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Abstract: Piceatannol (PIC) is a naturally occurring polyphenolic stilbene, and it has pleiotropic
pharmacological properties. Moreover, PIC has cytotoxic actions among various cancer cells. In
this work, preparations of PIC-loaded bilosome–zein (PIC-BZ) were designed, formulated, and
characterized, and the optimized PIC-BZ cytotoxic activities, measured as half maximal inhibitory
concentration (IC50), against lung cancer cell line was investigated. Box–Behnken design was
utilized in order to examine the effect of preparation factors on drug entrapment and particle
size. PIC-BZ showed a spherical shape after optimization, and its particle size was determined as
157.45 ± 1.62 nm. Moreover, the efficiency of drug entrapment was found as 93.14 ± 2.15%. The
cytotoxic activity evaluation revealed that the adjusted formulation, which is PIC-BZ formula, showed
a substantially smaller IC50 versus A549 cells. Cell cycle analysis showed accumulation of cells in the
G2-M phase. Moreover, it showed in the sub-G1 phase, a rise of cell fraction suggestion apoptotic
improving activity. Increased early and late phases of apoptosis were demonstrated by staining of
cells with annexin V. Furthermore, the cellular caspase-3 protein expression was significantly raised
by PIC-BZ. In addition, the wound healing experiment confirmed the results. To conclude, compared
to pure PIC, PIC-BZ demonstrated a higher cell death-inducing activity against A549 cells.

Keywords: piceatannol; bilosomes; zein; A549cells; apoptosis

1. Introduction

Lung cancer is a malignant lung tumor characterized by unregulated proliferation of
lung tissue body cells. The tumor cells growth, by the process of metastasis, can spread
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outside the lung into nearby tissues or other body areas. The majority of cancers that
start in the lung are carcinomas [1]. The standard treatment strategies for this disorder
are chemotherapy and/or surgery. Natural products are receiving significant interest as
chemotherapeutic agents for cancer [1,2]. A broad variety of chemical groups of plant active
ingredients have been investigated for their potential role in lung cancer treatment [3–5].
The active ingredients include polyphenols and alkaloids [6]. A phenolic compound named
piceatannol (PIC) belongs to the stilbenoids class. PIC is a resveratrol metabolite with
many pharmacological effects, including anti-tumor activity. There have been studies of
PIC cytotoxicity against lymphoma, melanoma, leukemia, and colon and prostate cancer
cells [7]. Furthermore, PIC synergizes cancer chemotherapeutics with anti-cancer activities
to overcome drug resistance [8]. Apoptosis protein suppression, mitochondrial fission, and
gene regulation are thought to induce this activity. There are other reports that indicate
stilbenes act as apoptosis inducers and multidrug resistance modulators [9]. In cancer
management, the anti-cancer activity of PIC is promising. As an explanation for this finding,
promotion of apoptosis through upregulation of mRNA expression is provided [10].

Nanotechnology has shown a leading role in enhancing chemotherapeutic drugs for
cancer. It is essential to note that PIC albumin nanoparticles have been reported to be
effective in a murine colon cancer model [11]. Although all kinds of nanostructures are
stated to be utilized as anti-cancer agents, there are some specific advantages of lipid-based
systems. Because of their lipophilic nature, their ability to penetrate the biological-barriers
is more effective than the nano-structure polymer [12]. In the pharmaceutical field, lipid-
based vesicular systems have been extensively studied as carriers in order to improve drug
bioavailability and/or facilitate their targeting to certain tumors or organs selectively [13].
The first generation of such systems is called liposomes. To further enhance the drug
stability and delivery features of such systems, modified vesicular systems, which are
structurally similar to liposomes, have recently appeared. The use of nano-colloidal drug
delivery systems is among the numerous techniques used to improve drug–receptor inter-
action. Researchers are introducing certain techniques to deal with impediments associated
with the difficulties of supplying individual target tissues with the needed therapeutic
moieties. Vesicular carriers are one form of nano-colloidal system that has gained a large
amount of attention for distributing poorly soluble drugs and proteins/peptides [14–17].
There are various structures in vesicular carriers, including unilamellar or multilamellar
spherical structures, often consisting of lipid molecules organized into orientation bilayers
and capable of encapsulating drug molecules [18–20]. The capacity of traditional vesicular
carriers such as niosomes and liposomes to increase the oral bioavailability of therapeutic
agents has been shown. However, since traditional vesicles’ efficacy has been hampered by
their gastrointestinal track instability, it was important to modify their bilayer constructs in
order to increase their in vivo efficiency [20,21].

