.

The boundary conditions were adopted as the combined boundary conditions of the second and
third types, in the form [46]:

kx
∂Ts

∂x
lx + ky

∂Ts

∂y
ly + kz

∂Ts

∂z
lz + q + αkTs = 0, (5)

where lx, ly, lz—directional cosines normal to the surface of the deformed strip, q—heat flow rate on
the surface of the cooled zone, αk—convection losses.

Equations (4) and (5) clearly determine the heat exchange during modelling of the rolling process.
The input data for numerical modelling of the analysed rolling process are given in Table 3. These

data were adopted on the basis of the technical literature and previous experience.

Table 3. Boundary conditions for numerical modelling of rolling process of 5.5 mm wire rod 1.

Temperature Strip Heat Transfer Coefficients From: Friction
Factor

m,

Coefficient
of Friction

µ,
Air
Tair,

Water
Twater,

Rolls
Trolls,

Air
αair,

Rolls
αrolls,

Water
αwater,

◦

C
◦

C
◦

C W/m2K W/m2K W/m2K - -
20 20 60 100 3000–5000 6700–16000 0.56–0.8 0.28–0.4

1 Table based on data published in work [3].

2.3.2. Initial and Boundary Conditions of Wire Rod Rolling Process

The initial and boundary conditions necessary for numerical modelling of the analysed rolling
process of the 5.5 mm wire rod are given in Table 3. These data were determined on the basis of the
technical literature [43,47–51]. Other data necessary to carry out the numerical modelling of the rolling
process (initial temperature, relative rolling reduction, strain times and break times, roller rotational
rates and linear rate of the strip) were adopted on the basis of the industrial data. In the analysed
process, the average temperature on the cross-section of the charge before the first stand of the rolling
mill was 1130 ◦C and the average temperature of the side surface was 1075 ◦C. The thermophysical
properties of 20MnB4 steel (Table 4) were taken from material database of FORGE 2011® software.

Table 4. Thermophysical properties of 20MnB4 steel 1.

Thermophysical Properties of Steel

Thermal Conductivity λ,
W/mK

Density ρ,
kg/m3

Specific Heat cp,
J/kgK

35.5 7850 778
1 Data based on material base of FORGE 2011® program.
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2.3.3. Rheological Properties of 20MnB4 Steel

The Hensel–Spittel equation was used to describe the rheological properties of the studied
steel [46]:

σp = A·em1·T·Tm9 ·εm2 ·e
m4
ε ·(1 + ε)m5·T·em7·ε·

.
ε

m3
·

.
ε

m8·T, (6)

where σp—yield stress, MPa, T—temperature, ◦C, ε—true strain,
.
ε—strain rate, s−1, A,

m1–m9—coefficients.
During the numerical modelling of the rolling process of 5.5 mm wire rod in the NTM and RSM

blocks of the rolling mill, the rheological properties of the studied steel were defined using Equation (6)
and the coefficients given in Table 5.

Table 5. Equation coefficients (6) used during numerical modelling of 5.5 mm wire rod rolling in NTM
and RSM blocks of rolling mill [3].

A m1 m2 m3 m4 m5 m7 m8 m9

707,153 × 107 0.0012 0.1943 0.0424 −0.0031 −0.0004 −0.0721 0.00002 −3.7326

When determining the rheological properties of the investigated steel for the rolling conditions
in the wire rod rolling mill (NTM and RSM blocks), the results of published studies, among others,
in works [31,32] were taken into account, in which the values of yield stress for steels with a similar
chemical composition to 20MnB4 steel were determined, in terms of the strain rate and temperature
occurring during the rolling of 5.5 mm diameter wire rods. By extrapolating the values of yield stress
of the examined steel for the strain rate occurring during the rolling of the 5.5 mm diameter wire rod,
values consistent with those published in papers [31,32] were obtained.

2.3.4. Mathematical Model of QTSteel Program®

In the QTSteel® program, when forecasting the microstructure and mechanical properties of heat
treated or thermoplastically processed steel, data from the cooling curves on the TTT chart are used.
Calculating the percentage content of the microstructure components is performed step by step for
the relevant sections of the cooling curve. To describe the kinetics of the transformation of individual
components of the microstructure, the program uses the Avrami equation (7) [52,53]:

Xi(T, t) = (1− exp(−k(T)·tn(T)))·Xγ, (7)

where: Xi(T, t)—volume fraction of individual components of the microstructure: ferrite, perlite, bainite,
k(T) and n(T)—parameters depending on the transformation mechanism and places of privileged
nucleation and on the cooling rate, calculated on the basis of TTT charts for a given temperature,
T—temperature, t—time, Xγ—volume fraction of residual austenite.

The volume fraction of martensite during martensitic transformation is calculated on the basis of
the Koistinen–Marburger equation [53]:

Xm(T) = (1− exp(−b·(Tms − T)n))·Xγ, (8)

where: Xm—volume fraction of martensite, b, n—constant, Tms—martensitic transformation start
temperature, T—temperature, Xγ—volume fraction of residual austenite.

