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Abstract
Recent developments in lipid mass spectrometry enable extensive lipid class and species

analysis in metabolic disorders such as diabesity and metabolic syndrome. The minor

plasma lipid class sphingosylphosphorylcholine (SPC) was identified as a ligand for lipid

sensitive G-protein coupled receptors playing a key role in cell growth, differentiation, motil-

ity, calcium signaling, tissue remodeling, vascular diseases and cancer. However, informa-

tion about its role in diabesity patients is sparse. In this study, we analyzed plasma lipid

species in patients at risk for diabesity and the metabolic syndrome and compared them

with healthy controls. Our data show that SPC is significantly increased in plasma samples

from metabolic syndrome patients but not in plasma from patients at risk for diabesity.

Detailed SPC species analysis showed that the observed increase is due to a significant

increase in all detected SPC subspecies. Moreover, a strong positive correlation is

observed between total SPC and individual SPC species with both body mass index and

the acute phase low grade inflammation marker soluble CD163 (sCD163). Collectively, our

study provides new information on SPC plasma levels in metabolic syndrome and suggests

new avenues for investigation.

Introduction
Metabolic syndrome (MetS) is characterized by a combination of different metabolic abnor-
malities including abdominal obesity, dyslipidemia, increased fasting glucose, and hyperten-
sion [1]. These metabolic disorders collectively lead to more complex diseases including type-2
diabetes (T2D) and cardiovascular diseases (CVD) [1]. Several lines of evidence support the
role of lipids in metabolic health. The advancement of plasma lipidomic analysis allowed the
identification of numerous lipid classes and species as surrogate markers for age-related
diseases, including hypertension, T2D, and CVD [1–3]. Previous studies have reported the
association of several lipid molecules such as cholesteryl esters (CE 18:2, CE 16:0), the
phosphatidylethanolamine glycerophospholipid species (PE 36:2), and the diacylglycerol
species (DG 36:2, DG 34:0) with MetS risk factors [1,4,5]. Other plasma lipids such as
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phosphatidylinositol (PI), phosphatidylglycerol (PG), and PE were found to be positively asso-
ciated with prediabetes and T2D [6]. Furthermore, plasma ceramides (Cer), the most exten-
sively studied sphingolipids [7,8], have been shown to be positively correlated with both T2D
and prediabetes [6]. Moreover, a positive association between Cer species (Cer 16:0, Cer 24:1)
and cardiovascular mortality has been established [9]. So far with the help of electrospray ioni-
zation tandem mass spectrometry (ESI-MS/MS) the involvement of minor sphingolipids such
as sphingosylphosphorylcholine (SPC) species has been unraveled. SPC is a naturally occurring
plasma lipid with a concentration estimated at around 50±15nM [10,11]. The source of plasma
SPC is unclear but it can be released from activated platelets [12]. As SPC is also an important
constituent of lipoproteins in plasma [11]; thus, it is not surprising that it can affect both car-
diac and blood vessel function. SPC acts as a ligand for G-protein coupled receptors namely
pertussis toxin sensitive receptors which may involve Gαi, and G protein-associated Edg recep-
tors of sphingosine-1-phosphate (S1P) (Edg-1/S1P1, Edg-5/S1P2, Edg-3/S1P3) as well as
lysphosphatidic acid (LPA) receptors (Edg receptors (Edg-2/LPA1, Edg-4/LPA2, Edg-7/LPA3)
[13,14]. Consequently, SPC, by acting as ligand for the aforementioned receptors as well as to
other not-yet identified receptors, regulates several cellular processes including cell growth, dif-
ferentiation, motility, apoptosis, and calcium levels [15,16]. SPC has been reported to induce
lung tissue remodeling [17] and cell death in non-small lung cancer cells [18]. It also plays a
key role in the migration/invasion of pancreatic cancer cells [19] and promotes vascular dys-
function [20]. However, in vivo evidences of the molecular mechanisms of SPC-induced vascu-
lar dysfunction are limited. SPC may contribute to the pathogenesis of vascular diseases not
only through the modulation of the vascular tone but also by inducing the transformation of
the proliferation and migration potential of vascular smooth muscle cells [14], as well as by act-
ing as a pro-inflammatory mediator [14]. Despite the lack of studies showing a significant
increase in SPC plasma levels in diseases, a significant elevation in its levels was found in dried
blood spots from Niemann-Pick B (NPB) patients and in plasma of Niemann-Pick C (NPC)
patients [21]; it was proposed thereafter as a potential biomarker for Niemann-Pick diseases
[22].

