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Understanding Alzheimer’s disease (AD) heterogeneity is important for
understanding the underlying pathophysiological mechanisms of AD. How-
ever, AD atrophy subtypes may reflect different disease stages or biologically
distinct subtypes. Here we use longitudinal magnetic resonance imaging data
(891 participants with AD dementia, 305 healthy control participants) from
four international cohorts, and longitudinal clustering to estimate differential
atrophy trajectories from the age of clinical disease onset. Our findings (in
amyloid-β positive AD patients) show five distinct longitudinal patterns of
atrophy with different demographical and cognitive characteristics. Some
previously reported atrophy subtypes may reflect disease stages rather than
distinct subtypes. The heterogeneity in atrophy rates and cognitive decline
within the five longitudinal atrophy patterns, potentially expresses a complex
combination of protective/risk factors and concomitant non-AD pathologies.
By alternating between the cross-sectional and longitudinal understanding of
AD subtypes these analyses may allow better understanding of disease
heterogeneity.

Brain atrophy in Alzheimer’s disease (AD) is associatedwith cognitive
decline and the topological spread of neurofibrillary tangles (NFT)1.
Neuropathological2–4 and in vivo neuroimaging5,6 studies challenge
the hypothesis of AD as a single entity, supporting the hypothesis of
AD as a heterogeneous disease. It was recently suggested that the
heterogeneity in AD can be explained using two main dimensions,
severity and typicality, which emerge in the form of various

biomarker and clinical expressions7. Four AD subtypes are reported
in the literature based on regional atrophy and/or NFT spread: typi-
cal, hippocampal sparing, limbic predominant7,8, and minimal atro-
phy subtypes. However, the most urgent questions are whether the
observed heterogeneity reflects different disease stages or distinct
subtypes, and if these subtypes finally converge at advanced stages
of the disease7.
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Advances in biomarker research, data collection, and computa-
tional methods, have substantially enhanced our ability to study the
heterogeneity in different diseases9. These computational methods
unite various in vivo pathophysiological markers to model disease
heterogeneity. Research on classification of AD patients into mean-
ingful groups with neuropathological4, neuroimaging8,10, clinical11, and
biochemical12 biomarkers has shed light on the heterogeneity under-
lying the clinical AD diagnosis. However, current findings are based on
cross-sectional analyses, which increase the chance that identified
patterns reflect patient groups observed in different disease stages
rather than distinct disease subtypes. A recent studymodeled subtype
biomarker trajectories in vivo from cross-sectional imaging datasets to
implicitly infer disease stages13. That is a first step towards assessing
and accounting for disease staging. However, we cannot exclude the
chance that the identified patterns may still reflect different disease
stages, since longitudinal informationwas not used for clustering, only
for characterizing subtypes post hoc. This assumption is partially
confirmed in models with various biomarker types (increased disease
specificity) but remains unrealistic when a well-defined timescale of
events for each patient is not in place. Recent reviews that presented
the current approaches for identifying subtypes in heterogeneous
diseases9 and summarized the existing AD subtypes in the literature,
point out important data and methodological limitations that need to
be overcome to reach a better understanding of the heterogeneity in
AD7,8,14. According to their conclusions, the field is lacking longitudinal
AD subtyping based on a clear timescale (i.e., age atmeasurement, age
at disease onset) in order to disentangle disease stages from disease
subtypes.

In this study, we aimed to assess whether heterogeneity in AD’s
brain atrophy patterns results from observing patients at different
disease stages or reflects distinct subtypes with specific atrophy and
cognitive trajectories. Longitudinal data were modeled with a long-
itudinal Bayesian clustering framework15 over 8 years from the clinical
disease onset (a clear timescale) to assess disease staging and het-
erogeneity simultaneously (previous studies used only cross-sectional
data). This is a significant step towards the discovery of differential
atrophy trajectories in AD, using structural magnetic resonance ima-
ging (MRI) data from four internationalmulti-center cohorts from four
continents. Only amyloid-positive AD patients were included to
increase diagnostic specificity (discovery dataset). In addition, with
our approach, we could assess whether atrophy subtypes7,8 converge
during the disease course, a vital step towards understanding the
heterogeneity in AD. Frequency predictions of the discovered atrophy
patternswere performed in an external validation dataset to assess the
ability of our model to classify new patients with one or two MRI
timepoints available. Finally, we assessed between and within subtype
differences in cognitive decline and relevant diseasemodifiers such as
APOE genotype, education, and premorbid intelligence.

Results
Our sample included 1196 individuals (891 AD dementia patients and
305 cognitively unimpaired individuals) from four cohorts (Supple-
mentary Table 1). The discovery and validation datasets consisted of
320 and 571 AD dementia patients, respectively. Cohort demographics
are summarized in Table 1.

The longitudinal gray matter patterns that we estimated for the
cognitively unimpaired (CU) and AD groups, show that the CU group
deteriorates in graymatterwith aging (Fig. 1A) and asexpected that the
ADgroup hasmore extensive atrophy (Fig. 1B). The correctionmethod
(gray matter of each AD patient standardized with respect to the CU
model underlying Fig. 1A) that was applied to the AD dataset shows, at
the population level, that AD presents with distinct atrophy patterns
depending on the patient’s age. Patients under 65 years of age typically
have more posterior cortical atrophy, while patients over 75 years old
show a prototypical AD mediotemporal atrophy pattern (Fig. 1C).

Clustering evaluation
Longitudinal clustering showed that the 2-cluster and 5-clustermodels
were the most optimal with marginal differences. The 2-cluster model
was preferable for one clustering criterion (fewer random effect
parameters with high autocorrelation in their MCMC samples) while
the 5-cluster model was more favorable for another (lower model
deviance) (see Supplementary Table 2). The other clustering solutions
had worse quality score combinations (either many autocorrelated
MCMC samples or high model deviance) (Supplementary Table 2)15.
The 2-cluster solution (Supplementary Fig. 1, fitted values) separated
the discovery set only in terms of cortical severity (high versus low
brain atrophy), whereas the 5-cluster solution (Fig. 2, fitted values)
revealed spatially different atrophy subtypes. Since different spatial
atrophy subtypes are of greater importance from an exploratory per-
spective and given the previous literature in AD subtypes7, we chose to
interpret the results of the 5-cluster solution.