Vickers HV hardness is determined by means of a regression equation [52,53]:

HV = C0 + X f ·
∑

(Di·ci+Xp·
∑

Ei·ci + Xb·
∑

Fi·ci+Xm·
∑

Gi·ci, (9)

where: HV—Vickers hardness, X f , Xp, Xb, Xm—volume fractions: ferrite, perlite, bainite, martensite,
C0, Di, Ei, Fi, Gi—constant, ci—percentage of alloying additions.
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The tensile strength was determined based on Equation (10) [52]:

UTS = f (HV) = −a + b·HV, (10)

where: UTS—Ultimate tensile strength, HV—Vickers hardness, and a, b—constant.
Yield strength YS is determined by Equation (11) [52,53]:

YS = f (Dα, Cr, X f ,
∑

(Xp + Xb + Xm)), (11)

where: Dα—ferrite grain size, Cr—cooling rate, X f , Xp, Xb, Xm—volume fractions: ferrite, perlite,
bainite, martensite.

Detailed results of research carried out using the DIL 805 A/D dilatometer [54], the aim of which
was to determine the phase transition temperatures, develop TTT and DTTT (Deformation Time
Temperature Transition) charts and to determine the most favourable cooling conditions for 20MnB4
steel, were published, among others, in [55]. Taking into account the obtained results, the DTTT graph
(Figure 1) was used to determine the impact of the cooling conditions on the forming of the wire rod
microstructure immediately after the deformation process. The characteristic temperatures of phase
transitions and hardness of 20MnB4 steel are presented in Table 6.
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Figure 1. Real DTTT diagram for 20MnB4 steel [55]. Reproduced with permission from Laber, K.,
Koczurkiewicz, B., Determination of optimum conditions for the process of controlled cooling of
rolled products with diameter 16.5 mm made of 20MnB4 steel, Proceedings of the 24th International
Conference on Metallurgy and Materials—METAL 2015; published by Tanger Ltd., 2015.

It was found that in order to obtain a ferritic–pearlitic microstructure in the finished product,
the cooling rate should not exceed 15 ◦C/s. Increasing the cooling rate above 15 ◦C/s causes the
formation of bainite, bainitic-martensitic and martensitic structures in the material, which results
in deterioration of the ability of the investigated steel for further cold working, or in extreme cases
prevents it.
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Table 6. Characteristic temperatures of phase transitions of 20MnB4 steel 1.

Cooling Rates Cr [◦C/s] Characteristic Temperatures [◦C]

100 Ms = 406, Mf = 248
80 Bs = 550, Bf = 460, Ms = 420, Mf =3 70
50 Bs = 560, Bf = 450, Ms = 430, Mf = 324
30 Fs = 700, Ff = 680, Ps = 630, Pf = Bs = 550, Bf = 485
15 Fs = 729, Ff = Ps = 650, Pf = 560
10 Fs = 757, Ff = Ps = 670, Pf = 562
5 Fs = 743, Ff = Ps = 670, Pf = 618
1 Fs = 760, Ff = Ps = 660, Pf = 633

0.1 Fs = 790, Ff = Ps = 692, Pf = 632

where: Ps, Pf, Fs, Ff, Bs, Bf, Ms, Mf—start and end temperature of phase transitions,
respectively: perlitic, ferritic, bainitic, martensitic

1 Table based on data published in work [55]. Reproduced with permission from Laber, K., Koczurkiewicz, B.,
Determination of optimum conditions for the process of controlled cooling of rolled products with diameter 16.5 mm
made of 20MnB4 steel, Proceedings of the 24th International Conference on Metallurgy and Materials—METAL
2015; published by Tanger Ltd., 2015.

2.4. Physical Modelling

The currently used wire rolling technologies are characterized by high dynamics of the deformation
processes [2,56]. This creates major problems when physically modelling these processes using available
laboratory equipment. Strain parameters (ε,

.
ε, T) occurring in real technological processes affect

the nature of changes in the yield stress of the deformed material, and thus the microstructure and
properties of the finished product.

Physical modelling of the rolling process of the wire rod was carried out in uniaxial compression
studies using the GLEEBLE 3800® metallurgical processes simulator, using cylindrical samples with
diameter d = 10 mm and height h = 12 mm. The frontal surface of the samples and tool surfaces
were separated by tantalum, graphite foil and a special graphite-based lubricant to minimize friction
and increase uniformity of the deformation. Temperature control was carried out using K-type
thermocouples (NiCr-NiAl).

During the physical modelling of the rolling process of a 20MnB4 steel wire rod with a diameter
of 5.5 mm, the experience gained during the implementation of previous research related to the
physical modelling of actual plastic forming processes was used [56–58]. The research published in
papers [56,57,59] shows that in the analysed rolling process and for the studied steel, the development
of the microstructure and mechanical properties of the finished product are significantly affected by
the deformation conditions provided in the last four passes and the method of strip cooling during and
after the rolling process. Therefore, the physical modelling of the rolling process of 5.5 mm wire rod
made of 20 MnB4 steel was carried out for the deformation conditions occurring in the last few passes of
the rolling process (RSM block of the rolling mill). In the analysed process, the break times between the
last four deformations are less than 0.01 s. Accurate physical modelling of the four-deformation cycle
while maintaining the appropriate break times between successive passes is impossible when using
existing equipment. At the same time, with such small times, the microstructure of the investigated
material should not change significantly. Therefore, during physical modelling of the rolling process,
the deformation in the last four passes was replaced by one deformation with a value equal to the sum
of the individual four deformations. This methodology is acceptable, which is confirmed by the results
of published studies, among others, in work [58].

