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Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), has rapidly spread and led to global health crises. COVID-19 causes well-known respiratory
failure and gastrointestinal symptoms, such as diarrhea, nausea, and vomiting. Thus, human gastroin-
testinal cell models are urgently needed for COVID-19 research; however, it is difficult to obtain primary
human intestinal cells. In this study, we examined whether human induced pluripotent stem cell (iPSC)-
derived small intestinal epithelial cells (iPSC-SIECs) could be used as a SARS-CoV-2 infection model. We
observed that iPSC-SIECs, such as absorptive and Paneth cells, were infected with SARS-CoV-2, and
remdesivir treatment decreased intracellular SARS-CoV-2 replication in iPSC-SIECs. SARS-CoV-2 infection
decreased expression levels of tight junction markers, ZO-3 and CLDN1, and transepithelial electrical
resistance (TEER), which evaluates the integrity of tight junction dynamics. In addition, SARS-CoV-2
infection increased expression levels of proinflammatory genes, which are elevated in patients with
COVID-19. These findings suggest iPSC-SIECs as a useful in vitro model for elucidating COVID-19 pa-
thology and drug development.

© 2022 The Authors. Production and hosting by Elsevier B.V. on behalf of Japanese Pharmacological
Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The coronavirus disease 2019 (COVID-19), which emerged in
Wuhan, China, in November 2019, has rapidly spread and led to
global health crises.1,2 Severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) is a causative and pathogenic virus of COVID-
19, with complicated symptoms, including severe pneumonia,
causing an urgent demand for the development of efficient drugs
and medical treatment.3,4
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The infectious processes of SARS-CoV-2 are initiated via host
receptor recognition, membrane fusion, and viral entry into the
target cells. In the host recognition step, SARS-CoV-2 is known to be
absorbed by cells via angiotensin-converting enzyme 2 (ACE2) and
transmembrane serine protease 2 (TMPRSS2), which primes the
SARS-CoV-2 spike protein to facilitate viral cellular entry.5,6 These
receptors are known to be highly expressed in multiple human
organs, such as the lung, heart, and small intestine.

COVID-19 causes well-known respiratory disturbances, heart
failure, and gastrointestinal symptoms, such as diarrhea, nausea, and
vomiting.7,8 Thus, digestive organs, including the small intestine, are
strongly implicated in the pathogenesis and clinical progression of
the disease. Human intestinal cells are essential as in vitromodels for
COVID-19 research,8 while it is not easy to obtain primary human
intestinal cells. In addition, human colon adenocarcinoma-derived
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Caco-2 cells have been widely used to predict intestinal absorption.
However, membrane permeability assays using Caco-2 cells have
some limitations; it takes approximately three weeks to form a
monolayer membrane and Caco-2 cells have different gene expres-
sions, such as components of tight junctions, compared with human
intestinal epithelial cells.

Human-induced pluripotent stem cells (iPSCs) can theoretically
differentiate into nearly all cell types in the human body,9 and are
expected to be a good source for obtaining intestinal cells. Several
groups have successfully developed intestinal cells from human
iPSCs using two-dimensional (2D) or three-dimensional (3D)
organoid culture methods.10e16 Recently, several reports indicate
SARS-CoV-2 infection with human intestinal organoids.17,18 SARS-
CoV-2 infection was effectively inhibited by remdesivir and a
coronavirus fusion inhibitor EK1.17 Despite these applications of 3D
organoids, it has not been fully understood whether SARS-CoV-2
infection affects biological properties, such as permeability, in hu-
man iPSC-derived intestinal models.