Lately, several research efforts have demonstrated the feasibility of introducing bile
salts into bilayer vesicles in order to increase their in vivo tolerance and efficiency after
oral route administration [22–25]. Bile salts, which are endogenous detergents, are applied
as permeability enhancers in drug delivery. Therefore, they facilitate the penetration of
active pharmaceutical ingredients (APIs) across biological barriers, including the blood–
brain barrier, intestinal wall, skin, cornea, and the nasal mucosa. Bilosomes, which are
bile salts containing niosomes, have been utilized to improve the oral bioavailability of
different medications and macromolecules [26–30]. They include closed bilayer vesicles of
non-ionic amphiphiles with incorporating bile salts. In previous research, the potential of
utilizing bilosomes in order to allow successful drug delivery has been confirmed [26–30].
Bilosomes are more resistant against gastrointestinal fluids, such as enzyme and bile salts,
due to the presence of bile salts in the lipid bilayers, thereby protecting the entrapped
APIs [31–33]. The use of negatively charged bile salts (such as sodium deoxycholate)
improves the vesicular system’s stability [34,35].

Zein is a prolamine class maize protein that was first isolated in 1821 [36]. The
characteristics of zein broadened its application as a coating and encapsulating material in
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both food and pharmaceutical industries [37–44]. The U.S. Food and Drug Administration
classified zein as Generally Recognized as Safe (GRAS) material [45].

The aim of this work was to evaluate the efficacy of PIC-loaded bilosome–zein (BZ)
nanoparticles in suppressing A549 lung cancer cells. Response surface design was utilized
for the formulation of PIC-BZ. The optimized PIC-BZ was characterized for vesicle size en-
trapment and PIC release. Moreover, the optimized PIC-BZ formula was evaluated in terms
of IC50, pro-apoptotic activity, and wound healing inhibition in A549 lung cancer cells.

2. Materials and Methods
2.1. Materials

PIC, cholesterol, zein, sodium deoxycholate, chloroform, methanol, and acetonitrile
were obtained from Sigma-Aldrich Inc. (St. Louis, MI, USA). A549 cells were obtained
from NCCS, Pune, India. All the other chemicals and reagents were of the analytical grade.

2.2. Experimental Design

Response surface design, specifically Box–Behnken, was utilized in order to prepare
PIC-BZ using version 12 of Design-Expert software (Stat-Ease Inc., Minneapolis, MN, USA).
There are 3 separate variables, namely, cholesterol: Span 20 molar ratio (X1), bile salt molar
concentration (X2, mM), and zein concentration (X3, %w/w) that were studied for their
effects on the response and particle size (Y). Table 1 shows the levels of the investigated
factors. As per the design, 17 experimental trials were generated by the software, including
5 center points.

Table 1. Formulation variables’ levels and particle size constraint used in the Box–Behnken design
for the formulation and optimization of PIC-BZ.

Independent Variables
Levels

(−1) (0) (+1)

X1: Cholesterol/span ratio 1:2 1:3 1:4
X2: Bile salt molar concentration (mM) 0.250 0.375 0.500

X3: Zein concentration (%w/w) 5.0 7.5 10.0

Responses Desirability Constraints

Y1: Particle size (nm) Minimize
Abbreviations: PIC-BZ, piceatannol-loaded bilosome–zein.

Table 2 displays the overall calculated particle size for each trial as well as the cu-
mulative levels of the factors for the study runs. The best-fitting sequential model was
chosen on the basis of the model fit statistical results. The selection was performed on the
basis of the greatest adjusted and predicted R2 and the least predicted residual sum of
squares (PRESS). 2D contour plots were utilized to display the effect of the factors and the
interaction between them.