As the results from the data presented in Figure 2 show, the level and course of changes in yield
stress are similar in both cases. Slight differences only appear at the end of the deformation. This may
be due to the fact that in the last two deformations (curve No. 1) the achieved strain rate was about
50 s−1 and 28 s−1 and it was lower than the set values (213 s−1 and 141 s−1). The reason for this is the
short break time between deformations, preventing the achievement of such high strain rates. Based on
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the obtained research results, it was found that replacing the sequence of the last four deformations
with one deformation will not cause a large error in the analysed case [58].
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Figure 2. Change in yield stress of 20MnB4 steel during physical modelling of 16.5 mm diameter wire
rod rolling, strip temperature in REDUCED SIZING MILL (RSM) block 860◦C [58]: (1) sequence of
four deformations; (2) single deformation. Reproduced with permission from Laber, K., Dyja, H.,
Koczurkiewicz, B., Sawicki S., Physical modeling of the wire rod rolling process of 20MnB4 steel,
Proceedings of the VI Scientific Conference Rolling Mill Practice 2014. Processes-Tools-Materials;
published by Akapit, 2014.

Another important problem during the physical modelling of the rolling process is the high strain
rate, which in the final stage of the analysed process exceeded 2000 s−1. Due to the inability to use such
a high value of strain rate during the physical modelling of rolling with the GLEEBLE 3800® simulator,
a strain rate of about 250 s−1 was used, utilizing the research results published in [31], in which the
authors conducted studies on the impact of high strain rates on yield stress, for various steel grades.
These studies were conducted on a specially constructed device in which the deformation conditions
were similar to those found in the actual rolling process of wire rod. Figure 3 shows the results of
changes in yield stress for steels with a chemical composition similar to low-carbon steels for cold
upsetting for various deformation conditions.
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Figure 3. Impact of strain rate and temperature on yield stress of C35 steel: (a) at strain value 30%;
(b) at strain value 17%.

There is a certain strain rate limit (about 250 s−1) beyond which the yield stress does not show
significant changes. This tendency occurred for all the steel grades examined in [31].

As shown in the results from the research published in [56], during physical modelling it is
permissible to use the limit value of the strain rate above which the yield stress does not change.
The results of metallographic studies and the analysed mechanical properties of the material after
physical modelling correspond with high accuracy to the results obtained in industrial conditions.

During the physical modelling of the rolling process, the samples were heated at the rate of
7.5 ◦C/s to the temperature corresponding to the temperature of the strip after the 17th rolling stand of
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the continuous bar rolling mill and held at this temperature for 60 s. Then, the temperature change in
time was programmed in such a way that after the time corresponding to the movement of the strip
between rolling stand No.17 of the continuous rod rolling mill and the RSM block of the wire rod
rolling mill, the required value of the material temperature was obtained. The sample was then held at
this temperature for 5 s and then deformed. The total strain value of the samples corresponded to the
total strain in the RSM block. After the deformation process, the samples were cooled in accordance
with the parameters given in Table 2.

3. Results

3.1. Numerical Modelling Results

Figure 4 shows examples of temperature distributions, strain intensities, strain rate intensities and
stress intensities obtained as a result of numerical modelling the rolling process of the 5.5 mm diameter
wire rod from 20MnB4 steel using the FORGE 2011® program.
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Figure 4. Sample results of numerical modelling of wire rod rolling process for rolling stand No. 1 in
the RSM rolling mill block (rolling pass No. 28 in whole rolling period): (a) temperature distribution in
strip exit plane from the strain zone; (b) strain intensity distribution in strip exit plane from strain zone;
(c) strain rate intensity distribution; (d) stress intensity distribution in strip exit plane from strain zone.

Based on the data presented in Figure 4a, it was found that the average cross-sectional temperature
after the rolling process in the first rolling stand of the RSM block was about 880◦C, while the average
lateral surface temperature was about 870 ◦C. The highest temperature values were observed in the
central part of the rolled steel and the area with the lowest temperature was the side surface not in
contact with the walls of the groove (about 845 ◦C). Analysing the data presented in Figure 4b–d, it was
found that the distribution of strain intensity, strain rate intensity and stress intensity of the rolled strip
in the first stand of the RSM block is characteristic for rolling in grooves. With regard to the strain
intensity (Figure 4b), it was found that the greatest strain intensity was found in the central areas of the
rolled strip, while the lowest strain intensity was observed in the free zones of rolled metal, not limited
by the walls of the groove.

Figure 5 shows the temperature changes throughout the rolling cycle. Analysing the data
presented in Figure 5, it was found that after the deformation process of the tested steel in rolling
stand No. 1, the temperature of the cross-section of the rolled strip was about 1125 ◦C, while the
average temperature of the side surface of the strip was about 1050 ◦C. During rolling in the continuous
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medium rolling mill, a decrease in the strip temperature value was found at the initial stage of the
rolling process, in the box groove system when small elongation coefficients are used and the rolling
rate is relatively low. Due to the long contact time of the strip with the rollers and the long break times
between successive passes, strong cooling of the surface of the rolled strip occurred.
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wire rod rolling, in all rolling stands.