In this study, we investigated whether human iPSC-derived
small intestinal epithelial cells (iPSC-SIECs) could be used as a
SARS-CoV-2 infection model. We observed that iPSC-SIECs,
including absorptive and Paneth cells, were successfully infected
with SARS-CoV-2. Furthermore, SARS-CoV-2 infection decreased
transepithelial electrical resistance (TEER) and increased the
expression of proinflammatory genes. Remdesivir reversed the
decrease in TEER and inhibited the induction of proinflammatory
genes. These results suggest that human iPSC-SIECs provide a
useful 2D culture model for elucidating intestinal pathology in
COVID-19.
2. Materials and methods

2.1. Chemicals

Remdesivir was obtained from Selleck Chemicals (Houston, TX).
Penicillin-streptomycin mixture (PS) was obtained from Thermo
Fisher Scientific (Waltham, MA, USA). All other reagents were of
analytical grade and were obtained from commercial sources.
2.2. Cell culture

TMPRSS2-expressing VeroE6 (JCRB, 1819) cells were obtained
from JCRB and cultured in Dulbecco's modified Eagle's medium
(DMEM) supplemented with 5% fetal bovine serum (FBS; Biological
Industries, Ashrat, Israel) and 0.05 mg/ml PS at 37 �C in an atmo-
sphere containing 5% CO2. The iPSC-SIECs were purchased from
Fujifilm Wako and maintained according to the manufacturer's
instructions.19
2.3. SARS-CoV-2 infection

The SARS-CoV-2 strain JPN/TY/WK-52120 was distributed by the
National Institute of Infectious Diseases in Japan. After pretreat-
ment with remdesivir (1 mM) for 1 h, the cells were infected with
SARS-CoV-2 at a multiplicity of infection (MOI) of 1 for 24 h. After
infection, intracellular RNAwas extracted using the CellAmp Direct
RNA Prep Kit (Takara Bio, Shiga, Japan), according to the manu-
facturer's instructions. Quantitative real-time PCR was performed
using TaqMan Fast Virus 1-Step Master Mix (Thermo Fisher Sci-
entific), 2019-nCoV RUO Kit (Integrated DNA Technologies, Coral-
ville, Iowa, USA), and 2019-nCoV_N positive control (Integrated
DNA Technologies) with a QuantStudio 7 Flex Real-Time PCR Sys-
tem (Thermo Fisher Scientific).
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2.4. Plaque assay

The plaque assay was performed as previously described.21

Briefly, VeroE6/TMPRSS2 cells were seeded in 12-well plates and
incubated with serially diluted cell culture supernatant stock at
24 h post-infection. After 1 h of incubation, the medium was
replacedwith 1%methylcellulose-containingmedium, and the cells
were cultured for 72 h. The cells were then fixed with 4% para-
formaldehyde and stained with methylene blue. The number of
plaques was counted to determine the virus titers.

2.5. Immunocytochemistry

Immunocytochemistry was carried out as previously
described.22 Briefly, the cells were fixed, permeabilized, blocked,
and incubated with primary antibodies against SARS-CoV-2
nucleocapsid (1:100; GeneTex, Irvine, CA, USA), SARS spike glyco-
protein (1:100; Abcam, Cambridge, UK), villin-1 (1:100; Cell
Signaling Technology, Danvers, MA, USA), lysozyme (1:100;
Thermo Fisher Scientific), mucin-2 (1:100; Santa Cruz Biotech-
nology, Santa Cruz, CA, USA), and chr-A (1:100; Santa Cruz
Biotechnology) at 4 �C. The cells were then incubated with Alexa
488-conjugated (1:200; Thermo Fisher Scientific) or Alexa 594-
conjugated (1:200; Thermo Fisher Scientific) secondary anti-
bodies for 1 h at room temperature. Nuclei were counterstained
with 40,6-diamidino-2-phenylindole DAPI (Nacalai Tesque, Kyoto,
Japan). The cells were mounted in SlowFade (Thermo Fisher Sci-
entific) and examined under a confocal laser-scanning microscope
(Nikon A1; Nikon, Tokyo, Japan).

2.6. Measurement of TEER

The TEER of Transwell monolayer cultures wasmeasured using a
Millicell ERS-2 volt-ohm meter (Millipore, Bedford, MA, USA), as
previously reported.23 TEER values in the absence of cells were used
as a blank and subtracted from all cell values.