The alterations of plasma lipid levels especially through lipid hydrolysis that generates
minor lipid mediators render them attractive as clinical tools for risk assessment and monitor-
ing of disease progression. Since SPC exerts its effect through binding to G-protein coupled
receptors, already identified on the plasma membrane of many cell types [23,24], an elevation
in its plasma levels may lead to the deterioration of cell function and dysregulation of vascular
remodeling. Nevertheless, the relation of lipids with obesity and low levels of inflammation, as
hallmarks of MetS [25] is well acknowledged. Besides C-reactive protein, the concentration of
the low-grade inflammation marker sCD163 is increased in obese and T2D patients and also
predicts increased risk of T2D [25,26]. sCD163 is also found, independently of conventional
risk factors, as a significant predictor of coronary atherosclerosis [27]. Therefore, the aim of
this study was 1) to analyze the changes in plasma lipid profile of patients at risk for diabesity
and with a full blown MetS with specific emphasis on SPC during the evolution of these patho-
logical states, and 2) to correlate plasma lipid levels with body mass index and the low-grade
inflammation marker sCD163.

Subjects and Methods

Study population
The study was approved (Proposal 08/119) by the Ethics Committee of the Faculty of Medicine
of the University Hospital of Regensburg. Prior to participation written informed consent was
obtained from all participants. Recruited age matched male subjects (n = 64) were divided into
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healthy controls (n = 12), patients at risk for diabesity (n = 19), and MetS patients (n = 33)
depending on the WHO criteria [28]. MetS patients had at least three out of the five WHO cri-
teria: central obesity (BMI>30kg/(m)2), elevated triglycerides (TG) (150 mg/dl), increased
fasting plasma glucose (100 mg/dl), along with a decrease in HDL levels (40mg/dl). Risk
patients were those who had less than three criteria and healthy controls did not have any crite-
ria. Characteristics of the subjects are presented in Table 1.

Clinical chemistry analysis
A standard clinical chemistry analyzer (ADVIA-1800, Siemens) was used to determine the lev-
els of cholesterol, triglycerides, HDL-cholesterol, LDL-cholesterol, and VLDL-cholesterol.

Lipid analysis
Extraction of lipids was performed in the presence of non-naturally occurring lipid species as
internal standards following the protocol described by Bligh and Dyer [29]. Plasma lipid spe-
cies determination was completed using direct flow injection ESI-MS/MS in positive ion mode
as described previously [30,31]. A precursor ion ofm/z 184 was used for phosphatidylcholine
(PC), lysophosphatidylcholine (LPC), and sphingomyelin (SM) [30,32]. A fragment ion ofm/z
264 was used to analyze Cer while a fragment ion ofm/z 369 was used for the analysis of free
cholesterol (FC) and CE after selective derivatization of FC [33,31]. PE and PI were analysed
following neutral loss fragment of 141 and 277 Da, respectively [34,35]. The analysis of PE-
based plasmalogens was done as described by Zemski-Berry [36]. On the other hand, SPC and
sphingosine-1-P (S1P) analysis was done using our previously established liquid chromatogra-
phy-tandem mass spectrometry (LC-MS/MS) protocol [11,37]. Self programmed Excel Macros
were used for data analysis of all lipids [30,38]. Lipid species were annotated according to the
LipidomicNet proposal for shorthand notation of lipid structures derived from mass

Table 1. Characteristics of the study groups. As expected, BMI, plasma glucose, triglycerides, HDL-cholesterol, VLDL-cholesterol and sCD163 are signif-
icantly different between healthy controls and MetS patients.