In accordance with the principles of continuous rolling in subsequent passes, the rolling rate
increased proportionally to the elongation of the rolled strip. The increase in rolling rate resulted
in shortening of the break time and material cooling between further passes. In subsequent rolling
stands, elongation grooves in the oval-circle system were used, in which the elongation coefficients
and set strain were higher. This caused an increase in the plastic strain energy and an increase in
the temperature of the deformed strip in subsequent passes. In addition, during the rolling process,
the heat from areas located in the central part of the strip was conducted towards the surface. Based on
the data presented in Figure 5, it can be stated that in subsequent passes the difference between the
average temperature and surface temperature was reduced, which to some extent was caused by the
decrease in the cross-section of the rolled strip. As a result of accelerated water cooling in the cooling
zone before the NTM block of the rolling mill, the average cross-section temperature dropped to
around 860 ◦C, while the average side surface temperature was around 850 ◦C. As a result of intensive
deformation of the strip in the NTM block with a high strain rate, the temperature of the rolled steel
increased. The average cross-sectional temperature of the 20MnB4 steel after the last stand of the NTM
block was close to the average surface temperature and was about 1000 ◦C. As a result of intensive
cooling of the strip with water in the cooling zone located in front of the RSM block, its temperature was
reduced to about 860 ◦C. After rolling the 20MnB4 steel in the RSM block, the average cross-sectional
temperature was close to the surface temperature and was about 900 ◦C. Immediately after the rolling
process, the material was cooled in two stages in a controlled manner using air blowing (Table 2).

The numerically determined average values of strain intensity and strain rate intensity in the
material throughout the entire production cycle are given in Table 7. This table also contains the
maximum stress intensity values of the tested steel, which (for the RSM block) were compared with
the values obtained during physical modelling of the rolling process with using the GLEEBLE 3800
simulator. The stress values of the tested material obtained during physical modelling are the maximum
values (calculated on the basis of the maximum value of the compressive force).
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Table 7. Parameters of wire rod rolling process of 20MnB4 steel grade 1.

Pass Number Strain Intensity εi [-] Strain Rate Intensity
.
εi [s−1] Stress Intensity σi [MPa]

Continuous rolling mill

1 0.18 0.16 74.76
2 0.39 0.35 96.02
3 0.28 0.39 92.81
4 0.59 0.96 109.57
5 0.46 1.15 103.10
6 0.50 2.02 115.55
7 0.45 2.45 117.61
8 0.48 4.71 123.21
9 0.44 5.57 130.59
10 0.54 10.39 138.72
11 0.48 12.07 134.07
12 0.50 20.53 142.58
13 0.51 24.74 143.39
14 0.50 46.34 152.09
15 0.41 47.13 148.10
16 0.51 79.93 154.04
17 0.31 70.63 139.36

NTM block of wire rod rolling mill

18 0.32 156.02 229.99
19 0.51 171.25 211.09
20 0.56 276.33 225.24
21 0.54 303.93 213.58
22 0.56 477.46 224.07
23 0.53 584.28 215.56
24 0.62 991.51 239.33
25 0.57 1042.10 198.68
26 0.62 1753.46 232.37
27 0.41 1809.67 181.90

RSM block of wire rod rolling mill

28 0.53 2368.05 399.89
29 0.48 2275.43 385.39
30 0.13 1853.11 378.54
31 0.10 1680.68 374.72

1 Table based on data published at in work [3]. Reproduced with permission from Laber, K., New Aspects of Wire
Rod Production from Steel for Cold Heading, Series: Monograph No. 79; published by Czestochowa University of
Technology, Faculty of Production Engineering and Materials Technology Publishing House, 2018

The analysis of the changes in the average value of the strain rate intensity of the examined
steel grade during rolling in a continuous rolling mill (passes No. 1–17) shows that it increased in
subsequent rolling stands, which was mainly caused by the increase in rolling rate and the set rolling
reductions. An exception occurred when rolling bars constituting the charge for rolling wire rod with
a diameter of 5.5 mm in pass No. 17, in which a slight decrease in the mean value of the strain rate
intensity in the strip was observed, compared to the values of this intensity in the rolled strip in pass
No. 16.