2.7. Quantitative reverse transcription-polymerase chain reaction
(RT-qPCR)

RT-qPCR was conducted as previously reported.24 Briefly, total
RNA was isolated from iPSCs using TRIzol reagent (Thermo Fisher
Scientific). Total RNA of human adult intestine was purchased from
BioChain (Hayward, CA, USA). RT-qPCR was performed using a
QuantiTect SYBRGreen RT-PCR kit (Qiagen, Valencia, CA, USA) on an
ABI PRISM 7900HT sequence detection system (Applied Bio-
systems, Foster City, CA, USA). Primer sequences are listed in
Table 1. The target transcript levels were normalized to the mRNA
levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) us-
ing the DD Ct method.

2.8. Statistical analyses

All data are presented as mean ± standard deviation (SD). P
values were calculated using a two-sided unpaired Student's t-test.
Statistical significance was set at P < 0.05.

3. Results

3.1. SARS-CoV-2 infection in human iPSC- SIECs

First, we examined whether iPSC-SIECs were infected with
SARS-CoV-2. The entry of SARS-CoV-2 into target cells is initiated
by the binding of the spike protein to ACE2.6 The spike protein is
cleaved by the TMPRSS2 serine protease and triggers viral entry



Table 1
PCR primers for RT-qPCR.

Target gene Forward primer sequence Reverse primer sequence

ACE2 CATTGGAGCAAGTGTTGGATCTT GAGCTAATGCATGCCATTCTCA
TMPRSS2 CAGGAGTGTACGGGAATGTGATGGT GATTAGCCGTCTGCCCTCATTTGT
Villin-1 CGGAAAGCACCCGTATGGAG CGTCCACCACGCCTACATAG
Lysozyme CCCTGGTCAGCCTAGCACTC CCTTGCCCTGGACCGTAACA
Mucin-2 GAGGGCAGAACCCGAAACC GGCGAAGTTGTAGTCGCAGAG
Chr-A TAAAGGGGATACCGAGGTGATG TCGGAGTGTCTCAAAACATTCC
ZO-1 CAACATACAGTGACGCTTCACA CACTATTGACGTTTCCCCACTC
ZO-2 ATGGAAGAGCTGATATGGGAACA TGCTGAACTGCAAACGAATGAA
ZO-3 GCTTTGGCATTGCGATCTCTG GATGTGGTCGCCTGTCTGTAG
CLDN1 CCTCCTGGGAGTGATAGCAAT GGCAACTAAAATAGCCAGACCT
CLDN2 GCCTCTGGATGGAATGTGCC GCTACCGCCACTCTGTCTTTG
IL-1b CTCGCCAGTGAAATGATGGCT GTCGGAGATTCGTAGCTGGAT
IL-6 ACTCACCTCTTCAGAACGAATTG CCATCTTTGGAAGGTTCAGGTTG
CCL2 CAGCCAGATGCAATCAATGCC TGGAATCCTGAACCCACTTCT
CCL3 AGTTCTCTGCATCACTTGCTG CGGCTTCGCTTGGTTAGGAA
CCL5 CCAGCAGTCGTCTTTGTCAC CTCTGGGTTGGCACACACTT
CXCL10 GTGGCATTCAAGGAGTACCTC TGATGGCCTTCGATTCTGGATT
GAPDH GTCTCCTCTGACTTCAACAGCG ACCACCCTGTTGCTGTAGCCAA