Male Subjects Control (n = 12) Risk (n = 19) MetS (n = 33) Ctr vs. Risk Ctr vs. MetS Risk vs. MetS

Characteristic Median ± SE Median ± SE Median ± SE P value P value P value

Age (years) 47.4 ± 2.3 48.5 ± 2.3 54.9 ± 1.8 0.98 0.051 0.09

BMI (Kg/(m)2) 23.6 ± 0.7 26.3 ± 0.8* 33.2 ± 1.2***6¼6¼6¼ 0.042 <0.0001 <0.0001

Glucose (mg/dl) 90.9 ± 2.4 99.9 ± 2.3* 119.6 ± 9.9* 0.033 0.025 0.173

Triglycerides (mg/dl) 84.6 ± 8.9 118.6 ±10.8 194.5 ± 14.5***6¼6¼6¼ 0.062 <0.0001 <0.0001

Total Cholesterol (mg/dl) 161.9 ± 4.5 165.4 ± 2.3 162.0 ± 2.1 0.865 1.000 0.616

LDL Cholesterol (mg/dl) 123.9 ±11.5 129.1 ± 8.1 116.0 ± 6.2 0.976 0.905 0.498

HDL Cholesterol (mg/dl) 64.4 ± 4.5 56.0 ± 3.9 42.0 ± 2.2** 6¼ 0.412 0.001 0.011

VLDL Cholesterol (mg/dl) 19.5 ± 3.2 21.9 ± 5.2 38.1 ± 2.7***6¼ 0.972 <0.0001 0.029

sCD163 (μg/ml) 1.4 ± 0.2 1.6 ± 0.2 2.2 ± 0.2* 0.647 0.005 0.071

Adiponectin (μg/ml) 9.1 ± 1.1 8.4 ± 1.3 7.6 ± 0.6 0.972 0.561 0.911

BMI: Body Mass Index, LDL: low density lipoprotein, HDL: high density lipoprotein, VLDL: very low density lipoprotein.

*vs. control

* p<0.05

** p<0.001
*** p<0.0001

6¼ vs. risk: 6¼ p<0.05

6¼ 6¼ 6¼ p<0.0001.

doi:10.1371/journal.pone.0140683.t001

Sphingosylphosphorylcholine/Lysosphingomyelin and Metabolic Syndrome

PLOSONE | DOI:10.1371/journal.pone.0140683 October 14, 2015 3 / 14



spectrometry [39]. Glycerophospholipid species annotation was based on the assumption of
even-numbered carbon chains only. Sphingomyelin species were assigned based on the
assumption of a sphingoid base with 2 hydroxyl groups.

Statistical analysis
Results are expressed as means ± standard errors (SE). Statistical analysis was performed using
IBM SPSS 20 Software Package. Comparisons between the different groups were evaluated
using ANOVA followed by Dunnett test. Linear relationships were studied using Pearson’s cor-
relation coefficient. The level of significance was set at 0.05.

Results

Plasma lipid profile in patients at risk for diabesity and MetS
Plasma lipid species levels from all groups (control, risk, and MetS) were analyzed using previ-
ously published ESI-MS/MS or LC-MS/MS procedures as described in the methods section.
Figs 1 and 2 depict the changes observed in major lipid classes (CE, PC, SM, and LPC), and
other less abundant lipid classes detected at levels below 50μM (Cer, PI, PE, PE P, and SPC).
Interestingly, while the alterations observed in total levels of the majority of lipid classes did
not reach significance, total levels of SPC and LPC were significantly different between the dif-
ferent groups (Figs 1A and 2A). In order to decipher the specific species responsible for the
observed alterations, plasma from the studied patients was further analyzed and the levels of
SPC- and LPC-species were determined.

The most significant difference was seen in the levels of SPC species. As compared to con-
trols the total SPC levels in the plasma of MetS patients were significantly elevated by 3.8-fold
(p<0.001) (Fig 2A) and associated with a similar increase in all detected SPC species i.e. SPC
d16:1 (4.7-fold, p<0.0001), SPC d18:1 (3.6-fold, p<0.001), and SPC d18:2 (4.3-fold, p<0.001)
(Fig 2B). However, the increase of total and individual SPC species in the plasma of patients at
risk for diabesity did not reach significance (Fig 2A and 2B).

The level of S1P, which either originates from ceramide under conditions of increased
sphingosine levels or from SPC under the action of autotaxin or other ecto-lysosphingomyeli-
nase(s), was also measured in the plasma of all groups. Even though the plasma level of S1P is
decreased in patients at risk for diabesity as compared to controls, it only reached significance
(1.5-fold, p<0.05) in MetS patients (Fig 2C).