2.2.1. Preparation of PIC-BZ

A modified thin-film hydration procedure was used in order to prepare PIC-BZ, as
previously described [29,46]. Briefly, PIC (20 mg), cholesterol, and Span 85 (amount as
indicated in the design of the experiment) were dissolved in 10 mL chloroform. A specified
amount of zein, according to the design, was dissolved in methanol and then mixed with
the chloroform solution in a round bottom flask. Under reduced pressure at 65 ◦C, the
organic solution was evaporated using a rotary evaporator until a thin and dry film was
formed. Then, the formed film was kept at 25 ◦C in a vacuum oven for 24 h to confirm
the full removal of the residues of organic solvent. Sodium deoxycholate was dissolved
in double-distilled water (10 mL) and hydrated the dried film under rotation for 1 h. The
formed PIC-BZ dispersion was subjected to sonication for 5 min (water bath sonicator at
25 ◦C), followed by probe sonication for 60 s, then stored at 4 ◦C until use.
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Table 2. Variables levels and observed particle size for PIC-BZ experimental runs prepared according to Box–Behnken design.

Experimental Run #
Independent Variables

Particle Size (nm) ± SDCholesterol/Span Molar
Ratio

Bile Salt Concentration
(mM)

Zein Concentration
(%w/w)

F1 1:2 0.375 10.0 459.2 ± 16.3
F2 1:3 0.375 7.5 215.8 ± 7.6
F3 1:4 0.375 5.0 173.4 ± 5.9
F4 1:4 0.250 7.5 239.2 ± 8.1
F5 1:4 0.375 10.0 280.3 ± 9.8
F6 1:3 0.375 7.5 226.5 ± 4.2
F7 1:3 0.250 5.0 274.6 ± 6.9
F8 1:2 0.375 5.0 296.2 ± 12.8
F9 1:2 0.250 7.5 397.8 ± 13.1
F10 1:3 0.250 10.0 411.1 ± 12.9
F11 1:3 0.375 7.5 221.1 ± 6.5
F12 1:3 0.500 5.0 189.3 ± 3.9
F13 1:3 0.375 7.5 216.9 ± 7.9
F14 1:3 0.500 10.0 297.8 ± 13.6
F15 1:2 0.500 7.5 285.3 ± 9.8
F16 1:3 0.375 7.5 218.9 ± 5.8
F17 1:4 0.500 7.5 159.6 ± 4.6

Abbreviations: PIC-BZ, piceatannol-loaded bilosome–zein; SD, standard deviation.

2.2.2. Measurement of Particle Size

PIC-BZ vesicle size was determined by appropriate dilution in double-distilled water
(1:10) using a Zetasizer Nano ZSP particle size analyzer instrument (Malvern, UK).

2.2.3. Optimization of PIC-BZ

The examined PIC-BZ preparation parameters were optimized utilizing a numerical
approach subsequent desirability technique. The optimization process aimed at minimizing
the size of the prepared PIC-BZ. The predicted optimized formulation was prepared for
further characterization.

2.3. Characterization of Optimized Formulation
2.3.1. PIC-BZ Entrapment Determination

Analysis of the API content of emulsomes relative to the overall concentration added
was used to evaluate the efficacy of entrapment of PIC in emulsomes. As a result,
n-propanol (50 percent v/v) in PBS was used to disrupt a pre-weighted component of
the emulsomes (pH 7.4).

The prepared PIC-BZ was exposed to centrifugation for 45 min at 30,000 rpm (2 cycles).
After that, a pre-weighed amount of lyophilized PIC-BZ was exposed to disruption with
n-propanol (50% v/v) in phosphate-buffered saline (PBS) at pH 7.4 and then subjected
to HPLC analysis (Agilent 1200, Agilent Technologies, Santa Clara, CA, USA) [47]. The
entrapped PIC% was calculated using Equation (1).