This change was caused by a lower value of strain intensity. After analysing the distribution of
the average value of the strain rate intensity of the tested material during the rolling of 5.5 mm wire
rod in the NTM block (passes No. 18–27), it was found that its constant and dynamic growth occurred,
mainly caused by the increase in the value of the rolling reductions and the increase in the linear rolling
rate. Based on the analysis of the changes in the average value of strain rate intensity during rolling
in the RSM block (passes No. 28–31), it was found that this intensity gradually decreased, which
was caused by a smaller value of strain intensity in subsequent stands of this block. Based on the
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analysis of changes in the stress intensity value of 20MnB4 steel during rolling in the continuous rolling
mill (passes No. 1–17), it was found that this intensity increased in subsequent passes. At the initial
stage of the rolling process, this was due to a decrease in the temperature of the rolled steel, while in
subsequent passes it was mainly due to an increase in the strain intensity of the tested material. Owing
to the slight decrease in the intensity of strain and the intensity of strain rate in the rolled strip in stand
No. 17 (compared to the values calculated for strips deformed in roll stand No. 16), a slight decrease
in stress intensity was also found in this pass. By analysing the changes in the stress intensity in the
strip during the rolling of 5.5 mm wire rod in the NTM block (passes No. 18–27), it was found that
the values of this intensity alternately increased and decreased, which was caused by the employed
groove system. In the NTM block, along with the rapid increase in the strain rate intensity in the
strip, there was an increase in the stress intensity value, but at the same time a significant increase
in the temperature of the rolled steel, whereby the impact of the strain rate intensity on the stress
intensity in the deformed material was smaller. Analysis of the research results on the changes in
the stress intensity in 20MnB4 steel during the rolling of 5.5 mm diameter wire rod in the RSM block
(passes No. 28–31) shows that this intensity decreased its value in subsequent rolling stands. This was
caused by a decrease in the strain intensity and the strain rate intensity of the studied steel grade
and by an increase in temperature in the deformed strip, especially in the first two stands of the RSM
block. Comparing the numerically determined maximum values of stress intensity of the investigated
material (for the stands of the RSM block) with the values obtained during the physical modelling
of the analysed rolling process (Chapter 3.2), they were found be highly convergent. On this basis,
it was found that the rheological properties of the examined steel, friction conditions and heat transfer
coefficients adopted for numerical modelling were correctly determined.

As a result of the numerical modelling of the microstructure development using the QTSteel®

program, the distribution of changes in the austenite grain size in individual passes (Table 8)
was determined.

Table 8. Changes in 20MnB4 steel austenite grain size (Dγ) during 5.5 mm diameter wire rod
rolling process.

Pass No.
Continuous Rolling Mill

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Dγ [µm] 215 120 127 88 84 76 84 67 65 62 70 68 73 64 63 63 44

Pass No.
NTM Rolling Mill Block RSM Rolling Mill Block

18 19 20 21 22 23 24 25 26 27 28 29 30 31

Dγ [µm] 43 17 17 17 18 17 18 19 20 42 21 19 18 18

On the basis of preliminary studies, it was established that in the analysed process the initial grain
size of 20MnB4 austenite was about 200 µm. The data in Table 8 shows that, during the rolling process,
the average austenite grain size gradually decreased, reaching 44 µm in the last continuous mill stand
(pass No. 17). In the first pass, the strain value was too low (0.18) to start recrystallization, and the
austenite grain expanded as a result of the long break time after deformation. Analysing the data
for the first 17 passes, a slight increase in the austenite grain size of the tested steel was observed in
passes No. 3, 7, 11 and 13. This could be caused by a lack of recrystallization resulting from a too low
strain value, which was less than the critical value necessary to start the softening processes, and in
the case of exceeding this value, a too short break time between deformations. During the rolling
of the studied steel grade in the first stand of the NTM block (pass No. 18), the austenite grain size
was 43 µm. During the deformation of the investigated steel in subsequent stands of the NTM block
(passes No. 18–26), the austenite grain size was in the range of 17–20 µm. In the last rolling stand of
the NTM block, the austenite grain size was 42 µm. As a result of the deformation of the examined
material in the first rolling stand of the RSM block (pass No. 28), the austenite grain size reached about
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21 µm. During strip deformation in subsequent rolling stands of the RSM block, the austenite grain
size decreased to 18 µm.

The percentage share of individual components of the microstructure on the cross-section of
20MnB4 steel wire rod is shown in Figure 6. As results from the data presented in Figure 6 show,
during the cooling of the wire rod immediately after the rolling process the percentages of individual
phases changed from 88% ferrite and 12% perlite for the cooling rate of 0.6◦C/s, to 81% ferrite and
19% perlite when cooling at 15◦C/s. Based on the analysis of the results of numerical modelling of
microstructure development, it was found that in the studied range of temperature and cooling rate
the obtained wire had a ferritic–pearlitic structure. The percentage of individual components of the
microstructure depended on the rate of controlled cooling after the rolling process. At the same time
as the cooling rate increased, a gradual decrease in the ferrite percentage and an increase in the perlite
percentage were observed.
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Figure 7 presents the research results on the impact of the cooling rate on the change in
selected mechanical properties of 20MnB4 steel obtained during numerical modelling using the
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Figure 7. Influence of cooling rate of 5.5 mm diameter wire rod after rolling process on hardness and
mechanical properties.
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Analysing the data presented in Figure 7, it was found that in the examined range of cooling rate
after rolling, both the value of the offset yield strength of the tested steel as well as its tensile strength
increased along with an increase in the cooling rate. After cooling 20MnB4 steel at the rate of 0.6 ◦C/s,
the value of the offset yield strength was about 314 MPa, while the ultimate tensile strength was
512 MPa. However, after cooling the tested material at the rate of 15 ◦C/s, the values of the analysed
parameters increased to 400 MPa in the case of offset yield strength and to 600 MPa in the case of tensile
strength, respectively. Along with an increase in the cooling rate after rolling, a simultaneous increase
in the plasticity reserve (YS / UTS) was also observed, which varied from 0.61 to 0.67.