Cluster atrophy patterns and discriminant features
In the discovery dataset, we found five clusters of patients that showed
gradual or steep longitudinal atrophy progression (Fig. 2). The largest
cluster, minimal atrophy (MA, 59.1%), had very little mediotemporal
atrophy at the clinical AD onset compared with the CU group (Fig. 2,
1.6 standard deviations below the CU population, Supplementary
Fig. 2, 0.5 standard deviations below the CU population). It progressed
slowlywith entorhinal and hippocampal involvement that extended to
other temporal lobe regions. The second largest cluster, limbic pre-
dominant atrophy (LPA, 29.1%), presented with entorhinal cortex
atrophy at the clinical onset, with later involvement of other temporal
lobe regions including the hippocampus. The third cluster, LPA+
(7.2%), was spatially similar to the LPA cluster but exhibited more
atrophy in the entorhinal cortex at the AD onset. Atrophy progres-
sively extended to the temporal lobe and then further to the rest of the
cortex. We also found a cluster, diffuse atrophy (DA, 1.6%), with tem-
poral and frontal involvement already at AD onset, where the atrophy
diffused fast during the disease course. The last cluster, hippocampal
sparing (HS, 3.1%), had parietal lobe atrophy and no involvement of
medial-temporal lobe structures at disease onset, but fast atrophy
progression. The MA and LPA patterns converged to widespread
temporal lobe atrophy while the LPA+ converged to DA seven years
after the disease onset. The most atypical atrophy pattern, HS, also
progressed to a more diffuse atrophy pattern over time but with less
involvement of the hippocampus. The cluster names were decided
based on the atrophy pattern at AD onset. Table 2 provides a four-
dimensional characterization of each subtype to illustrate how the
patterns of atrophy and cognition evolve over time (see also Supple-
mentary movie 1, Table 3, Fig. 3).

The cluster intercepts (AD onset) showed that the HS and DA
clusters exhibit considerably thinner cortex in the parietal lobe than
the other three clusters (Figs. 2 and 4). The LPA cluster has less
entorhinal atrophy than the LPA+. Regarding the cluster slopes (atro-
phy evolution over time), the posterior cingulate gyrus, pars oper-
cularis, pars-orbitalis gyri, and insula discriminate both DA and HS
from the other three clusters (Figs. 2, 4, Supplementary Fig. 2). The
atrophy slopes of the HS cluster were the steepest, followed by the DA
and the LPA+ clusters.

The five longitudinal patterns of atrophy (Fig. 2) revealed a fine
grouping that included variations in the stereotypical distribution of
atrophy staging in AD5 compared to the 2-cluster solution (Supple-
mentary Fig. 1). In Table 3, we have summarized the longitudinal pat-
terns of atrophy, to show the different features of the five longitudinal
patterns and the patient characteristics related to them. After themain
cluster analysis, the post hoc hierarchical clustering of cluster-specific
atrophy intercepts and slopes (Fig. 4, slope dendrogram and figure
legend) revealed quantitatively, that MA, LPA, and LPA+ have similar
spatial distribution of atrophy over time (however, different atrophy
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levels at the AD onset and different rates of atrophy progression)
starting in the mediotemporal lobe and spreading further into the
neocortex. The HS pattern follows another spatial atrophy distribu-
tion, starting in cortical regions. The DA cluster is quantitatively
grouped together with the HS pattern but expresses both progression
atrophy patterns since we observed it in a later disease stage (already
widespread atrophy).

Cluster characteristics
The percentages of patients from each cohort in the five clusters were
similar (Table 3). In the discovery dataset, MA had the highest pre-
valence of APOE e4 carriers (75%), while HS had the lowest (40%).
Patients in the DA and HS clusters had higher education levels
(>15 years) followed by patients in the MA, LPA, and LPA+ (≤15 years).
Using theMA (the largest cluster in the dataset) as reference group we
found significantly lower American National Adult Reading Test
(ANART) scores in LPA+ and HS (p <0.05). Mini-Mental State Exam-
ination (MMSE) at AD onset was significantly worse for LPA (p < 0.05)
(Fig. 3). Longitudinally, LPA+ and HS had the fastest decline in MMSE
(p < 0.05). Regarding the Alzheimer’s disease assessment scale (ADAS-
cog) subscales, memory (word recall) was initially lower in LPA and
LPA+ had the fastest decline over time in that domain. Language (fol-
lowing commands) and praxis (constructional) were significantly
worse for the HS than the other clusters at AD onset. Orientation
(ADAS) was worse for the LPA+ at AD onset.

In the model validation, no differences in amyloid-β (Aβ) status
between clusters were found. Information regarding patient medical
history was available for the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) and the Japanese Alzheimer’s Disease Neuroimaging

Initiative (J-ADNI), but not for the Australian Imaging, Biomarkers and
Lifestyle study (AIBL) or the AddNeuroMed cohorts. A summary of the
cluster medical history characteristics can be found in Supplementary
Table 3. The distribution of disease duration at MRI visit for each
cluster is presented in Supplementary Table 4.

Intercept and slope covariance matrices
MA had the greatest total nodal strength and was used as a reference
group for pairwise cluster comparisons of intercepts and slopes. The
nodal strength of the LPA and LPA+ was lower with few exemptions
(Fig. 5). The DA had higher nodal strength in only a few medial
(frontal, temporal, and occipital) brain regions (intercepts and
slopes) and theHS had higher nodal strength at the intercept of some
ventromedial prefrontal and medial temporal regions. Cluster-
specific intercept and slope covariance matrices are shown in Sup-
plementary Fig. 3.

Model validation
Our model was validated in two ways. First, we used an independent
external dataset of unseen patient MRIs, to assess whether the classi-
fication of new data in one of the five longitudinal atrophy patterns
yield sensible results. In addition to that we applied clustering sepa-
rately to ADNI and J-ADNI/AIBL datasets.

The cluster probabilities show that few patients had a high
probability of belonging to more than one clusters in the discovery
dataset (Supplementary Table 5), and even fewer patients in the vali-
dation dataset (0.009% of the dataset, Supplementary Table 6, Sup-
plementary Fig. 4). Finally, median cortical and hippocampal atrophy
at the median disease duration for each cluster in the validation

Table 1 | Demographic and clinical characteristics of participants in the cohorts included in the training and validation cohorts

Cognitively unimpaired Alzheimer’s disease patients

ADNI J-ADNI AIBL ADNI J-ADNI AIBL AddNeuroMed

Discovery dataset

N1 158 (52.1%) 62 (20.2%) 85 (27.7%) 207 (64.7%) 90 (28.1%) 23 (7.2%) –

Males1 81 (51.3%) 28 (45.2%) 45 (52.9%) 91 (44%) 52 (57.8%) 13 (56.5%) –

Age at first visit2 73.5 (5.7) 67.5 (5.8) 70.2 (7.4) 75.7 (7.1) 75 (8.6) 72.6 (9.9) –

AD clinical onset age,
median2

– – – 72 (7.4) 73 (7.4) 72 (7) –

Education class3 3.65 (0.66) 3.15 (0.92) 2.91 (1.02) 3.36 (0.83) 2.57 (0.91) 2.61 (0.99) –