Entrapped PIC (%) =
amount of PIC in BZ
amount of PIC used

× 100 (1)

2.3.2. PIC release from the Optimized PIC-BZ Formula

The PIC in vitro release from the BZ was calculated after a stated method [11,48]. The
release analysis was carried out with 0.1 M PBS at pH 7.4 containing Tween 80 (0.1%). A
sufficiently pre-weighed volume of PIC-BZ containing 2 mg was attached to a previously
activated dialysis bag (MWCO = 12,000 Da). The temperature of the sample placed in the
dialysis bag was set at 37 ◦C in a water bath shaker. Then, several samples were withdrawn
at different periods, including 0.5, 1, 2, 4, 6, 8, 10, 12, 18, and 24 h. After that, PIC amount
released was analyzed by utilizing an HPLC method as previously reported [47]. This
experiment was performed in triplicate.
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2.3.3. Determination of IC50 Values

In this part, the process involved seeding of A549 cells in Glutamax containing
DMEM/F12 medium (Gibco-Life Technologies, Rockville, MD, USA). It was also sup-
plemented with 10 mM HEPES buffer, fetal bovine serum (10%), penicillin G sodium
(100 units/mL), and streptomycin sulfate (100 µg/mL). The prepared cells were then incu-
bated with various concentrations of plain-BZ, PIC, or PIC-BZ (dispersed in the cell culture
medium) in a CO2 incubator at logarithmic intervals of 48 h at 37 ◦C. In order to determine
the IC50 values, we employed a MTT assay method as previously described [49].

2.3.4. Cellular Uptake Analysis of Optimized PIC-BZ

The A549 cells were incubated overnight (1 × 105 cells per dish). The cells were
incubated at 37 ◦C in the presence of 5% CO2 for 2 and 4 h after being treated with 5.3 µM
PIC-BZ, as well as equivalent concentrations of PIC. The monolayers were washed three
times with PBS, and then a lysis solution (PBS containing 0.025% trypsin and 1% Tween 20)
was added for 30 min at 37 ◦C. Aliquots of the cell lysates were collected and analyzed by
HPLC [47].

2.3.5. Cell Cycle Analysis

The cell cycle DNA distribution was determined using a FACS Calibur flow cytometer
instrument (BD Bioscience, San Jose, CA, USA) as previously described [50–52]. In brief,
many plates (6-well cell culture) were utilized and seeded with about 5 × 103 A549 cells
per well. Subsequently, 0.1 µM PIC-BZ was added to the seeded cells. After that, for 24
h, an equivalent amount of Blank-BZ, PIC-raw, and PIC-BZ were added. After collection
and washing, a DNA Reagent Kit CycleTEST PLUS (Becton Dickinson Immunocytometry
Systems, San Jose, CA, USA) was utilized for cell cycle analysis. In comparison to peripheral
blood mononuclear cells (PBMCs) with a fixed content of DNA, the DI (DNA Index) of the
samples was calculated. The DI was determined from the mean of G0/G1 peaks of the
sample and the control (PBMC) populations. Propidium iodide (PI) was used for staining.
A minimum of 20,000 events were acquired for each treatment. Finally, in order to study
the cell cycle distribution, we used a software named CELLQUEST (Becton Dickinson
Immunocytometry Systems, San Jose, CA, USA).

2.3.6. Annexin V Assay

To assess apoptosis, we performed a dual staining technique. A plate that contained
6 wells was utilized with a cell density of 5 × 103 cells per well to incubate A549 cells with
blank-BZ, PIC-raw, and PIC-BZ with relation to 0.1 µM PIC. In addition, a control sample
that contained untreated cell was incubated in this work. A kit from BD Bioscience (San
Jose, CA, USA) was utilized for staining of cells. After 24 h of incubation, the examined cells
were collected by centrifugation. During the next step, they were re-suspended in 500 µL
of 1× binding buffer. After that, 5 µL of each PI (BD Bioscience) and annexin V-FITC were
added and incubated in the dark for 5 min at room temperature. In this experiment, a FACS
Calibur flow cytometry instrument (BD Bioscience) was used for the analysis. Moreover,
Phoenix Flow Systems multicycle software (San Diego, CA, USA) was utilized to analyze
the results.