Fig. 1. SARS-CoV-2 infection in human iPSC-SIECs. (A) The expression levels of ACE2 and TMPRSS2 in iPSC-SIECs and adult intestines were examined by RT-qPCR. (B) After the cells
were infected with SARS-CoV-2 (MOI ¼ 1, 2.5) for indicated time courses, the intracellular viral copy number was determined by RT-qPCR. (C) The relative value of SARS-CoV-2 copy
number was indicated with the infectious condition at MOI ¼ 1 for 24 h as 100%. (D) After SARS-CoV-2 infection (MOI ¼ 1) for 24 h, the cells were stained with antibodies against
SARS-CoV-2 nucleocapsid and SARS spike glycoprotein. Nuclei were counterstained with DAPI. Bar ¼ 20 mm. Data are represented as mean ± standard deviation (SD; n ¼ 3).
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into the target cell. RT-qPCR analysis revealed that iPSC-SIECs
expressed ACE2 and TMPRSS2 to a similar extent as in the adult
intestine (Fig. 1A). We determined the optimal infection conditions
141
for human iPSC-SIECs. As shown in Fig.1B, iPSC-SIECs were infected
with SARS-CoV-2 at an MOI of 1 or 2.5 at different time courses
(24e72 h). We observed that the intracellular SARS-CoV-2 copy
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number was the highest after 24 h of infection (Fig. 1B and C). Since
there was no significant difference in copy number even if the MOI
was raised above 1, we infected iPSC-SIECs with SARS-CoV-2 at an
MOI of 1 for 24 h. The immunocytochemical analysis confirmed
that iPSC-SIECs expressed SARS-CoV-2 protein (Fig.1D). In addition,
RT-qPCR analysis revealed that iPSC-SIECs mainly expressed villin-
1 (absorptive cell marker)-positive cells at a level comparable to
that of the adult intestinal tissue (Fig. 2A). We further performed
co-immunostaining for viral proteins with intestinal cell type-
specific markers. Viral proteins were detected in villin-1 (absorp-
tive cell marker) and lysozyme (Paneth cell marker)-positive cells,
where lysozyme-positive intracellular granules did not contain
viral proteins (Fig. 2B). Conversely, mucin-2 (a goblet cell marker)
and chr-A (an endocrine cell marker) were not co-immunostained
with viral proteins (Fig. 2B). These findings suggest that SARS-CoV-
2 infects iPSC-SIECs, mainly absorptive and Paneth cells.

3.2. Effect of remdesivir on SARS-CoV-2 infection in iPSC-SIECs

To examine whether antiviral drugs can be evaluated in iPSC-
SIECs, we investigated the effect of remdesivir on SARS-CoV-2
infection. Remdesivir, a nucleotide analog developed for the treat-
ment of Ebola virus, has been used as a pharmacological tool to
inhibit viral RNA synthesis and clinical treatment against COVID-
19.25 Treatment with remdesivir (1 mM) at 1 h pre-infection
Fig. 2. Cell-type-specific incorporation of SARS-CoV-2 in human iPSC-SIECs. (A) The e
examined by RT-qPCR. (B) After SARS-CoV-2 infection (MOI ¼ 1) for 24 h, the cells were st
Nuclei were counterstained with DAPI. Bar ¼ 20 mm. Data are represented as mean ± stand
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decreased the intracellular SARS-CoV-2 copy number by 99%
(Fig. 3A). The plaque assay indicated that the SARS-CoV-2 viral titer
was reduced by remdesivir in the cells (Fig. 3B). These findings
suggest that human iPSC-SIECs may be useful for the evaluation of
COVID-19 drugs.

3.3. Effect of SARS-CoV-2 infection on the intestinal epithelial
integrity

To investigate the effects of SARS-CoV-2 infection on intestinal
function, we focused on the intestinal epithelial barrier. We
measured an epithelial barrier indicator after iPSC-SIECs were
seeded in a 24-well Transwell plate to generate epithelial mono-
layers. The SARS-CoV-2 infection resulted in a 67% reduction in the
TEER. Remdesivir treatment partially reversed this decrease in
TEER levels (Fig. 4A). In the intestinal mucosa, the epithelial barrier
is mainly formed by a 3D structure of monolayer cells with inter-
cellular tight junctions (TJ).26 Reportedly, SARS-CoV-2 infection
causes airway epithelial damage, including TEER decrease, with
disruption of ZO expression.27 Thus, to clarify the mechanism
underlying intestinal barrier disruption by SARS-CoV-2, we
examined the expression of representative tight junction marker
genes (ZO-1, ZO-2, ZO-3, CLDN1, and CLDN2) of intestinal epi-
thelium.28e30 We observed that SARS-CoV-2 infection decreased
the expression of several genes, such as ZO-3 and CLDN1, which
xpression levels of cell-type-specific markers in SIECs and the adult intestine were
ained with antibodies against cell-type specific markers and SARS spike glycoprotein.
ard deviation (SD; n ¼ 3).