APOE e4 allele carrier1,4 26 (16.2%) 8 (12.9%) 26 (30.6%) 155 (74.9%) 55 (61.1%) 17 (73.9%) –

APOE e2 allele carrier1,4 30 (18.8%) 5 (8.1%) 17 (20%) 8 (3.9%) 4 (4.4%) 0 (0%) –

MMSE total2 30 (0) 30 (0) 29 (1.48) 23 (2.97) 23 (1.48) 24 (4.45) –

CDR3 0 (0) 0.01 (0.06) 0.03 (0.12) 0.79 (0.27) 0.64 (0.23) 0.67 (0.24) –

CDR SOB3 0.04 (0.13) 0.05 (0.15) 0.03 (0.12) 4.54 (1.56) 3.61 (1.40) 3.85 (1.39) –

Validation dataset

N1 – – – 216 (37.8%) 168 (29.4%) 67 (11.7%) 120 (21%)

Males1 – – – 97 (44.9%) 98 (58.3%) 38 (56.7%) 79 (65.8%)

Age at first visit2 – – – 76.4 (7.6) 76.2 (5.6) 76.7 (7.1) 76 (6.6)

AD clinical onset age2 – – – 74 (8.9) 75 (5.9) 74.9 (7.4) 72 (5.9)

Education class3 – – – 3.26 (0.91) 2.57 (0.91) 2.5 (1.06) 1.54 (0.82)

APOE e4 allele carrier1,4 – – – 115 (53.2%) 74 (44%) 24 (35.8%) 59 (49.2%)

APOE e2 allele carrier1,4 – – – 85 (39.4%) 59 (35.1%) 23 (34.3%) 48 (40%)

Abeta positive1 – – – 99 (45.8%) 16 (9.5%) 22 (32.8%) –

Abeta negative1 – – – 27 (12.5%) 14 (8.3%) 2 (3%) –

MMSE total2 – – – 23 (2.97) 22 (2.9652) 22 (4.44) 22 (5.93)

CDR3 – – – 0.81 (0.35) 0.71 (0.25) 0.84 (0.46) 1.18 (0.50)

CDR SOB3 – – – 4.63 (2.23) 4.02 (1.42) 4.93 (2.66) –

Notes: 1n (%); 2median (median absolute distance); 3mean (sd); 4the percentagedenominator refers to the sumof the non-missing APOE records; education years are categorized in 4 classes (1 =< 0–8
years; 2 = 9–13 years; 3 = 13–15 years, 4 > 15 years). The MMSE scores at the baseline MRI visit for the AD group of the discovery set had a median value of 23 (1st quartile: 21, 3rd quartile: 25).
MMSEMini-Mental State Examination, CDR Clinical Dementia Rating, CDR SOB CDR sum of boxes.
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dataset showed high similarity to the model’s fitted values at the same
disease stage (Fig. 6, Supplementary Fig. 5).

Moreover, when clustering was applied separately to ADNI and
J-ADNI/AIBL datasets, the former dataset showed five and the latter
dataset showed four different patterns of atrophy (Supplementary
Figs. 6 and 7 (uncorrected version of Supplementary Fig. 6), Sup-
plementary Tables 7–8). The atrophy patterns found in the separate
cohorts were similar to the overall discovery dataset, including MA,
LPA, LPA+, DA, and HS cases. Quantitatively, MA is more similar (in
terms of intercept and slopes distances) to the ADNI cluster 3 and J-
ADNI/AIBL cluster 3, LPA is more similar to ADNI cluster 2 and
J-ADNI/AIBL cluster 2, LPA+ is more similar to ADNI cluster 1 and J-
ADNI/AIBL cluster 3, DA is more similar to ADNI clusters 4 and J-
ADNI/AIBL cluster 4, and finally HS is more similar to ADNI cluster 2
and J-ADNI/AIBL cluster 1 (Supplementary Figs. 6–7, Supplementary
Tables 7–8). The similarities between the ADNI and J-ADNI/AIBL
datasets can be found in the supplementary analysis (Supplemen-
tary Fig. 7).

Discussion
A major contribution of this study is the transition from a cross-
sectional understanding of AD subtypes to the perspective brought by
longitudinal clustering. Some of the previously reported AD subtypes
seem to reflect different stages of the disease that can be observed in
our five estimated longitudinal atrophy patterns. Hence, our data
contribute a step towards solving the long-lasting problem of

disentangling disease stages from actual disease subtypes. This was
enabled by modeling longitudinal data using a clear timescale, i.e.,
over eight years, from disease onset in a large multiethnic cohort of
891 AD dementia cases from four continents. Another important
finding is that AD subtypes with clearly distinct atrophy trajectories
may converge in late disease stages. This introduces a new under-
standing of neurodegeneration in AD, which combined with knowl-
edge of neuropathological and clinical heterogeneity, could set the
ground for future personalized predictions of biological changes and
cognitive decline in AD.

At the modeled clinical disease onset, our method successfully
identified the same patterns of atrophy previously identified in neu-
ropathological and neuroimaging subtyping studies (minimal atrophy,
limbic predominant, typical AD, and hippocampal sparing)5,7,8,13,16. Our
results revealed twomain pathways of atrophy. We introduce the term
pathway to describe AD patients that show similar spatial distribution
of atrophied brain regions over time. Within the same atrophy path-
way, patientsmay progress faster (LPA+) thanothers (LPA andMA) but
their spatial distribution of atrophy over time is similar. This pathway
contrastswith the seconddifferent atrophypathway inAD,whichhas a
different spatial distribution with mainly cortical atrophy over time.
The differences in progression rates also reflect the rates of cognitive
decline of the patients. It is a very important future aim to understand
the factors underlying of these differences in progression within the
same pathway but also between the different pathways that we have
identified.