3.2. Physical Modelling Results

Figure 8 shows the course of changes in yield stress during the physical modelling of the rolling
process of the wire rod in the RSM block, using the GLEEBLE 3800® simulator.
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Figure 8. Change in 20MnB4 steel grade stress during physical modelling of 5.5 mm diameter wire rod
rolling process.

The analysis of the course of changes in the yield stress of the tested steel grade shows that there
is a rapid increase in the initial stage of deformation (to a strain value of about 0.15), caused by a high
strain rate of about 250 s−1. At a later stage of the deformation process (up to a strain value of about
0.8), the yield stress value increased slightly. It can be stated that the stress values obtained during the
physical modelling of the 5.5 mm diameter rolling process in the RSM block are similar to the results
obtained during numerical modelling (Chapter 3.1, Table 7). In the case of physical modelling of the
rolling process of this wire rod, the largest error did not exceed 15%. This also indicates the correctly
determined rheological properties of the examined steel used during numerical studies, and that at
strain rates greater than 250 s−1 the yield stress of the studied steel does not change significantly.
The oscillations of the yield stress of 20MnB4 steel observed in Figure 7 were not due to the material
properties and were caused by the hydraulic system of the GLEEBLE 3800 simulator at the high strain
rate, which was the limit value possible to obtain in the device.

After the physical modelling of the rolling process of the wire rod in the RSM block, samples
were then made for metallographic studies and for testing selected mechanical properties. Selected
mechanical properties were determined from dependences (12) and (13) [60], based on the chemical
composition and the average size of ferrite grain of the investigated steel.

YS = 62.6 + 26(%Mn) + 60(%Si) + 759(%P) + 213(%Cu) + 3286(%N) +
19.7√

Dα
1000

, (12)

UTS = 165 + 54(%Mn) + 100(%Si) + 652(%P) + 473(%Ni) + 635(%C) + 2173(%N) +
11√

Dα
1000

, (13)
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where: %Mn, %Si, %P, %Cu, %N, %Ni, %C—content in mass percent, respectively: manganese, silicon,
phosphorus, copper, nitrogen, nickel, carbon in the steel, Dα—ferrite grain size, µm.

Figure 9 presents examples of the microstructure of the studied steel for several variants of
controlled cooling after the deformation process.
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Figure 9. 20MnB4 steel microstructure after physical modelling of 5.5 mm diameter wire rod rolling
process: (a) cooling method W1-1, magnification 200×; (b) cooling method W1-2, magnification 200×;
(c) cooling method W1-4, magnification 500×; (d) cooling method W1-5, magnification 500×.

The graph of changes in selected mechanical properties of 20MnB4 steel and average ferrite grain
size depending on the cooling rate after the deformation process is shown in Figure 10.Materials 2019, 12, x FOR PEER REVIEW 17 of 24 
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Figure 10. Influence of cooling rate after physical modelling of 5.5 mm diameter wire rod rolling
process on mechanical properties and ferrite grain size of 20MnB4 steel.

Analysing the results of the metallographic studies of 20MnB4 steel after deformation and
controlled cooling according to variant W1-1 (Figure 9a), it can be concluded that the examined steel in
its entire volume had a banded microstructure in the form of alternately arranged bands of ferrite and
perlite. In addition, some heterogeneity in the size and shape of the ferrite grain was observed. Based
on the observations of microstructures obtained after the deformation and cooling process according
to variant W1-2 (Figure 9b), it can be seen that the banding in the tested steel decreased and it occurred
only in some areas of the tested samples. Nevertheless, the microstructure of the tested steel was still
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characterized by heterogeneous ferrite grain size. After the deformation of 20MnB4 steel and cooling
at rates from about 3 ◦C/s to 15 ◦C/s (Figure 9c,d), no microstructure banding was observed in the
tested material. In addition, greater uniformity of the microstructure was found. Only when cooling
was at 15 ◦C/s did the ferrite grains in the 20MnB4 steel begin to take on a somewhat irregular shape.
The research shows that there is an effect of the cooling rate after deformation on the microstructural
structure of the investigated steel. It was found that in the studied cooling rate range, 20MnB4 steel had
a ferritic–pearlitic microstructure. By choosing the right cooling rate for the material after deformation,
a homogeneous fine-grained microstructure without clear banding can be obtained, which will ensure
the required mechanical and technological properties are achieved.

Based on the data presented in Figure 10, it was found that in the studied cooling rate range after
the deformation process there was a simultaneous increase in the yield strength and tensile strength
of the tested steel grade together with an increase in the cooling rate. After cooling 20MnB4 steel at
0.6 ◦C/s, the yield strength was 322 MPa and the ultimate tensile strength was 508 MPa. After cooling
the tested material at the rate of 15◦C/s, the value of the yield strength increased to 433 MPa, while the
ultimate tensile strength increased to 570 MPa. With an increasing cooling rate, the plasticity reserve of
the tested steel (YS/UTS) also increased in the range from 0.63 to 0.76. Comparing the values of the
analysed mechanical properties obtained after numerical and physical modelling (Figures 7 and 10),
they were found to be highly convergent. In the case of the offset yield strength, the largest error was
about 8%, while in the case of tensile strength, less than 7%. Analysing the course of changes in ferrite
grain size (Figure 10), it was found that this size decreased along with an increase in the cooling rate
after deformation in the range from 19 µm to 6 µm.

