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Abstract: Over the past decade, convolutional neural networks (CNN) have shown very competitive
performance in medical image analysis tasks, such as disease classification, tumor segmentation,
and lesion detection. CNN has great advantages in extracting local features of images. However,
due to the locality of convolution operation, it cannot deal with long-range relationships well.
Recently, transformers have been applied to computer vision and achieved remarkable success in
large-scale datasets. Compared with natural images, multi-modal medical images have explicit
and important long-range dependencies, and effective multi-modal fusion strategies can greatly
improve the performance of deep models. This prompts us to study transformer-based structures
and apply them to multi-modal medical images. Existing transformer-based network architectures
require large-scale datasets to achieve better performance. However, medical imaging datasets
are relatively small, which makes it difficult to apply pure transformers to medical image analysis.
Therefore, we propose TransMed for multi-modal medical image classification. TransMed combines
the advantages of CNN and transformer to efficiently extract low-level features of images and
establish long-range dependencies between modalities. We evaluated our model on two datasets,
parotid gland tumors classification and knee injury classification. Combining our contributions, we
achieve an improvement of 10.1% and 1.9% in average accuracy, respectively, outperforming other
state-of-the-art CNN-based models. The results of the proposed method are promising and have
tremendous potential to be applied to a large number of medical image analysis tasks. To our best
knowledge, this is the first work to apply transformers to multi-modal medical image classification.

Keywords: transformer; medical image classification; deep learning; multiparametric MRI; multi-modal

1. Introduction

Transformers were first applied in the field of natural language processing (NLP) [1]. It
is a deep neural network mainly based on the self-attention mechanism to extract intrinsic
features of textual data. Because of its powerful representation capabilities, researchers
hope to find a way to apply transformers to computer vision tasks. Compared with
text, images involve larger size, noise, and redundant modalities, so it is considered
more difficult to use transformers on these tasks. Recently, transformers have made a
breakthrough in computer vision. A large number of transformer-based methods have
been proposed for computer vision tasks, such as DETR [2] for object detection, SETR [3]
for semantic segmentation, ViT [4] and DeiT [5] for image classification.

Transformers have achieved success in natural images, but it has received little atten-
tion in medical image analysis, especially in multi-modal medical image fusion. Multi-
modal images are widely used in medical image analysis to achieve disease classification
or lesion segmentation. The existing medical image multi-modal fusion based on deep
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learning can be divided into three categories: input-level fusion, feature-level fusion, and
decision-level fusion [6]. Input-level fusion strategy fuses multi-modal images into the
deep network by multi-channel, learns fusion feature representation, and then trains the
network. Input-level fusion can retain the original image information to the maximum
extent and learn the image features. Feature-level fusion strategy trains a single deep
network by taking the image of each modality as a single input. Each representation is
fused in the network layer, and the final result is fed to the decision layer to obtain the final
result. Feature-level fusion network can effectively capture the information of different
modalities of the same patient. Decision-level fusion integrates the output of each network
to obtain the final result. Decision-level fusion network aims to learn more abundant
information from different modalities independently.

However, they all have shortcomings in varying degrees. The input-level fusion
strategy is difficult to establish the internal relationship between different modalities
of the same patient, which leads to the degradation of the model performance. Each
modality of the feature-level network corresponds to a neural network, which brings
huge computational costs, especially in the case of a large number of modalities. The
output of each modality of decision-level fusion is independent of each other, so the
model cannot establish the internal relationship between different modalities of the same
patient. In addition, like decision-level fusion strategy, decision-level fusion strategy is also
computationally intensive.

Therefore, there is an urgent need to combine the three fusion strategies efficiently. A
good multi-modal fusion strategy should achieve as much interaction between different
modalities as possible with low computational complexity.

Compared with CNN, transformers can effectively mine long-range relationships
between sequences. The existing computer vision models based on transformer mainly deal
with 2D natural images, such as ImageNet [7] and other large-scale datasets. The method
of constructing sequences in 2D images is to cut the images into a series of patches. This
kind of sequence construction method implicitly shows long-range dependencies, which is
not very intuitive, so it may be difficult to bring significant performance improvement.

On the contrary, there are more explicit sequences in medical images, which contain
important long-range dependency and semantic information, as shown in Figure 1. Due
to the similarity of human organs, most visual representations are orderly in medical
images. Destruction of these sequences will significantly reduce the performance of the
model. It can be considered that compared with natural images, the sequence relationship
of medical images (such as modality, slice, patch) holds more abundant information. In
practice, clinicians will synthesize the pathological information of each modality to make
the diagnosis. However, most of the existing multi-modal fusion methods do not or rarely
consider the correlation of these sequences, and lack of modeling for these long-range
dependencies. The transformer structure is an elegant, efficient, and powerful encoder for
processing sequence relations, which is the motivation for us to propose the multi-modal
medical image classification method based on transformers.