Fig. 1 | Atrophy at population level in the CU and ADgroups. For the calculation
of cognitively unimpaired (CU) and Alzheimer’s disease (AD) atrophy patterns at
the different ages (A, B), the data were z value transformed. One mixed effect
multivariate model was used to visualize the differences in atrophy between the
two diagnostic labels (red color; more atrophy, yellow color; less atrophy). The
upper right color legend refers to standard deviations from the sample mean (0
corresponds to the mean of AD and CU sample values). At 55 years of age, AD has
seemingly similar atrophy levels to theCUpopulation and differences showupwith
ageing. For the visualization of the AD data correction based on the CU sample (C),

two separate mixed effect multivariate models (one for the CU sample and one for
the AD sample) were used. The AD data were standardized based on the CU data.
Thus, the lower color legend shows standarddeviationsof theADpopulation below
the CU population (w-values, 0 corresponds to the mean of CU sample values).
Younger ADpatients (between 55 and65 years of age) showmoreposterior atrophy
compared to controls, while older AD patients (above 75 years old) show more
mediotemporal and hippocampal atrophy compared to controls. For the visuali-
zation models the fitted values in panels A, B, and C are controlled for MRI field
strength, cohort.
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The minimal atrophy (atrophy limited to the entorhinal cortex),
the limbic predominant (atrophy mainly in limbic areas), and the
typical (widespread atrophy in the hippocampus, temporal, parietal,
and frontal lobes) AD subtypes16, were identified in some disease
stage of our MA, LPA, or LPA+ longitudinal atrophy clusters. MA was
the most representative cluster in the datasets under investigation
and it had the highest variability within cluster. Clustering methods
often identify one cluster that represents the most prevalent pattern
in a dataset which is an average of more heterogeneous observations
than the pattern that results from the remaining clusters in the
dataset16. It is important to stress that our MA cluster includes
patients that are grouped in the minimal and limbic predominant
patterns of atrophy, and potentially some early stage typical AD

patients reported in the literature7. This is the case, since in our study
we model trajectories of atrophy from the disease onset accounting
for longitudinal structural changes in CU Aβ negative subjects.
Through this type of modeling, we connected patterns of atrophy
from the literature by modeling atrophy trajectories and therefore
disease staging explicitly. Our MA and LPA clusters probably belong
to the same AD subtype observed in two distinct stages, since MA
patients reached the LPA levels (baseline) two years after the AD
onset. The differences in cognitive intercepts (MMSE and ADASword
recall) between our MA and LPA clusters support the view that they
reflect different disease stages. The LPA+ cluster appears to be on the
same atrophy pathway but with faster atrophy rates in comparison to
theMA and LPA clusters. Patients in the LPA+ cluster had the steepest

Fig. 2 | Fitted values for cortical thickness and subcortical volumes for the
different longitudinal patterns of atrophy fromAD onset. Atrophy-fitted values
from clinical AD onset. Each row represents one cluster of patients with the cor-
responding pattern of atrophy. The color scale illustrates cortical thinning and
subcortical volume loss compared to Aβ negative, cognitively unimpaired (CU)

individuals (red color; more atrophy, yellow color; less atrophy). Data are w-value
transformed and therefore colors represent standard deviations below the CU
group controlled for aging. Fitted values are fixed for intracranial volume and MRI
scanner field strength.

Table 2 | Cluster/cognitive profiles summary

Patterns of atrophy acronym Atrophy at the AD onset Atrophy rate Cognitive decline rate Atrophy 8 years after the AD onset

MA Minimal Slow Slow Limbic predominant

LPA Limbic predominant Slow Slow Limbic predominant

LPA+ Limbic predominant Fast Fast Diffuse

DA Diffuse Fast Slow Diffuse

HS Hippocampal sparing Fast Fast Cortical predominant

Summary of longitudinal atrophy and cognitive trajectories of AD patients in four cohorts (Alzheimer’s Disease Neuroimaging Initiative, Japanese ADNI, AddNeuroMed, and the Australian Imaging,
Biomarkers, and Lifestyle study).
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decline in cognition among the five identified clusters, including
memory and orientation. LPA+ patients had similar APOE e47, edu-
cation and disease onset as in MA and LPA. However, premorbid
intelligence, a proxy for cognitive reserve17, was significantly higher
in LPA+ than in MA and LPA. We believe that due to high cognitive
reserve, patients of the LPA+ cluster can reach higher levels of brain
atrophy than the MA and LPA clusters, while maintaining similar
clinical severity until they reach the AD onset17. The dynamics of
brain atrophy over time in the MA, LPA, and LPA+ clusters differed.
However, our current data seems to indicate that these three long-
itudinal atrophy clusters belong to the same atrophy pathway
in AD, namely the mediotemporal atrophy pathway. Atrophy in
this well-documented pathway is shown to correlate with the

neurofibrillary tangle pathology at autopsy1,5,18. Even though these
three clusters (MA, LPA, and LPA+) belong to the same atrophy
pathway, their rates of atrophy and cognitive decline differ sub-
stantially, which can have important clinical implications. These
observed differences are likely due to a combination of protective
and risk factors as well as potential concomitant non-AD brain
pathologies7. For example, it was shown by Ferreira and colleagues,
that the location and frequency of markers of small vessel disease
differ between AD subtypes19.

Our HS cluster resembles the hippocampal sparing subtype
described in previous neuropathological and neuroimaging subtyping
studies5,7,8,13,16. This subtype is more often characterized by cortical
atrophy in comparison to the other AD subtypes7,8,16,18. In our study,

Table 3 | Cluster characteristics

Minimal Limbic predominant Limbic predominant + Diffuse Hippocampal sparing

Discovery Validation Discovery Validation Discovery Validation Discovery Validation Discovery Validation

N1 189 (59.1%) 313 (54.8%) 93 (29.1%) 230 (40.3%) 23 (7.2%) 11 (1.9%) 5 (1.6%) 11 (1.9%) 10 (3.1%) 6 (1.1%)

Males1 90 (47.6%) 173 (55.3%) 45 (48.4%) 126 (54.8%) 14 (60.9%) 5 (45.5%) 3 (60%) 4 (36.4%) 4 (40%) 4 (66.7%)

Cohort ADNI1 119 (63%) 118 (37.7%) 61 (65.6%) 87 (37.8%) 17 (73.9%) 5 (45.5%) 4 (80%) 4 (36.4%) 6 (60%) 2 (33.3%)

Cohort J-ADNI1 60 (31.7%) 90 (28.8%) 21 (22.6%) 69 (30%) 6 (26.1%) 5 (45.5%) 1 (20%) 3 (27.3%) 2 (20%) 1 (16.7%)

Cohort AIBL1 10 (5.3%) 33 (10.5%) 11 (11.8%) 30 (13%) – – – 2 (18.15%) 2 (20%) 2 (33.3%)

Cohort
AddNeuroMed1

– 72 (23%) – 44 (19.2%) – 1 (9%) – 2 (18.15%) – 1 (16.7%)

Age2 75.5 (7.6) 76.5 (6.7) 75.4 (8) 76.3 (6.7) 74.5 (7.3) 75.1 (7.9) 71.9 (11.6) 73.3 (5) 62.7 (7.9) 62.6 (7.3)

AD onset age2 73 (7.4) 74 (7.4) 73.1 (7.6) 75 (7.3) 73 (7.4) 72 (7.4) 66 (7.4) 73 (4.4) 61 (8.1) 60.9 (6.5)

Education class3 3.08 (0.93) 2.6 (1.13) 3.04 (1) 2.59 (1.08) 3 (0.9) 2.73 (1.01) 3.6 (0.55) 2.82 (1.08) 3.5 (0.85) 3 (1.26)