2.3.7. Caspase-3 Assay

A commercially available ABCAM kit (Cambridge, UK) was used for the quantifi-
cation of caspase-3. The prepared samples with the A549 cells (5 × 103 cells per well)
were incubated. Then, the cells were washed and lysed. Finally, as suggested by the
manufacturer of the kit, each cell lysate was treated, and the absorbance was evaluated in
order to measure the concentration of caspase-3 at 405 nm. It was stated as pg/mg protein
determined utilizing a kit (BCA protein assay) (Sigma-Aldrich, St. Louis, MI, USA) [35,53].
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2.3.8. Wound Scratch Assay

This method was carried out in order to measure cell proliferation under our ex-
perimental conditions. Approximately 0.6 million cells were seeded in plates that had
35 mm in diameter. Cells were treated the next day for 1 h with 2 µg/mL mitomycin C.
Then, the cells available in the middle of the plates were scraped by sterile tip in order
to form a wound. Blank-BZ, PIC-raw, and PIC-BZ sub-toxic doses were applied to the
plates, and each plate was incubated for 24 h. Axio Vision Rel 4.8 imaging software (Carl
Zeiss Microimaging GmbH; Göttingen, Germany) was used to assess the wound’s depth.
The result obtained was plotted as a percentage of wound closure relative to power. The
controls were untreated samples, and 100% were deemed to be covered.

2.3.9. Statistical Analysis

In this work, data are shown as mean ± SD. IBM SPSS statistics software, version
25 (SPSS Inc., Chicago, IL, USA), was used for statistical analysis. The one-way analysis
of variance (ANOVA) test was used to compare the means. Then, the Tukey test was
performed as a post hoc test. The p-values < 0.05 were considered significant.

3. Results
3.1. Experimental Design
3.1.1. Fit and Diagnostic Statistics

Among the investigated sequential models, the best fitting model for PIC-BZ particle
size was the quadratic model as per its highest correlation (R2) and lowest predicted
residual sum of square (PRESS) (Table 3).

Table 3. Model summary statistics for selection of the best fitting model for the particle size of PIC-BZ.

Source SD R2 Adjusted R2 Predicted R2 PRESS

Linear 39.52 0.8241 0.7835 0.7310 31,055.92

2FI 43.65 0.8350 0.7360 0.5643 50,299.07
Quadratic 5.24 0.9983 0.9962 0.9823 2042.22

Abbreviations: PIC-BZ, piceatannol-loaded bilosome–zein; SD, standard deviation; PRESS, predicted residual
error sum of squares; 2FI, two-factor interaction.

The adequate precision value was 73.39, while the lack of fit F-value was
2.24 (p = 0.2259). Diagnostic plots for particle size, developed for checking the good-
ness of fit of the chosen model, are displayed in Figure 1.

The best lambda (λ) value (represented by the green line) in Box–Cox plot for power
transforms (Figure 1A) was 0.48. The 95% confidence interval around this λ (shown as red
lines) was −0.22 to 1.10. The externally studentized residuals vs. predicted response plot
(Figure 1B) and the residual vs. run plot (Figure 1C) displayed randomly distributed points
in between the limits. Furthermore, the predicted vs. actual particle size plot (Figure 1D)
showed good linear pattern.
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3.1.2. Variable Influence on Particle Size (Y)

The size of particulate delivery systems is a crucial parameter affecting the release
pattern and subsequent passage of active ingredients across the biological membranes. PIC-
BZ showed nano-sized vesicles fluctuating from 159.6 ± 4.6 to 459.2 ± 16.3 nm (Table 2).
The importance of the quadratic model was verified by analysis of variance (ANOVA) for
particle size, with an F-value of 465.88 (p = 0.0001). In terms of coded factor, the Equation
(2) for the best fitting quadratic model was generated as follows:

Y = 219.84 − 73.25 X1 − 48.84 X2 + 64.36 X3 + 8.23 X1 × 2 − 14.03 X1X3 − 7.00 X2X3 + 29.86 X1
2 + 20.78X2

2 + 52.58 X3
2 (2)

All linear (X1, X2, and X3) and quadratic (X1
2, X2

2, and X3
2) terms referring to the

three studied variables had a major impact on particle size (p = 0.0001). In addition, the
interaction terms were also significant (p = 0.0164, 0.0011, and 0.0032 for X1X2, X1X3, and
X2X3, respectively). Figure 2 illustrates the two-dimensional contour plots for the effects
and the interactions of the studied variables on particle size.
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Figure 2. 2D contour plot for the influence of formulation variables on the particle size of PIC-BZ.