In this work, we present the first study to explore the tremendous potential of trans-
formers in the context of multi-modal medical image classification. The proposed method
is inspired by the property that the transformer is effective in extracting the relationship
between sequences. However, due to the small scale of medical image datasets and the
lack of sufficient information to establish the relationship between low-level semantic
features, the performance of pure transformer networks based on ViT and DeiT is not
satisfactory in multi-modal medical image classification. Therefore, we propose TransMed,
which combines the advantages of CNN and transformer to capture low-level features and
cross-modality high-level information. TransMed first processes the multi-modal images
as sequences and sends them to CNN, then uses transformers to learn the relationship
between the sequences and make predictions. Since the transformer effectively models the
global features of multi-modal images, TransMed outperforms the existing multi-modal
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fusion methods in terms of parameters, operation speed, and accuracy. A large number of
experiments have proved the effectiveness of our method.

Figure 1. Compared with natural images, multi-modal medical images have more informative sequences.

In summary, we make the following two contributions:

1. We apply transformers to multi-modal medical image classification for the first
time and significantly improve the performance of deep models with low computa-
tional cost.

2. We propose a novel multi-modal image fusion strategy in this work, which can be
leveraged to capture mutual information from images of different modalities in a
more efficient way.

The rest of this paper is organized as follows. Section 2 presents some closely related
works. The pipeline of our proposed method is in Section 3. Section 4 introduces the
experimental results and details. We discuss the results in Section 5. Finally, we summarize
our work in Section 6.

2. Related Work
2.1. Multi-Modal Medical Image Analysis

Multi-modal medical analysis is one of the most fundamental and challenging parts
of medical image analysis [8]. It is proved that a reasonable fusion of different modalities
has been a potential means to enhance deep networks [6]. Multi-modal fusion can capture
more abundant pathological information and improve the quality of diagnosis [9,10].

Some works mainly used the input-level fusion, which is the most common fusion
method in multi-modal medical image analysis [11–14]. Some other papers have shown the
potential of feature-level fusion in medical image processing. Hyper DenseNet built dual
deep networks for different modalities of Magnetic resonance imaging (MRI) and linked
features across these streams [15]. Nie et al. [16] fused final features from modality-specific
paths to make final decisions. MMFNet used specific encoders to capture modality-specific
features and designs a decoder with a complex structure to fuse these features [17]. Different
from the first two techniques, [18,19] applied decision-level fusion technology to improve
performance. Tseng et al. [19] designed a novel encoder-decoder structure to capture
and fuse low-level and high-level features, then the results of each branch were fused to
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generate the final result. Shachor et al. [18] set a gate network to dynamically combine
each decision and make a prediction.

Besides, some studies have evaluated multiple fusion methods at the same time.
Setio et al. [20] used feature-level fusion and decision-level fusion in their work.
Guo et al. [21] designed three kinds of fusion networks, and obtains better performance
than a single modality. These fusion methods improve the performance of the model to a
certain extent, but there are some shortcomings, such as poor scalability, large computa-
tional complexity, and difficulty in establishing long-range connections.

2.2. Transformers

Transformers were first proposed for machine translation and achieved satisfactory
results in a large number of NLP tasks. For a long time, CNN was considered an irre-
placeable basic structure in computer vision tasks [22–25], but currently the breakthrough
progress of transformer shows that it is a strong competitor of CNN. Transformers use the
self-attention mechanism as the core module to build a convolution-free deep network.
Compared with CNN, transformers does not require human-defined inductive bias, and it
can handle long-range dependencies well.

Before transformers became popular in the computer vision community, attention
and self-attention mechanisms were long used as the auxiliary module of CNN in medical
image analysis and greatly improved the performance of deep models. MADGAN [26]
integrated the self-attention module into the generative adversarial network for unsuper-
vised medical anomaly detection. Liu et al. [27] developed a CNN with a novel feature
pyramid attention mechanism for automatic segmentation of the prostate. Wu et al. [28]
proposed a new automated framework that improves the standard U-Net-based architec-
ture through attention modules to accurately delineate epicardial and endocardial contours.
Yang et al. [29] presented an advanced segmentation method based on the recursive
attention model to segment the left atrium.

The success of attention and self-attention mechanisms motivates researchers to di-
rectly apply transformers to computer vision. Some work uses the framework of CNN and
transformer [2,30,31], while others directly use pure transformers to replace CNN [2,4,5,32].

Due to its good performance and superiority in capturing long-range dependencies,
Transformers have been widely used in medical image segmentation. TransUNet [33] is
the first transformer-based medical image segmentation framework, which uses the trans-
former to encode the global context. CoTr [34] presented a novel framework that efficiently
bridges a CNN and a transformer for 3D medical image segmentation. UNETR [35] utilizes
a pure transformer as the encoder to effectively capture the multi-scale information.

These methods have shown encouraging results in computer vision tasks and medical
image segmentation, but their direct applications in multi-modal medical images are not
effective and require a lot of computing resources. As far as we know, TransMed is the
first multi-modal medical image classification framework based on transformers, which
provides a novel multi-modal image fusion strategy.