Fig. 3. Effect of remdesivir on SARS-CoV-2 infection in human iPSC-SIECs. (A) Cells were treated with remdesivir (1 mM) 1 h before SARS-CoV-2 infection (MOI ¼ 1) for 24 h. The
intracellular viral copy number was determined by RT-qPCR. Left panel: SARS-CoV-2 RNA copies per well. Right panel: Normalized value of SARS-CoV-2 RNA copies against vehicle
control as 100%. (B) After the cells were treated with remdesivir and infected with SARS-CoV-2, viral titers in the culture supernatants were determined by plaque assay in Vero E6
cells. Data are represented as mean ± SD (n ¼ 3). *P < 0.05.
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were reversed by remdesivir treatment (Fig. 4B and C), suggesting
that SARS-CoV-2 disrupts tight junction marker expression and
intestinal epithelial barrier integrity.
3.4. Effect of SARS-CoV-2 infection on inflammatory responses

Clinical studies have reported that plasma cytokines and che-
mokines, such as IL-1b, IL-6, CCL2, CCL3, CCL5, and CXCL10, increase
in patients with COVID-19 and may result in an excessive inflam-
matory response and subsequent cytokine storm.31e34 We exam-
ined these inflammatory responses to investigate further the effect
of SARS-CoV-2 infection on the intestinal epithelial barrier. As
shown in Fig. 5, SARS-CoV-2 infection increased the expression of
proinflammatory genes such as IL-1b, IL-6, CCL2, CCL3, CCL5, and
CXCL10. In addition, remdesivir treatment reduced the induction of
these cytokines and chemokines (Fig. 5). These results suggest that
SARS-CoV-2 infection induces an inflammatory response in the
intestinal epithelium.
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4. Discussion

In this study, we demonstrated SARS-CoV-2 infection by using
iPSC-SIECs. We observed that absorptive and Paneth cells in the
iPSC-SIECs were infected with SARS-CoV-2. In addition, we
observed that SARS-CoV-2 infection decreased TEER and increased
the expression of proinflammatory genes. However, remdesivir
treatment recovered the decrease in TEER and induction of proin-
flammatory genes by SARS-CoV-2.

We observed that SARS-CoV-2 infection was observed in the
absorptive and Paneth cells (lysozyme-positive intracellular gran-
ules did not contain viral proteins) but not in the goblet and
endocrine cells. Although Krüger reported that SARS-CoV-2 infects
Paneth and endocrine cells but not goblet cells by co-staining
analysis using intestinal organoids,17 we were unable to detect vi-
ruses in endocrine cells, which secrete multiple hormones, such as
chr-A.35 Goblet cells are also known to synthesize and secrete
mucus.35 Thus, we consider the possibility that SARS-CoV-2 is less
likely to infect secretory cell types. However, further studies are



Fig. 4. Effect of SARS-CoV-2 infection on the intestinal epithelial barrier. (A) Cells were seeded in Transwell chambers. After the cells were treated with remdesivir and infected
with SARS-CoV-2 for 24 h, the TEER values across monolayers were measured. (B) After the cells were infected with SARS-CoV-2 for 24 h, tight junction marker genes (ZO-1, ZO-2,
ZO-3, CLDN1, CLDN2) were analyzed by RT-qPCR. (C) After the cells were treated with remdesivir and infected with SARS-CoV-2 for 24 h, tight junction marker genes (ZO-3, CLDN1)
were analyzed by RT-qPCR. Data are represented as mean ± SD (n ¼ 3). *P < 0.05.

Fig. 5. Effect of SARS-CoV-2 infection on inflammatory responses. Cells were treated with remdesivir (1 mM) 1 h before SARS-CoV-2 infection (MOI ¼ 1) for 24 h. Inflammatory
response genes (IL-1b, IL-6, CCL2, CCL3, CCL5, and CXCL10) were analyzed by RT-qPCR. Data are represented as mean ± SD (n ¼ 3). *P < 0.05.
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required to determine the characteristics of cell types that are
susceptible to SARS-CoV-2.