It can be seen that the particle size decreased at higher cholesterol/span ratio and bile
salt molar concentrations, while it increased at higher zein concentrations.

3.1.3. Optimization

Following the constraint previously set to particle size, the optimized levels of the
formulation variables were anticipated with overall desirability of 0.981. The predicted
levels were 1:3.977 for cholesterol/span ratio, 0.435 mM for bile salt concentration, and
7.052% w/w for zein concentration. The optimized formulation was prepared and evaluated
for characteristics and biological activity in cancer cells. The percentage error (1.818%)
between the predicted (155.13 nm) and observed particle sizes (157.27 nm, Figure 3) was
relatively small, confirming the successfulness and validity of the optimization process.
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3.2. Characterization and Evaluation of Optimized PIC-BZ Formulation
3.2.1. PIC-BZ Entrapment Determination

The results of PIC entrapment efficiency in PIC-BZ showed high PIC entrapment
within the nano-system of 93.14 ± 2.15%.

3.2.2. PIC Release from the Optimized PIC-BZ Formula

The in vitro dissolution of PIC from the BZ was studied. The drug release profile is
illustrated in Figure 4.
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The results showed that the prepared BZ provided a satisfactory gradual release
profile. Moreover, at 8 h, it showed about 50% of drug release (49.8% ± 6.1). By 24 h, the
drug release was about 94.2 ± 5.9%.

3.2.3. Determination of IC50 Values

The MTT assay was used to evaluate the IC50 values in A549 cells. The results showed
that IC50 values were significantly reduced for the PIC-BZ when compared to PIC-raw. The
IC50 value for the PIC-BZ was 5.78 ± 2.3 µM, while it was 22.3 ± 3.4 µM for the PIC-raw
and 51.4 ± 4.3 µM for Blank-BZ (Figure 5).
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Figure 5. Cytotoxicity of PIC-BZ in A549. Cells were incubated with Blank-BZ, PIC-raw, or PIC-BZ
for 48 h, and IC50 values were determined using MTT assay. Data are the mean of 4 independent
experiments ± SD. * Significantly different from Blank-PZ, p < 0.05; # significantly different from
PIC-raw, p < 0.05.

Both preparations (PIC-raw and PIC-BZ) had IC50 values greater than 30 µM against
non-cancerous endothelial cells of EA.hy926, demonstrating a selective anti-cancer activity
against cancerous cells.

3.2.4. Cellular Uptake of Optimized PIC-BZ

The quantitative cellular uptake of PIC by the PIC-BZ cells was assessed. The results
show that the cellular uptake of the raw PIC was 10.2 ± 2.2% and 28.3 ± 3.2% at 2 and
4 h after starting the incubation, respectively. A higher uptake was observed with the
optimized PIC-BZ incubations, which reached 18.32 ± 3.4% and 61.3 ± 5.4% at after 2 and
4 h of incubation, respectively (Figure 6).
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3.2.5. Cell Cycle Analysis

As clearly shown in Figure 7, the optimized formulation (PIC-BZ) was able to sig-
nificantly inhibit the proliferation of A549 cells compared to all the other treatments
(p < 0.05 compared to all), with significant and very relevant changes (higher percentage of
cells) occurring on G2/M and pre-G1 phases, accompanied by a significant reduction of
cells in G0/G1 and S phases. Cell cycle analysis results revealed that blank-BZ showed
non-significant effect when compared with PIC-raw at all phases of the cell cycle.
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3.2.6. Annexin V Staining

With the aim to better understand whether the potentiated anti-proliferative effect of
PIC-BZ treatment was also combined with pro-apoptotic and/or pro-necrotic activities,
we investigated the impact of the different treatments on the percentage of apoptotic or
necrotic A549 cells. As expected, on the basis of our previous findings, we found that the
treatment of A549 cells with PIC-BZ was able to significantly increase the percentage of cell
population in early and late stages of apoptosis, in necrosis, and in apoptosis + necrosis
(indicated as total in the Figure 8) compared to control, Blank-PZ, and PIC-raw (p < 0.05),
underlying the enhanced pro-apoptotic activity of the optimized formulation (Figure 8).