Albeit the decrease in total plasma levels of phosphatidylcholine (PC) did not reach signifi-
cance between the different groups, significant alterations in LPC levels were observed. When
compared to healthy subjects the plasma levels of LPC were significantly decreased in MetS
patients (p<0.05) (Fig 1A). The observed decrease was due to a pronounced decrease in indi-
vidual LPC species i.e. LPC 18:1; LPC 18:2; LPC 20:3; LPC 20:4; LPC 20:5; LPC 22:5 (p<0.05)
(Fig 3) while changes in the levels of the other detected species were not significant (Data not
shown). On the other hand, neither total nor individual LPC species were affected in patients
at risk for diabesity.

Correlation of SPC, S1P and LPC with obesity and inflammation
The relation between lipids, obesity, low levels of inflammation and MetS is established [25].
MetS is strongly associated with increased risk of T2D and CVD. Therefore, we tried to eluci-
date in our patient groups the relation of SPC, S1P and LPC with both BMI and the low grade
inflammation marker sCD163. Table 2 shows a strong significant positive correlation of BMI
with total SPC (r = 0.694, p<0.0001) and individual species SPC d16:1 (r = 0.573, p = 0.004),
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SPC d18:1 (r = 0.693, p<0.0001), and SPC d18:2 (r = 0.724, p<0.0001). Also total SPC
(r = 0.422, p = 0.045), SPC d18:1 (r = 0.429, p = 0.041), and SPC d18:2 (r = 0.439, p = 0.036)
species correlated significantly with sCD163 while no correlation existed with SPC d16:1
(Table 2). In contrast to SPC, S1P showed a significant negative correlation with BMI (r =
-0.422, p = 0.045) while the correlation with sCD163 did not reach significance (Table 3). A sig-
nificant negative correlation was also observed between several LPC species and both BMI and
sCD163 (Table 4). Whereas total LPC did not significantly correlate with BMI, a significant
negative correlation between 6 LPC species and BMI was observed for LPC 18:1 (r = -0.334,
p = 0.009), LPC 18:2 (r = -0.420, p = 0.001), LPC 18:3 (r = -0.326, p = 0.011), LPC 20:3 (r =
-0.266, p = 0.040), LPC 20:5 (r = -0.279, p = 0.031), and LPC 22:5 (r = -0.292, p = 0.024). Inter-
estingly, a positive correlation existed between BMI and LPC 22:4 (r = 0.283, p = 0.029). On the
other hand, total LPC and 13 out of 15 LPC species negatively correlated with sCD163: LPC
Total (r = -0.385, p = 0.002), LPC 15:0 (r = -0.334, p = 0.009), LPC 18:0 (r = -0.303, p = 0.019),
LPC 18:1 (r = -0.307, p = 0.017), LPC 18:2 (r = -0.354, p = 0.006), LPC 18:3 (r = -0.274,
p = 0.034), LPC 20:0 (r = -0.258, p = 0.046), LPC 20:3 (r = -0.421, p = 0.001), LPC 20:4 (r =
-0.525, p<0001), LPC 20:5 (r = -0.313, p = 0.015), LPC 22:4 (r = -0.445, p<0001), LPC 22:5

Fig 1. Plasma levels of CE, PC, LPC, SM (A), and PE, PE P, PI, and Cer (B) from controls and patient
groups. From all the major lipid classes analyzed only changes in LPC levels reached significance in MetS
patients ((n = 12 (Control), n = 19 (Risk), and n = 33 (MetS)) (A). Lipid species were analyzed either by
LC-MS/MS or ESI-MS/MS, as described in Methods, and are expressed in μmol/l of plasma. Data presented
as mean ± SEM. * p<0.05, statistically different with respect to control.

doi:10.1371/journal.pone.0140683.g001
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(r = -0.580, p<0001), and LPC 22:6 (r = -0.473, p<0001). Comparison of the different species
showed that unsaturated LPC species including mono- and polyunsaturated species but not
saturated LPC species negatively correlated with BMI and sCD163 (Table 4).

Discussion
High levels of toxic lipid intermediates play a major role in the progression of many diseases
including obesity, type-2 diabetes (T2D), and cardiovascular diseases (CVD) [40]. The aim of
this study was to monitor changes in the plasma lipidome of patients at risk for diabesity and
MetS patients and to evaluate the contribution of these changes to the evolution of disease
pathology. The classification of the subjects used in this study was based on the WHO guide-
lines and is summarized in Table 1.