APOE e21,5 6 (3%) 17 (6%) 3 (3%) 13 (6%) 1 (4%) 1 (10%) 1 (20%) 1 (9%) 1 (10%) 1 (20%)

APOE e3e31,5 45 (24%) 99 (33%) 29 (31%) 77 (34%) 7 (30%) 1 (10%) 1 (20%) 5 (45.5%) 5 (50%) 0

APOE e41,5 142 (75%) 183 (60%) 62 (67%) 139 (62%) 16 (70%) 8 (80%) 3 (60%) 5 (45.5%) 4 (40%) 4 (80%)

ANART4 16.74 (0.42) 16.13 (0.58) 12.08a (1.07) 16.85 (2.2) 12.57a (1.8)

MMSE total5 23.11c (−0.42) 22.51a (−0.5) 24.95 (−1.99b) 21.83 (−0.5) 21.78 (−1.59b)

CDR3 0.72 (0.27) 0.86 (0.40) 0.75 (0.25) 0.89 (0.45) 0.76 (0.26) 0.75 (0.27) 0.67 (0.29) 1 (0.61) 0.71 (0.27) 0.88 (0.25)

CDR SOB3 4.02 (1.55) 4.34 (2.11) 4.28 (1.48) 4.40 (1.95) 4.45 (1.73) 4.64 (0.80) 3.83 (3.01) 4.93 (2.22) 4.29 (0.99) 4.67 (1.15)

GDS5 2.06 (0.02) 2.13 (−0.01) 2.19 (0.09) 0.84 (0.11) 1.96 (−0–01)

Alzheimer’s disease assessment scale

Word recall5 5.96 (0.09) 6.35a (0.04) 5.5 (0.55b) 7.01 (−0.03) 6.43 (0.36)

Following
commands5

0.61 (0.01) 0.77 (0) 0.5 (0.11) 1.39 (−0.1) 1.7a (0.04)

Constructional
praxis5

0.71 (0.01) 0.92 (−0.01) 0.7 (0.1) 0.89 (−0.08) 1.9a (0.01)

Naming objects
and fingers5

0.39 (0.01) 0.51 (0.01) 0.28 (0.14) 0.51 (0) 1.13 (−0.23)

Ideational praxis5 0.49 (0.01) 0.61 (0.01) 0.41 (0.07) 0.6 (−0.05) 1.5 (0.01)

Orientation5 2.24 (0.17) 2.71 (0.08) 2.02 (0.75b) 2.39 (0.17) 2.4 (0.35)

Word
recognition5

5.96 (0.13) 5.89 (0.1) 4.92 (0.5) 6.08 (0.01) 3.16 (0.98)

Recall
instructions5

0.27c (0.05) 0.51 (0.03) 0.1 (0.06) 0.27 (0.04) 0.23 (0.19)

Spoken
language5

0.31 (0.02) 0.44 (0.03) 0.15 (0.12) 0.52 (−0.02) 0.8 (−0.02)

Word finding
difficulty5

0.63 (0.03) 0.87 (0.02) 0.29 (0.2) 0.43 (0.05) 1.61 (−0.17)

Comprehension
of spoken
language5

0.3 (0.02) 0.49 (0.01) 0.22 (0.09) 0.33 (−0.02) 0.54 (0)

Notes: 1n (%); 2median (median absolute distance); 3mean (sd); 4estimated value at the AD onset (estimation standard error); 5estimated value at the AD onset (estimated annual change); 5the
percentage denominator refers to the sum of the non-missing APOE records; education years are categorized in 4 classes (1 = <0–8 years; 2 = 9–13 years; 3 = 13–15 years, 4 > 15 years). Corrections for
multiple comparisons were assessed with the Holms–Sidak method.
ANART American National Adult Reading Test, MMSEMini-Mental State Examination, CDR Clinical Dementia Rating, CDR SOB CDR sum of boxes, GDS Geriatric Depression Scale.
aBaseline differences between cluster 1 and other clusters.
bLongitudinal differences between cluster 1 and other clusters.
cBaseline or longitudinal differences between discovery and validation dataset.
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some characteristics of the HS cluster included steep atrophy trajec-
tories, a lower frequency of the APOE e4 allele7, high premorbid
intelligence, more years of education, and early AD onset, which is in
line with the characteristics associated with the hippocampal sparing
subtype reported by previous studies7,8,13,16. This cluster had the lowest
frequency, which is also in line with previous studies7,8. The chances of
finding more hippocampal sparing patients were reduced since the

cohort selection criteria included the amnestic phenotypic presenta-
tion of AD, which is frequently related to typical AD and thus the
mediotemporal atrophy pathway4. The significantly affected con-
structional and ideational praxis is a key characteristic of the hippo-
campal sparing subtype7,13,16, which was also confirmed in our study.
Comparisons between our MA and HS cluster covariance patterns
revealed network differences between these two groups. In the MA,

Fig. 3 | Cluster-specific cognitive trajectories after the clinical onset of
dementia. The trajectories are estimated with mixed effect models to account for
intra subject and cohort variability. MMSE Mini-Mental State Examination, ADAS

Alzheimer’s disease assessment scale. Dotted lines represent 95% confidence
intervals.
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Fig. 4 | Longitudinal clustering model cluster-mean intercept and slope atro-
phy coefficients. Each row of the heatmap is grouped in terms of neuroanatomical
spatial position (red color; more atrophy, yellow color; less atrophy). Columns that
represent different clusters are grouped in terms of similarity between clusters.
Vertical lines within cells represent cluster region mean ROI value (the vertical

dotted line represent the value 0, no difference from the CU sample). The diffuse
atrophy cluster has the lowest intercept and it is notgroupedwith any other cluster.
The cluster slopes of the diffuse atrophy and hippocampal sparing clusters are
grouped together. The minimal atrophy and limbic predominant atrophy/Limbic
predominant plus are grouped together.
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anatomical differences due to the disease were predominantly loca-
lized in the medial-temporal lobe and cortical regions combined as a
network at the AD onset. On the other hand, the HS cluster network
differences at the AD onset also involve the basal ganglia. Moreover,
the HS cluster had higher nodal strength at the intercept of some
ventromedial prefrontal and medial temporal regions from the MA

cluster. Based on all these results, we believe that the HS pattern of
atrophy represents a distinct atrophy pathway in AD, namely the cor-
tical pathway.