3.3. Industrial Verification of Numerical and Physical Modelling of Wire Rod Rolling Process

The verification of the numerical and physical modelling of the rolling process of the wire rod
was carried out for two variants differing in the cooling rate in the STELMOR® line (W1-4 and W1-5).
As part of the industrial verification, among others, temperature measurements of the 20MnB4 steel
were carried out at several places in the rolling mill (including before and after the first rolling stand of
the continuous bar rolling mill, before and after the cooling zones located between the continuous mill
and the NTM block, between the NTM and RSM blocks, after the RSM block and STELMOR® line).
Figure 11 shows examples of thermograms for temperature distribution during industrial verification
of the research.
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Figure 11. Thermogram examples of temperature distribution on wire rod surface: (a) before rolling
mill stand No. 1; (b) at entry to roller conveyor of STELMOR® line.

As is apparent from the data presented in Figure 11, the average surface temperature of the 20MnB4
steel charge before the rolling process was about 1055 ◦C, while the average surface temperature of the
wire rod at the beginning of the roller conveyor in the STELMOR® system was about 860 ◦C.

After comparing the measured temperature values with the numerically calculated values
(Chapter 3.1), they were found to be highly compliant (maximum error of 7%). On this basis, it was
found that the rheological properties of the studied steel, friction conditions and heat transfer coefficients
adopted for numerical modelling of the process were correctly determined.
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The next stage of industrial verification was metallographic testing of the received wire rod.
Sample micrographs of the 20MnB4 steel microstructure in the longitudinal and cross-section are
shown in Figure 12.
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Figure 12. Microstructure of 5.5 mm diameter wire rod of 20MnB4 steel after rolling process in
industrial conditions: (a,b) cooling method W1-4; (c,d) cooling method W1-5; (a,c) longitudinal section,
magnification 200×; (b,d) cross-section magnification 500×.

Based on the micrographs of the microstructure of the wire rod obtained in industrial conditions,
cooled after rolling at the rate of 5◦C/s (Figure 11a,b), it can be stated that the obtained product has
a homogeneous ferrite grain size of a ferritic–pearlitic structure with small banding. In this case,
the average ferrite grain size was about 9 µm, while in the longitudinal section it was about 10 µm.
Comparing the average ferrite grain size in the wire rod obtained in industrial conditions with the
average grain size obtained as a result of physical modelling (Chapter 3.2), a high consistency of
the ferrite grain size was found. The error between the ferrite grain size measured on the wire rod
cross-section and obtained during physical modelling was 8%. Nonetheless, the error between the
ferrite grain size measured on the longitudinal section of the received wire rod and obtained as a result
of physical modelling was 3%.

Analysing the results of the metallographic studies of 5.5 mm diameter wire rod cooled at the rate
of 10◦C/s (Figure 12c,d), it was observed that by increasing the cooling rate after rolling, much less
banding of the 20MnB4 steel was obtained. Favourable microstructure fragmentation and even greater
homogeneity in terms of ferrite grain size were also found. The average ferrite grain size on the
cross-section and longitudinal section of the so manufactured wire rod was about 8 µm. The error
between the ferrite grain size measured on the wire rod cross-section and that obtained as a result of
physical modelling was just over 9%. In turn, the error between the ferrite grain size measured on
the longitudinal section of the wire rod and that obtained as a result of physical modelling for this
technological variant was below 1.5%. On this basis, it can be concluded that the average ferrite grain
size obtained in industrial conditions is similar to the grain size obtained by the samples after the
physical modelling of the rolling process according to the analysed variant.

The penultimate stage of industrial verification was testing selected mechanical and technological
properties of the wire rod. Examples of tensile curves (in accordance with PN-EN ISO
6892-1:2016-09 [61]) for the verified variants are shown in Figure 13, while the exact values of
the analysed mechanical and technological properties are given in Table 9. This table also includes the
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values of the total angle of non-dilatational strain and the total longitudinal true strain determined
from the relationships proposed in paper [62]. The data presented in Table 9 are mean values of several
tests carried out for each variant.
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Figure 13. Examples of tensile curves of 5.5 mm diameter wire rod made of 20MnB4 steel: (a) cooling
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Table 9. Mechanical and technological properties of 5.5 mm diameter wire rod made of 20MnB4 steel
after rolling process.

Cooling
Variant

Yield
Strength

YS
[MPa]

Ultimate
Tensile

Strength
UTS [MPa]

Unit
Elongation

A5 [%]

Relative
Reduction of

Area at Fracture
Z [%]

Number
of Twists
to Break

Nt

Number
of Bends
to Break

Nb

Total Angle of
Non-Dilatational

Strain
γ [◦]

Total
Longitudinal
True Strain

εl

W1-4 386 525 33.1 69.4 38.1 26.2 67.3 0.95
W1-5 415 559 29.8 69.7 41.3 29.6 68.9 1.02

Based on the results of the measurements of the mechanical properties of the wire rod obtained
after cooling on a roller conveyor according to variants W1-4 and W1-5, it can be concluded that the
roller wire cooled on a roller conveyor at the rate of 10◦C/s (variant W1-5) had a better complex of
mechanical properties. This wire had higher values for YS by 8% and for UTS by over 6%. At the same
time, there was a 10% decrease in elongation for this wire rod; however, this did not adversely affect
the deformability of the examined wire rod, which was confirmed by the results of the upset tests.
The narrowing of the wire rod for both variants was similar. After cooling the wire rod on a roller
conveyor at the rate of 10 ◦C/s, a favourable increase in the plasticity reserve (YS/UTS) of about 1% was
also found. The wire rod cooled on a roller conveyor at the rate of 10 ◦C/s was also characterized by
higher values for the technological properties. The finished product obtained in these conditions also
had higher values of the total angle of non-dilatational strain and the total longitudinal true strain.