In accordance to our previously published data [41], this study shows that vs. controls the
alterations of PC, SM, PE, PE P, and Cer levels did not reach significance in the plasma of MetS

Fig 2. Plasma levels of SPC and S1P from controls and patient groups. (A): Total SPC; (B): SPC-species; (C): S1P. SPC levels were significantly
increased in MS patients but not in those at risk for diabesity (A). SPC increase was due to an increase in all three main subspecies (B). MetS patients have
significant lower levels of S1P (C). S1P and SPC-species (n = 8 (Control), n = 8 (Risk), and n = 9 (MetS) were analyzed by LC-MS/MS and are expressed
in μmol/l of plasma. Data presented as mean ± SEM. * p<0.05, **p<0.005, ***p<0.0005 statistically different with respect to control.

doi:10.1371/journal.pone.0140683.g002
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patients. Our data related to Cer levels are in contrast to the data presented by Meikle et al., [6],
showing a significant increase in the levels of Cer in prediabetes and T2D. However, the aver-
age age of prediabetes patients used in the former study was 69 (58–74) years which differed
from the average age of the patients at risk for diabesity and MetS in our study which was
48.5 ± 2.3 and 54.9 ± 1.8 years, respectively. Furthermore, the size of our study groups is signifi-
cantly smaller than that of Meikle et al., [6]. Consequently, the observed discrepancy may,
therefore, be age and/or study size dependent.

Glycerophospholipids and their metabolites lysophospholipids (LPLs) are involved in signal
transduction mechanisms regulating cell proliferation and apoptosis, as well as in disease
development [42,43]. LPLs are generated by the enzymatic reaction of members of the phos-
pholipases A2 family [44] and by the action of lecithin-cholesterol acyltransferase (LCAT)
activity [45]. While the decrease in PC levels did not reach significance, a significant decrease
of LPC plasma levels was observed in MetS patients. The widespread reduction in LPC species
in the plasma of MetS individuals was not surprising as we [41] and others [46] have previously

Fig 3. Plasma LPC species levels in controls and patient groups. A significant decrease in specific LPC
species plasma levels was observed in MetS patients but not in patients at risk for diabesity ((n = 12 (Control),
n = 19 (Risk), and n = 33 (MetS)). LPC-species were analyzed by ESI-MS/MS and are expressed in μmol/l of
plasma. Data presented as mean ± SEM. * p<0.05, statistically different with respect to control.

doi:10.1371/journal.pone.0140683.g003

Table 2. Correlation between BMI, sCD163 and triglycerides with total and individual SPC species.

Correlations BMI BMI sCD163 sCD163 Triglyceride Triglyceride HDL HDL

R value P value R Value P Value R value P value R value P value

SPC Total .694** <0001 .422* .045 .480* .020 -.587** .004

SPC d16:1 .573** .004 .305 .158 .529** .009 -.576** .005

SPC d18:1 .693** <0001 .429* .041 .465* .025 -.580** .005

SPC d18:2 .724** <0001 .439* .036 .481* .020 -.589** .004

*. Correlation is significant at the 0.05 level (2-tailed), and

**. Correlation is significant at the 0.01 level (2-tailed).

doi:10.1371/journal.pone.0140683.t002
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reported a similar trend. Similarly to our earlier findings [41], this study shows a significant
negative correlation between individual LPC species and both BMI and the low grade inflam-
matory marker sCD163 (Table 4), further supporting a potential anti-inflammatory role of
LPC in diabesity and MetS patients.

In the last 10 years more than 150 articles have been published on SPC but none reported its
modulation in the plasma of MetS patients. Therefore, to our knowledge this is the first study
demonstrating a significant increase in SPC levels in the plasma of MetS patients (3.8-fold vs.
control, p<0.001). Detailed analysis showed that all detected species SPC d16:1, SPC d18:1 and
SPC d18:2 were increased by more than 3.5-fold in the plasma of MetS patients with respect to
their normal counterpart. SPC occurs naturally in plasma at a concentration of 50±15nM
[10,11]. SPC is also generated intracellularly from SM under the action of SM deacylase (Fig 4).
An increase in SPC levels could represent a spillover mechanism upon increased SM hydrolysis
or from a decrease in SPC metabolism. SPC is metabolized to sphingosine-1-phosphate (S1P)

Table 3. Correlation between BMI and sCD163 with S1P.