To explain the atrophy trajectories of ourDAcluster is challenging
since excessive frontal and temporal atrophy was already present at
the clinical onset. Our data showed that in advanced stages on the

Fig. 5 | Comparison of cluster-specific covariancematrixeswith node strength.
The cluster-specific intercept (A, C, E, and G) and slope (B,D, F, andH) covariance
matrices were compared with network theory. Sphere diameter shows the node

strength of each region. The regions where the minimal atrophy cluster has higher
nodal strength than the other clusters are shown in red, while blue is used in the
opposite case. The networks are presented in lateral sagittal and transversal view.
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mediotemporal and cortical pathways of atrophy, AD patients may
develop comparable levels of atrophy that are similar to our DA clus-
ter. As a result, this cluster of patients can potentially belong to either
of the two pathways of atrophy. Similarly to our LPA+, cognitive
reserve in our DA cluster (education exceeded 15 years on average)
may explain the greater atrophy levels (at dementia onset)7,17. Our DA
cluster had a similar pattern of atrophy to that of the typical AD
atrophy subtype reported in the literature7,8,13,16, but lower frequency.
In a recent cross-sectional clustering study using tau PET that mainly
included preclinical AD, no cluster had spatial tau distribution similar
to the typical AD pattern of atrophy, but the cortical and medial-
temporal patterns of tauwereobserved10. Further, two other studies in
prodromal AD found clusters of individuals with decreased temporal-
parietal glucosemetabolism20 or increased temporal-parietal atrophy21

(typical AD pattern), but in low sample frequencies, which is in line
with our findings.

Recently, itwas proposed thatAβ aggregation in the defaultmode
network (DMN) is predominantly associated with within-network but
distant glucose hypometabolism22. Moreover, glucose metabolism,
atrophy, and tau pathology are closely linked in AD7,18,22. We speculate
that the mediotemporal path of neurodegeneration in AD may be

initiated in the vulnerable temporal lobe after enough Aβ is deposited
in distant DMN regions. In contrast, the cortical atrophy pathway
patients may show less initial temporal lobe atrophy (and amnestic
symptomatology) partially because they respond differently to Aβ
aggregation in the DMN due to compensation mechanisms22 such as
cognitive reserve17.

Our study has addressed some important methodological
challenges that the existing literature of biological subtypes has
not overcome so far. To our knowledge, this is the first time that AD
atrophy subtypes were discovered based on modeling longitudinal
biomarker trajectories8. An immediate advantage of our long-
itudinal clustering approach is that it overcomes the assumption
that subjects of a cluster (cross-sectional analysis) remain in the
same cluster when the disease advances, which is unrealistic8.
Previous studies have employed arbitrary timescales to model
biomarker progression8,10,13. Our estimates are based on a clearly
defined timescale, namely the time from clinical onset. This
approach provides the unique possibility to generate interpreta-
tions based on disease staging that help to trace abnormal changes
early in the disease course of each cluster. Previously, longitudinal
interpretations could not directly relate back to data in hand

Fig. 6 | Comparison of model-fitted values and validation dataset atrophy
levels. Atrophy-fitted values after the AD onset for the trained clustering model
versus the new validation dataset. Newobservations were classified to each cluster,
and median disease duration was calculated. Then atrophy-fitted values at the
median disease duration of each cluster were calculated through the clustering
model (middle column).Median atrophymaps (groupmedian atrophy) for the new
data of each cluster are presented in the left column. The right column shows the
hippocampal volumes of each cluster’s (boxplot colors: green; minimal; n = 420,
olive; limbic predominant; n = 283, orange; limbic predominant+; n = 12, blue;

diffuse; n = 13, purple; hippocampal sparing; n = 8) new observations (repeated
measurements are included) and the model-fitted value hippocampal atrophy
(green vertical line). The color scale of the cortical maps (left and middle column)
reflects AD atrophy levels compared to a multicohort dataset of Aβ negative cog-
nitively unimpaired (CU) individuals (red color; more atrophy, yellow color; less
atrophy). Data are w-value transformed and therefore colors represent standard
deviations bellow the CU group controlled for aging. Fitted values are fixed for
intracranial volume and MRI scanner field strength.
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because they were not anchored to a specific timescale13. We cal-
culated atrophy w-values for each patient corrected for the effects
of aging in brain morphology based on a dataset of longitudinal Aβ
negative CU individuals. Our model for the correction of ageing
effects on the atrophy values, as it was shown in the results, iden-
tified the excess atrophy due to AD at different ages correctly and is
in line with the literature comparing early and late onset AD23. This
approach helped to estimate the within-subject variance more
precisely and therefore account for the effects observed in
aging9,15,24, which has been a limitation of cross-sectional
estimations9,16,18. A common pitfall of clustering studies is to
focus on finding labels for observations depending on their fea-
tures in a population, which tends to overfit the training set.
External validation datasets help to assess the ability of clustering
models to generalize8. We found that our longitudinal atrophy
estimates and the unseen atrophy patterns in the validation dataset
were highly concordant. Moreover, the application of longitudinal
clustering separately in the ADNI and J-ADNI/AIBL cohorts showed
similar longitudinal atrophy patterns to those found in the whole
discovery dataset with small variations. The low sample percen-
tages that some clusters exhibited, is attributed to the under-
representation of rare subtypes in some cohorts that focused on
the typical AD phenotype, the lower sample that was used in the
separate cohorts for clustering, and to the ability of our method to
identify clusters of very low prevalence if they exist15. Concordance
was high for the most prevalent atrophy patterns and lower for DA
and HS, due to low sample sizes and cohort differences. Between
ADNI and J-ADNI/AIBL cohorts, a quantitative assessment showed
increased similarity in longitudinal atrophy trajectories, with small
variations due to small sample sizes and cohort variability. Of
interest, the hippocampal sparing and diffuse atrophy patterns of
atrophy were found in both datasets but with lower prevalence
than in the complete discovery dataset. This happened due to the
split of the discovery dataset in smaller datasets that under-
represent the AD population. AD subtypes of lower prevalence in
the population7, are doomed to be underrepresented or disappear
when clustering is applied to small datasets9. The combined ana-
lysis of the cohorts in the discovery dataset with one model instead
of building one clustering model per cohort, allowed us to build a
single statistical model that producedmore accurate estimates due
to a larger sample size. Importantly, since our study was mainly
based on longitudinal information from repeated cross-sectional
measurements, we avoided to interpret structural relations
between brain regions based on cross-sectional correlations.
Instead, we focused only on the longitudinal correlation between
brain regions which is based on within patient longitudinal
trajectories.