SARS-CoV-2 infection caused a reduction in the TEER value via
ZO-3 and CLDN1 downregulation. Since disruption of ZO-3 or CLDN1
expression has been reported to impair tight junction assembly and
paracellular flux regulation,36,37 both genes are considered to play a
crucial role in the maintenance of intestinal barrier integrity.
Epithelial barrier impairment increases the risk of various intestinal
144
diseases, including inflammatory bowel diseases, which cause
nausea, vomiting, and diarrhea.38 Thus, this barrier injury of the
intestinal mucosa by viral infection could be a causative factor of
COVID-19-induced gastrointestinal symptoms.

Furthermore, we observed that SARS-CoV-2 infection increased
the expression of proinflammatory genes in SIECs. Increased levels
of cytokines have often been reported in patients with severe
COVID-19.31e34 Autopsy reports of fatal COVID-19 patients have
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also indicated widespread systemic inflammation involving the
gastrointestinal tract.39 Proinflammatory cytokines are generally
known to have a drastic effect on TJ expression, which significantly
affects the epithelial barrier. For example, IL-1b exposure to intes-
tinal epithelial Caco-2 cells reportedly disrupts the integration of TJ
via the NF-kB pathway and reduces the TEER value.40 In the case of
the human airway epithelium, SARS-CoV-2 infection is reported to
distort ZO expression, causing barrier dysfunction (TEER
decrease),27 presumably caused by inflammatory cytokine pro-
duction. Since IL-1bwas upregulated in SARS-CoV-2 infected SIECs,
TJ regulatory mechanisms may mediate viral infection-induced
barrier impairment. The intestinal epithelial inflammatory
response is known to regulate immune cells against pathogens. In
the gut mucosal environment, CCL2, CCL3, CCL5, and CXCL10 are
involved in the recruitment, activation, and migration of various
immune cells (T lymphocytes, macrophages, monocytes, NK cells,
and immature dendritic cells).41,42 In addition, IL-6 has been shown
to cause TEER disruption via negative TJ regulator CLDN2 in Caco-
2 cells.43 In contrast, serum levels of IL-6 has not been linked with
gastrointestinal symptom in patient with COVID-19.44 Although
increased fecal CCL-28 was observed in the COVID-19 patients with
diarrhea,45 CCL-28 has not been correlated with SARS-CoV2 infec-
tion or gastrointestinal symptoms.44 Increased IL-23 level has been
reported in the stools of the COVID-19 patients.46 RT-qPCR analysis
revealed that IL-23 was below the limit of detection in human iPSC-
SIECs with or without SARS-CoV2 infection (data not shown). The
upregulation of various cytokines is considered an intestinal
defensive response after viral infection. Future studies should
investigate the pathophysiological role of these inflammatory re-
sponses to SARS-CoV-2 infection in human organs in detail,
including the digestive tract.

We also observed that remdesivir suppressed SARS-CoV-2
infection and recovered the SARS-CoV-2-induced barrier damage
and inflammatory responses. There has been reported the clinical
characteristics of COVID-19 patients with gastrointestinal symp-
toms, including nausea, vomiting and diarrhea.7,8,31 In this study,
we indicated that these gut injuries were possible to be caused by
mucosal barrier dysfunction and inflammatory responses after
SARS-CoV-2 infection. Our results indicated the recovery of intes-
tinal function by remdesivir; clinical data using remdesivir are
expected to analyze in COVID-19 patients with gastrointestinal
symptoms. In consistent with these findings, clinical research has
been reported that remdesivir prevents cytokine storm in COVID-
19 patients,47 which suggest that remdesivir further improves
gastrointestinal symptoms of the patients. However, antiviral
drugs, including remdesivir, widely used in the treatment of
COVID-19 patients have been known to contain gastrointestinal
side effects, such as nausea, vomiting and diarrhea.48,49 Thus,
further research of prediction and alleviation of drug-induced side
effects should be also progressed using human iPSC-SIECs.

In conclusion, we have demonstrated that human iPSC-SIECs are
permissive to SARS-CoV-2 infection and could be used to evaluate
the effectiveness of remdesivir against SARS-CoV-2-induced in-
testinal impairment. Thus, human iPSC-SIECs may be useful as 2D
models for drug development.
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