S1P

R Value P Value

BMI -.422* .045

sCD163 -.412 .051

*. Correlation is significant at the 0.05 level (2-tailed).

doi:10.1371/journal.pone.0140683.t003

Table 4. Correlation between BMI and sCD163 total and individual LPC species.

LPC Species BMI BMI sCD163 sCD163

R Value P value R Value P Value

LPC 15:0 -.128 .331 -.334** .009

LPC 16:0 -.019 .887 -.205 .116

LPC 16:1 -.177 .176 -.145 .268

LPC 18:0 .039 .769 -.303* .019

LPC 18:1 -.334** .009 -.307* .017

LPC 18:2 -.420** .001 -.354** .006

LPC 18:3 -.326* .011 -.274* .034

LPC 20:0 .013 .920 -.258* .046

LPC 20:3 -.266* .040 -.421** .001

LPC 20:4 -.160 .221 -.525** <0001

LPC 20:5 -.279* .031 -.313* .015

LPC 22:4 .283* .029 -.445** <0001

LPC 22:5 -.292* .024 -.580** <0001

LPC 22:6 -.224 .086 -.473** <0001

LPC Total -.165 .207 -.385** .002

LPC Saturated -.002 .987 -.237 .068

LPC Unsaturated -.384** .002 -.378** .003

LPC Monounsaturated -.326* .011 -.298* .021

LPC Polyunsaturated -.398** .002 -.403** .001

*. Correlation is significant at the 0.05 level (2-tailed), and

**. Correlation is significant at the 0.01 level (2-tailed).

doi:10.1371/journal.pone.0140683.t004
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by autotaxin (ATX), an exoenzyme with lysophospholipase D activity, or by other ectonucleo-
tide pyrophosphatase/phosphodiesterases (ENPPs) [13,47,48]. The occurrence of ATX in the
plasma suggests that SPC could be directly metabolized to S1P [48]. ATX is a multifunctional
protein that has the ability to hydrolyze membrane or secreted glycerophospholipids to pro-
duce bioactive mediators such as LPA and S1P [13]. ATX is also established as an adipose
derived secreted enzyme that controls adipose tissue expansion, brown adipose tissue function
as well as energy expenditure [49]. A significant down-regulation in the expression of ATX was
reported in the retina of diabetic rats and in human subcutaneous fat along with a significant
reduction in its levels in the serum of obese patients [49]. Our study shows, a significant
decrease in plasma S1P levels in MetS patients as compared to control subjects while no signifi-
cant changes in the levels of plasma SM was observed. Therefore, an increase in SPC levels at

Fig 4. Hypothetical scheme depicting SPC and S1P synthesis.Ceramides (Cer) are generated from the sphingomyelinase pathway and other pathways
such as the salvage pathway and the de novo synthesis pathway (not shown in this scheme). Sphingosine (SPH) which can be formed from the degradation
and recycling of complex sphingolipids and glycosphingolipids in an acidic environment (salvage pathway) may also contribute to Cer metabolism. SPH is
phosphorylated by SPH kinase to sphingosine-1-phosphate (S1P), a bioactive lipid intermediates with several effects. In addition to Cer, SPC is another
biologically active lipid metabolite generated from sphingomyelin (SM) under the action of a SM-deacylase. Secreted SPC is likely a substrate for autotaxin
(ATX), an exoenzyme with lysophospholipase D activity, which leads to S1P generation. Alternatively, S1P can be converted from SPC by ectonucleotide
pyrophosphatase/phosphodiesterases (ENPPs). SPC and S1P can both induce their effects through binding to G-protein coupled receptors present on
different cell types. It cannot be excluded that an intracellular SPC—> S1P conversion also occurs by a yet unidentified SPC-ase, and not SPC but rather
S1P is secreted from cells predominantly. Extracellular S1P might be converted back to SPC through not yet identified enzyme(s). Substantial amounts of
extracellular SPC and S1P are loaded to preβ-HDL particles and therefore they may contribute to the composition and/or maturation of α-HDL lipoproteins.
UC: unesterified cholesterol, PC: phosphatidylcholine, LPC: lysophosphatidylcholine, PM: plasmamembrane.