Our study has some limitations. Only atrophy markers were
modeled in the context of AD heterogeneity. Pre-AD scans were not
included. This reduced our ability to infer atrophy patterns that
precede the diagnosis of AD dementia. In the future, we envision
combining and comparing other imaging modalities longitudinally,
thus extending our current analyses to incorporate information
about tau-related pathology. Moreover, the future addition of bio-
markers of non-AD pathologies in the clustering studies design will
help in understanding the contribution of comorbidities in AD
subtypes. The inclusion of subjects from four different continents is
a strength since it increased the variability in the sample and
therefore represented the AD population better, but it is also a
limitation due to variability in MRI assessments. Another limitation
is the short follow-up period for AD patients included in the study. A
future re-estimation of atrophy trajectories will include more MRI
visits per patient to obtain better estimates. However, a strong
methodological aspect of this study is the reconstruction of long-
itudinal subtype-atrophy profiles over the dementia part of the AD

continuum, based on longitudinal individual patients’ data that
comprised short segments of the disease continuum. Future studies
should also include multiple MRIs from patients that are followed
up from the preclinical until the dementia stage. The cohorts were
harmonized to reduce MRI variability. Beyond these limitations, we
assumed that the CU population has homogeneous brain mor-
phology. Future studies should investigate whether CU individuals
age differently and incorporate this information in the context of
AD heterogeneity.

In conclusion, basedon a largemultiethnic cohort of ADdementia
patients, we discovered five longitudinal patterns of brain atrophy that
group the previously reported AD subtypes into two atrophy pathways
(a mediotemporal and a cortical). We introduced a different under-
standing of the neurodegenerative aspect of AD heterogeneity, by
shifting from the cross-sectional understanding of AD subtypes to the
perspective brought by longitudinal clustering. Our study is a step
forward toward answering an urgent question, whether the observed
heterogeneity in AD reflects disease stages or distinct biological sub-
types. We believe that with the help of our proposed model, it will be
possible to unravel the heterogeneity in AD, thus enabling precision
medicine and potentially leading to successful disease-modifying
treatments in the future.

Methods
Study design and participants
This study includes 891 AD dementia patients and 319 CU individuals
from four international multi-center cohorts: Alzheimer’s Disease
Neuroimaging Initiative (ADNI, http://adni.loni.usc.edu) Japanese
ADNI (J-ADNI, https://humandbs.biosciencedbc.jp/en/hum0043-v1)25,
AddNeuroMed (https://consortiapedia.fastercures.org/consortia/
anm/)26, and the Australian Imaging, Biomarkers and Lifestyle study
(AIBL, Australian ADNI, https://aibl.csiro.au/)27 (Table 4). The AD
inclusion criteria of the four cohorts were similar since the research
protocols of J-ADNI, AIBL, and AddNeuroMed were designed to be
comparable with ADNI (Supplementary material, p. 1–2). All partici-
pants provided written informed consent in accordance with the
Helsinki declaration and approval for the studies was obtained by the
local ethics committees.

OnlyAβ positiveADpatients (ADNI, J-ADNI, AIBL)were included in
the discovery cohort to ensure that the identified clusters reflect AD
pathology (Table 4). CU individuals were Aβ negative (to exclude
preclinical AD) and remained CU during all future cognitive assess-
ments available to date (Table 4). Participants in the discovery dataset
had more than twoMRI visits (Supplementary Table 1, Supplementary
Fig. 8),while those in the validation dataset had at least one visit (ADNI,
J-ADNI, AIBL, AddNeuroMed). Some patients from the validation
dataset (AddNeuroMed) had access to more than one MRI visit (Sup-
plementary Table 1).

Magnetic resonance imaging (MRI)
The J-ADNI, AddNeuroMed, and AIBL cohorts adopted the MRI
protocol of ADNI. High resolution sagittal (1.5 T and 3 T) 3D T1-
weighted Magnetization Prepared Rapid Gradient Echo (MPRAGE)
volumes, with full brain and skull coverage were acquired and
detailed quality control (QC) was applied to the original images.
Images were processed with the longitudinal stream of FreeSurfer
6.0, through the TheHiveDB28. The parcellation and segmentation
of MRIs with Freesurfer were QCed manually by a trained person to
exclude bad segmentations/parcellations that would introduce
noise to the results. Thickness from 34 cortical (Desikan atlas) and
volumes of seven subcortical regions per hemisphere (Supple-
mentary Table 9) were extracted and averaged between hemi-
spheres. These regions were used as input for clustering. Estimated
total intracranial volume (eTIV) was also extracted to account for
differences in head size in volumetric measures.
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Longitudinal clustering analysis
Statistical analysis consisted of three steps (Supplementary Fig. 9).
In the first step, we estimated mean volume/thickness levels of the
CU individuals (for the age span 50–90) in the discovery dataset
based on linear mixed effect models. This was followed by calcu-
lations of w-values29, which are z-values adjusted for age and cohort
for the discovery and validation datasets based on the CU mixed
effect models. Volume/thickness per brain ROI was used as
response, cohort, and subject id as random effects and age as a fixed
effect in the CU mixed effect models (one model for each of the 41
left/right hemisphere averaged brain regions). Adding cohort as a
random effect in these models enabled us to make individual
average volume/thickness predictions for the effects of ADNI, J-
ADNI, and AIBL cohorts and use the population mean that corre-
sponds to all individuals to harmonize the data of the AddNeur-
oMed cohort. The addition of the cohort random effect at this step
of the analysis, allows for future classification of MRI data from new
cohorts to the identified longitudinal clusters. Adding age as a fixed
effect allowed us to accurately estimate the anatomical changes in
the 41 brain regions due to aging since the CU dataset consisted of
amyloid-negative healthy controls with up to nine MRI visits and a
CU diagnosis during the sum of their future follow-ups. The mean
volume/thickness (mixed effect model atrophy expected fitted
value for specific cohort and chronological age) at any age and the
standard deviation of it (residual plus random effects standard
deviation) were used to calculate w-values or AD patients. Conse-
quently, w-values in our AD group (both discovery and validation
datasets) reflect brain atrophy that is caused by the disease, free
from the healthy aging anatomical features and cohort effects. To
visually inspect this correctionmethod, we employed amultivariate
mixed effect model30 and visualized the results. After this correc-
tion, the effect of disease is what remained in the AD dataset to be
assessed.