3.2.7. Caspase-3 Content

Figure 9 shows that treatment of A549 cells with Blank-BZ or PIC-raw induced a
significant increase of caspase-3 compared to control cells (p < 0.05). As expected, the
maximal enhancement in caspase-3 content was observed in the case of PIC-BZ treatment
(p < 0.05 compared to all the other experimental conditions).
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Figure 9. Effect of Blank-BZ, PIC-raw, or PIC-BZ treatments on caspase-3 enzyme contents in
A549 cells. Values are expressed as pg/mg of protein. Data are the mean of 4 independent
experiments ± SD. * Significantly different from control, p < 0.05; # significantly different from
Blank-BZ, p < 0.05; $ significantly different from PIC-raw, p < 0.05.
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3.2.8. Wound Scratch Assay

The PIC-raw and PIC-BZ formulation demonstrated a drop in cell motility relative to
untreated control (100% migration) and blank-BZ in the wound scratch assay. The wound
coverages in the cases of Blank-BZ, PIC-raw, and PIC-BZ were found to be 77.03, 59.64, and
35.87%, respectively (Figure 10).
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Figure 10. Wound coverage results of (A) untreated cells, (B) cells treated with blank-BZ, (C) cells
treated with PIC-raw, and (D) cells treated with optimized PIC-BZ with 40×magnification.

4. Discussion

Regarding model selection, the close agreement between the predicted and the ad-
justed R2 and the adequate precision value greater than four verified the applicability of
the quadratic model for analyzing and navigating the experimental design space. The com-
puted lack of fit F-value indicated no significance in relation to the pure error. There was a
probability of 22.59%, and this value could be so high owing to noise. Non-significance lack
of fit is recommended as the data should fit the selected model. In the diagnostic plots, the
current λ represented by the blue line (Figure 1) was included in the computed confidence
interval, indicating the fact that no specific data transformation was needed [54]. The
waiver for transformation requirement was reinforced by the maximum to minimum mea-
sured particle size ratio of less than 10 (calculated ratio = 2.886). The random distribution
of the points within the limits in both the externally studentized residuals vs. predicted
response and the residual vs. run plots indicated that neither constant error nor lurking
variable that can influence the measured particle size existed. Additionally, the highly
linear pattern displayed in the predicted versus actual globule size plot reflected good
coincidence between the observed and anticipated values [55,56]. Regarding the measured
particle size, the comparatively low calculated standard deviation indicated homogenous
and uniform distribution of the formulated bilosomal dispersions. The cholesterol/span
ratio was found to be the most significant factor influencing the particle size, as evidenced
by its highest coefficient in the polynomial equation as compared to the other factors
(Figure 2). The observed decrease in particle size with increasing cholesterol/span ratio
could be credited to decreased relative concentration of cholesterol at higher ratios. It has
been previously reported that increased levels of cholesterol impedes adjacent packing
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of the vesicles lipids, resulting in high membrane fluidity that in turn leads to enhanced
distribution of aqueous phase within the vesicle, with subsequent increase in particle
size [29,57].

We showed that PIC is well entrapped within the optimized PIC-BZ formula and
it could be attributed to the ability of bilosomes as well as to the hydrophobic nature
of zein to encapsulate PIC [29,44,58]. The release could be considered well-enhanced,
considering the poor solubility of the PIC. In contrast to our findings, the in vitro release of
PIC encapsulated in albumin nanoparticles was found to be very low [11]. For the different
PIC-loaded formulations, albumin nanoparticles may release about 20–40%. In this study, it
may be clarified that the solubilizing power of BZ against the hydrophobic drug depended
on the virtue of the lipophilic nature of its components. The ability of BZ to improve the
solubility poorly water-soluble drugs has been previously stated [59].