doi:10.1371/journal.pone.0140683.g004
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least in part could be due to a decrease in its metabolism. The significantly lower levels of LPC
species in MetS are likely the consequence of the lower levels of HDL-cholesterol in MetS and
likewise to the decreased LCAT activity. The latter is a major determinant of plasma LPC levels.
Interestingly, it is worth mentioning that although S1P and SPC are both constituents of HDL
[11,14,50], the significant decrease in HDL levels observed in MetS patients (Table 1) inversely
correlated with plasma SPC levels (Table 2) but showed no correlation with plasma S1P levels
(r = 0.359, p = 0.101). As SPC might act through different types of receptors differentially dis-
tributed on many cell types [51], an increase in SPC plasma levels may lead to a defect in
diverse cell functions in MetS patients. Since the studies on SPC plasma levels are scarce, a bet-
ter understanding of the function of SPC might help to clarify the relevance of its elevation in
the plasma of MetS patients. SPC is a pleiotropic lipid mediator involved in many physiological
and pathological effects depending on the type of tissues and/or disease [14,52]. SPC plays a
crucial role in calcium (Ca2+) regulation [15,16]. This function is of utmost importance for the
function of the cardiovascular system. Consequently, any disturbance of this function may lead
to disease development. SPC acts as an extracellular and cellular Ca2+ mediator [51]. This has
been proven by the fact that extracellular application of SPC leads to a rapid increase in intra-
cellular Ca2+ in different cell types [15,16]. The detrimental effects of a sustained increase in
Ca2+ levels are well known. While a transient increase in cytosolic Ca2+ is necessary for cell
function such as contraction in contractile cells per se a constitutive elevation of Ca2+ is patho-
genic. For instance, a sustained increase in intracellular Ca2+ levels leads to the switching of
vascular smooth muscle (VSMC) cells from contractile to synthetic phenotype which is a hall-
mark of atherosclerosis [53]. Interestingly, SPC induces the proliferation and migration of
VSMC in the nM range, an important effect that leads to the formation of a neointima in blood
vessels [14]. SPC also induces the contraction of VSMC [54] and plays a major role in the path-
ogenesis of abnormal contraction of cerebral arteries [20,55]. It has been recently reported that
the extent of SPC induced VSMC contraction correlates with total plasma cholesterol [20]. In
this study we did not see a correlation between SPC and cholesterol as the levels of this latter one
were not significantly different between the different groups (Table 1), probably since some of
the MetS patients are under lipid lowering therapy. On the other hand, total and individual SPC
species strongly correlated with TG levels (Table 2). In addition to the stimulatory effects of SPC
on proliferation, migration, and contraction of VSMC, SPC has also been found to act as a pro-
inflammatory mediator in the vascular system. SPC increased the release of the inflammatory
protein chemokine monocyte chemoattractant protein-1 (MCP-1), both in cultured VSMC and
in cerebral arteries [12]. Addition of SPC to VSMC induced also the release of TNF-α, an inflam-
matory cytokine involved in cardiovascular disease [14]. This study shows a significant correla-
tion between SPC and the acute phase response in low grade inflammation marker sCD163
(Table 2), a significant predictor of coronary atherosclerosis [27]. Nonetheless, the precise molec-
ular mechanism of SPC in acute phase response is unclear and merits further investigation.

Finally, it is noteworthy to mention that changes observed with the lipid classes in the
plasma of patients at risk for diabesity did not reach significance. Based on this finding one
could speculate that a significant increase in TG and sCD163 and a decrease in HDL are essen-
tial to induce significant changes in plasma lipids profile. This is further supported by our find-
ings showing that SPC correlates significantly with TG and sCD163, and inversely correlates
with HDL (Table 2).

Conclusion
Lipidomic analysis of major and minor lipid classes was performed by mass spectrometry in
order to gain more insights into the changes affecting circulating lipids in the plasma of
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patients at risk for diabesity and MetS. This study confirms and extends previous findings on
LPC levels in obese and MetS patients and shows, for the first time, a significant increase in
SPC plasma levels in MetS patients. Our data show, collectively, that increased plasma SPC lev-
els along with its strong correlation with BMI and sCD163 may be a reporter for the progres-
sion of the disease associated with inflammation and the risk of cardiovascular dysfunction.
The fact that there were no significant changes in the plasma levels of SM and Cer, alterations
already observed in T2D, underlines the significance of our findings on SPC as a potential early
biomarker. Future studies in larger cohorts are needed to 1) better understand why SPC is
increased in MetS patients, and 2) investigate its potential as a biomarker for MetS-associated
cardiovascular dysfunction and T2D.
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