In the second step, we applied an in-house pipeline for long-
itudinal clustering to the discovery dataset15,31. The multivariate mix-
ture of generalized mixed effects clustering model32 incorporates
Bayesian inference to explore heterogeneity in the longitudinal brain
data. We applied this model on brain volume/thickness but it has
already been used in other applications31,33–42. The Bayesian approach
allowed the implementation of a complex hierarchical model for each
cluster, where probabilistic mixture modeling (number of clusters) is
combined with mixed effect modeling (number of brain regions) in
one model definition. The covariance between random effects (brain
regions) for each cluster was also modeled and thus the outcome
included structural and functional relationships between brain regions
at a cluster level. This implementation allows for the inclusion of ran-
dom and fixed effects. The feature of time (timescale) wasmodeled by
random intercepts and slopes (cluster specific). Disease duration (time
between AD onset age andMRI session age), was used as the timescale
variable (cluster-specific random effect) in the clustering model. Since
the existence of disease duration as a continuous measure in months
was the initial inclusion criterion for AD patients in this study (for the
design of the study), the timescale is common and disease duration
exists for the sum of AD patients in the model. The fixed effects
modeled the population level effects.MRI field strength and eTIV were
used as fixed effects, assuming that they vary and follow a trend in the
population but not between clusters. Following this approach, we
accounted for some important effects that can bias the clustering
algorithm9. Since the longitudinal clustering is based on the traditional
model-based probabilistic clustering (mixture of Gaussian distribu-
tions), we also estimated patient-cluster probabilities that reflect the
chances of a patient belonging to each cluster given their response
vector (random intercepts and slopes)43. Patients with similar volume/
thickness patterns at the AD onset and progression over time were
clustered together. Post-clustering, we assessed how many ADTa
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volume/thickness patterns exist at the clinical AD dementia onset, the
rate of atrophy per year for each pattern, and the frequency of each
pattern in the population. Although internal measurements of clus-
tering quality (Silhouette, CH, and others) already exist for clustering
assessment, they do not provide enough information when long-
itudinal data are clustered. Instead, model-fitting information includ-
ing model deviance and percentage of MCMCs with higher
autocorrelation compared to the majority of MCMCs were used to
assess clustering quality15,31. The model was initially fitted with linear
slopes. After a sufficiently long simulation, the parameters were saved
and thenused to initialize the optimization again, butwith the addition
of quadratic terms. The second optimization step aimed to model the
atrophy plateau that occurs after long disease duration. By following
this stepwise quadratic termaddition,we avoided the risk that all trend
parameters (slopes and quadratic terms) are poorly optimized, which
is common inmodels with asmany parameters44 as is ourmodel-based
clustering approach. Smoothed median-fitted value maps with
volume/thickness at AD onset and for 8 consecutive years were cal-
culated (using longitudinal information from patients at any time
during the first 8 years of clinical disease duration) to characterize
cluster volume and thickness tendency. Two different thresholds,
1.6 standard deviations below the CU normative values45, and
0.5 standard deviations below the CU normative values (a less con-
servative threshold) were used for the atrophy maps.

In the third step we used the discovery set model as a classifier,
to assess the chance of each patient in the validation dataset
belonging to any of the defined clusters46. We used the validation
dataset for two reasons. Since the validation dataset includes
mainly patients with one MRI visit (79% of patients), we aimed to
understand whether we can utilize the longitudinal model outcome
with this cross-sectional information to accurately assign patients
to the longitudinal clusters. To compare the accuracy of this
assignment we calculated median volume/thickness images for the
sum of patients in each cluster of the validation set separately.
Then, we compared those median images with the fitted values
(estimated at the median disease duration in months of the vali-
dation set for each cluster) of our model (2nd step) to make an
approximate assessment of the classification ability of new AD
patients’ data. This helped us to increase the transparency of the
supervised classification procedure and assess the model’s ability
to make relevant patient assignments into clusters. Moreover, by
predicting cluster assignment in the validation dataset we were
able to increase the size of the final clusters (pooled discovery and
validation datasets) and make more accurate estimations of the
cognitive profiles (and other characteristics) of the AD patient
clusters. A further validation of the clustering method involved the
application of the second step of the analysis independently in the
ADNI and J-ADNI/AIBL datasets, to assess the volume/thickness
patterns in the different datasets and their agreement to the
complete dataset model. The correspondence between the results
of the independent analysis in the ADNI and J-ADNI/AIBL datasets
and their relation to the complete dataset analysis were assessed by
means of distance between the intercepts and slopes of the iden-
tified patterns.

Some of the advantages of the overall pipeline are that it: incor-
porates whole brain data, leverages data of patients with different visit
numbers and at different times, provides cluster visualization through
the fitted values, provides clustering uncertainty measures, allows for
the modeling of confounding effects, compares the patient’s cluster
specific volume/thickness with a group of healthy individuals15, can
potentially be used for the classification of new patients with only one
MRI visit. In comparison to previous approaches10,13, longitudinal data
are used in longitudinalmodeling and not as an evaluation set in cross-
sectional analysis.

Complementary statistical analysis
As mentioned in step one of the longitudinal clustering analysis, we
estimated cluster-specific randomeffects covariancematrices for each
cluster. Each element of the cluster-specific (one for each cluster)
intercept covariance matrix represents the correlation of one brain
region’s intercept to any other region. Consequently, correlated brain
regions may have similar structural connectivity. The same applies to
slope covariance matrices. We are focusing more on slopes that can
provide more information about structural connectivity. Thus, corre-
lating random slopes shows that brain regions develop atrophy in a
similar manner over time. It is important to notice that the intercept/
slope variance/covariance matrices per cluster refer to estimated
regression random intercepts and slopes and not to the original
volume/thickness data32. To characterize the differences between
clusters in termsof structural (intercept) and longitudinal (slope) brain
regional volume/thickness relationships, nodal strength47 was calcu-
lated based on the aforementioned intercept and slope variance/cov-
ariance matrices. This graph theory measurement summarizes
information from covariance matrices for each brain region and
reflects the sumof the correlations of a brain regionwith all the regions
connected to it. Clusters were compared in pairs using BRAPH (http://
braph.org/)48. It is important to stress that the nodal strength calcu-
lation was not used as themain analytical step in this study but only to
help summarize the information from the cluster covariance matrices
and to decrease the number of brain regions involved in the cluster
interpretation. Moreover, post-clustering (after the main clustering
analysis), the intercept and slopemean values per cluster were further
clustered using hierarchical clustering, to investigate the existence of
commonatrophy intercepts and atrophyprogressionpatterns (slopes)
over time. This step helped to infer whether some clusters of patients
follow the same spatial distribution of atrophy in the brain, but with
faster or slower progression and/or different intercepts at the AD
onset (stage of atrophy at the AD onset). For the ADAS-cog subscales,
MMSE, and ANART, we applied generalized linearmixed effect models
(and corrected our results post hoc) to explore differences between
clusters. All analysesweredonewithR (3.6.3). ANARTscoreswere used
to assess premorbid intelligence.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated and analyzed during the current study are not
available on their entirety due to individual agreements with the four
cohort (ADNI, JADNI, AIBL, AddNeuroMed) committees. The datasets
can be acquired after request to the individual cohort repositories.
Unique deidentified ids of patients in each cluster and the clustering
results and full models outputs can be shared upon reasonable
request. TheHiveDB was used for processing of images with
Freesurfer 6.0.0.

Code availability
All relevant code is included in the supplementary file: Supplementary
Software 1.
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