As compared to PIC-raw, PIC-BZ exhibited a fourfold decrease in the IC50 value
(Figure 5). This result is in accordance to a previous study that demonstrated PIC cytotoxic
activity in A549 cells [60]. In A549 lung cancer cells, the cytostatic activity of PIC-BZ
has been confirmed. It may be inferred that the PIC cytotoxicity was greatly enhanced
by its formulation of BZ. A reason for the enhanced cytotoxicity may be given by high
cellular permeability. On the basis of the lipophilic nature of the delivery system along
with the nano-size range, one can understand the indicated high permeability [61,62].
In addition, optimized PIC-BZ showed improved cellular PIC uptake compared to raw
PIC (Figure 6). This indicates the ability of the optimized BZ formula to improve the
delivery of PIC across cellular barriers. Assessing the influence of PIC-BZ on cell cycle
phases showed aggregation of cells in both G2-M and pre-G1 phases (Figure 7). The
findings are supported by a previous PIC study, which highlighted the PIC’s potential to
induce G2-M phase in SK-Mel-28 melanoma cells, an effect due to the downregulation of
cyclins A, E, and B1. Furthermore, the percentage of apoptotic cells in the pre-G phase
was significantly increased by PIC [63]. However, recorded studies have also shown that
in the G0-G1 phase, PIC blocks cells [64]. The relatively low concentrations used in the
present study can explain this. The observed increased fraction of A549 cells with positive
annexin staining (Figure 8) highlighted improved pro-apoptotic activity. This is in line with
previous studies that proposed apoptosis induction as a mechanism of PIC antiproliferative
properties [65]. In this regard, the significantly enhanced activity of PIC-BZ related to
pure PIC is remarkable. This confirms the role of BZ in enhancing pro-apoptotic PIC
activities. Furthermore, PIC-BZ demonstrated a significant rise in the proportion of A549
cells with positive annexin staining. This is in line with other works demonstrating BZ’s
potential to improve annexin V staining of A549 cells when loaded with piperine and
curcumin [66]. Such findings may be attributed to the lipophilic nature of the formulation
that provides enhanced antiproliferative agent delivery [67]. It must be indicated that blank
BZ demonstrated a significant proliferation inhibitory activity. This could be attributed to
the cytotoxic effect of zein (component of blank formula) that has been previously reported
to show similar effects [68]. The blank BZ formula enhanced the pre-G phase, indicating
apoptotic cell death. Effect of blank BZ formula was further confirmed by their effect
on annexin V staining, which showed significant apoptotic-enhancing activity through
early late and total cell death (Figure 8). These results were in accordance with previous
reports [58,68,69]. In the present analysis, caspase-3 content was significantly increased
by PIC-BZ compared to all other conditions (Figure 9). This is in line with the previous
studies demonstrating PIC’s potential to increase cellular caspase-3 [70,71]. Furthermore,
the improved results of BZ on the cleaved caspase-3 material of A549 cells have been
previously shown [72]. The last cytosolic occurrence preceding apoptosis is the elevation
of the cleaved caspase-3 material. It can also be deduced that the formulating of PIC in a
nanostructured system substantially increases the content of caspase-3. The enhanced anti-
proliferative activity of the optimized formula against cancer cells was also corroborated
by the results of the scratch assay (Figure 10).
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5. Conclusions

In this study, in the PIC-BZ formulation and optimization, the Box–Behnken de-
sign was successfully implemented and used. The prepared BZ demonstrated nano-size
(157.27 nm) and high drug entrapment. In addition, the preparation of the optimized BZ
with decreased particle size and maximized drug trapping demonstrated a gradual and
complete in vitro release spherical form. The in vitro experiments carried out on A549 cells
clearly demonstrated as the optimized formula (PIC-BZ) significantly improved all the
parameters related to the cytotoxic potential towards cancer cells, including the decrease of
IC50, the enhancement of anti-proliferative activity, the increase of apoptosis and necrosis
cell populations paralleled by an increment of intracellular caspase-3 concentration, and
inhibition of wound closure.
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