The error between the (average) YS and UTS values determined in the static tensile test and the
theoretically calculated (Chapter 3.1) and analytical dependencies (Chapter 3.2) values did not exceed
9%.

The final stage of industrial research was to determine the capacity of the obtained 20MnB4
steel wire rod for further cold forming. To achieve this aim, studies were carried out in upset tests
in accordance with PN-83/H-04411 [63]) and assessment of the surface quality for possible cracks.
An exemplary view of samples after the upsetting process is shown in Figure 14.
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Figure 14. View of wire rod manufactured in accordance with W1-5 variant after upsetting process
with relative plastic strain: (a) 50%; (b) 67%; (c) 75%.

There were no fractures, cracks or other surface defects on the surface of the upset samples,
even after applying a relative plastic strain of 75% (sample height index after upsetting 0.25).

Based on a comparison of the results received from the values obtained by the numerical and
physical modelling of the analysed rolling mill process, it can be said that high compliance was achieved.

4. Discussion

The speed of implementing the results of theoretical calculations and tests on a laboratory scale in
industrial conditions determines the development and dissemination of new technologies. Industrial
research is the last but usually very expensive element of the implementation process. The costs
of implementing new technologies can be significantly reduced by using modern numerical and
physical modelling methods. Using the abovementioned methods, the conditions for the thermoplastic
processing of 20MnB4 steel wire rods were determined, guaranteeing the receipt of a finished product
with properties far exceeding the minimum requirements of currently applicable standards, which
are similar to the properties of products offered by leading global manufacturers [38]. Based on the
research carried out, the following conclusions were formulated:

- the best cooling variant is the W1-5 variant, in which the cooling rate was 10 ◦C/s—such parameters
of thermoplastic processing ensure that a final product with a favourable complex of mechanical
and technological properties as well as a fine-grained, even microstructure, lacking clear banding
is obtained,

- the wire rod produced in this way has a high yield strength of 0.74 and can be cold deformed
with a relative plastic strain of 75%, without compromising the consistency of the material,

- cooling of the examined steel grade after rolling in the RSM block at the temperature of 850 ◦C
and subsequent controlled cooling in the range of 0.6–15◦C/s ensures that a ferritic–pearlitic
microstructure in the wire rod is obtained,

- in the examined range, an increase in the cooling rate causes an increase in the analysed mechanical
and technological properties of wire rods from 20MnB4 steel,

- in the studied cooling rate range, an increase in the cooling rate caused a simultaneous increase
in the yield strength, tensile strength and yield strength of the investigated steel,

- the results obtained during the industrial verification correspond with high accuracy to the
results obtained from the numerical and physical modelling of the analysed rolling mill process.
This confirms the correct definition of the initial and boundary conditions during numerical
modelling, especially the rheological properties of the tested steel, friction conditions and heat
transfer coefficients.
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Częstochowa, Poland, 2018; ISBN 978-83-63989-64-4, ISSN 2391-632X.

4. Garstka, T.; Dyja, H.; Laber, K.; Koczurkiewicz, B. Experimental study of the power parameters in rolling
process of high carbon steel wire rod. Obrabotka Materialov Davleniem 2015, 3, 246–251.
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stalowych dostosowanych do wymagań konkurencyjnych rynku. cz. 3: Dostosowanie technologii hutniczych do
aplikacyjnych i jakościowych potrzeb rynku (Shaping New Qualities and Rationalizing of the Steel Products Production
Costs Adapted to the Market’s Competitive Requirements. Part. 3: Adaptation of Metallurgical Technologies to the
Application and Quality Needs of the Market); Works of the Iron Metallurgy Institute: Gliwice, Poland, 2000;
Volume 52, pp. 17, 19, 24–25.

43. Kajzer, S.; Kozik, R.; Wusatowski, R. Walcowanie Wyrobów Długich. Technologie Walcownicze; Wyd. Politechniki
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Poland, 2010.

55. Laber, K.; Koczurkiewicz, B. Determination of optimum conditions for the process of controlled cooling of
rolled products with diameter 16.5 mm made of 20MnB4 steel. In Proceedings of the 24th International
Conference on Metallurgy and Materials—METAL 2015, Brno, Czech Republic, 3–5 June 2015; pp. 364–370.

http://dx.doi.org/10.1090/qam/61004


Materials 2020, 13, 711 24 of 24

56. Laber, K. Problemy fizycznego modelowania procesów walcowania walcówki z dużymi prędkościami
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