3. Methods

The structure of TransMed is shown in Figure 2. The most common method of multi-
modal medical image classification is to train CNN directly (such as Resnet [36]). Firstly, the
image is encoded as a high-level feature representation, and then its features or decisions
are fused. Different from the existing methods, our method uses transformers to introduce
the self-attention mechanism into the multi-modal fusion strategy. We will first introduce
how to directly apply transformers to aggregate feature representations from decomposed
image patches in Section 3.1. Then, the overall framework of TransMed will be described
in detail in Section 3.2.
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Figure 2. Overview of TransMed, which is composed of CNN branch and transformer branch.

3.1. Transformers Aggregate Multi-Modal Features

In this work, we follow the original DeiT implementation as much as possible. The
advantage of this intentionally simple setting is to reduce the impact of other tricks on the
performance of the model and intuitively show the benefits of transformers. In addition,
we can use the extensible DeiT model and its pre-trained weights almost immediately.

The structure of the transformer is shown in Figure 3a. The important components of
the transformer including self-attention (SA), multi-head self-attention (MSA), and multi-
layer perception (MLP). The input of transformers includes a variety of embeddings and
tokens. Slightly different from DeiT, we remove the linear projection layer and distillation
token. We will describe each of these components in this section.

3.1.1. Self-Attention

SA is an attention mechanism, which uses other parts of the same sample to predict the
rest of the data sample. In computer vision, it is a little similar to non-local networks [37].
SA has many forms, and the common transformer relies on the form of scaled dot-product
shown in Figure 3b. In the SA layer, the input vector X is first transformed into three
different vectors: query matrix Q, key matrix K, and value matrix V:

Q = XWq, K = XWk, V = XWv (1)

where Wq, Wk, and Wv are trainable matrices. Then, the weight assigned to each value
is determined by the dot product of the query and the corresponding key. The attention
function between different input vectors is calculated as follows:

Attention(Q, K, V) = So f tmax(
QKT
√

dk
) ·V (2)

where dk is the dimension of key vector k.
√

dk provides an appropriate normalization to
make the gradient more stable.
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Figure 3. (a) Structure of the transformer. (b) Overview of self-attention, matmul means matrix
product of two arrays. (c) An illustration of our multi-head self-attention component, concat means
concatenate representations.

3.1.2. Multi-Head Self-Attention

MSA is the core component of the transformer. As shown in Figure 3c, the difference
from SA is that the multi-head mechanism splits the input into many small parts, then
calculates the scaled dot-product of each input in parallel, and splices all the attention
outputs to get the final result. The formula of MSA can be written as follows:

headi = Attention(QWQ
i , KWK

i , VWV
i ) (3)

MSA(Q, K, V) = Concat(head1, . . . , headi)WO (4)

where the projections WQ
i , WK

i , WV
i , and WO are trainable parameter matrices; h is the

number of transformer layers. The advantage of MSA is that it allows the model to learn
sequence and location information in different representation subspaces.

3.1.3. Multi-Layer Perceptron

In this paper, an MLP is added on top of the MSA layer. The MLP is composed of linear
layers separated by a GeLU [38] activation. Both MSA and MLP have skip-connections
like residual networks and with a layer normalization. Therefore, it is assumed that the
representation of the t− 1 layer is xt−1, LN represents the linear normalization, and the
output of the t layer can be written as follows:

x̂t = MSA(LN(xt−1)) + xt−1 (5)

xt = MLP(LN(x̂t)) + x̂t (6)

3.1.4. Embeddings and Tokens

The input layer contains five embeddings and tokens, which are patch embedding,
position embedding, class embedding, patch token, and class token.

Patch embedding is the representation of each patch’s output from CNN, and class
embedding is a trainable vector. To encode the spatial information and location information
of a patch into patch tokens, we use position embeddings and patch embeddings to preserve
the information. Class embedding does not have patch embedding that can be added, so
class token and class embedding are equivalent. Suppose the input is x, the trainable vector
is Wc, the position embedding is xpo, patch tokens xpt and class token xct can be expressed
as follows:

xpt = Conv(x) + xpo (7)

xct = Wc (8)
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The class token is attached to patch tokens before the input layer of transformers,
passes through the transformer layer, and then outputs from the fully connected layer to
predict the class.

3.2. TransMed

Instead of using pure transformers as the encoder, TransMed adopts a hybrid model
including CNN and transformer, in which CNN is used as a low-level feature extractor [39]
to generate the patch embedding.

Given a multi-modal image x ∈ RN×C×D×H×W , where spatial resolution is H ×W,
the depth is D, the number of channels is C, and the number of modalities is N. Before
sending it to the CNN encoder, it is necessary to construct the sequence. First, combine the
channel dimension, depth dimension, and modality dimension of a multi-modal image
to obtain x′ ∈ R(N×C×D)×H×W . Then, three adjacent 2D slices of a multi-modal image
are superimposed to construct three-channel images x′′ ∈ R(1/3×N×C×D)×3×H×W . Then,
according to [4], each image will be divided into K × K. The larger K value means that
the size of each patch is smaller. We will evaluate the impact of different K values on
the performance of the model in Section 4. Finally, the image is encoded into a patch
xinput ∈ R(1/3×N×C×D×K2)×3×(H/K)×(W/K) .

After the image sequence is constructed, it is input into the 2D CNN. The last fully
connected layer of 2D CNN is replaced by a linear projection layer to map the features of
the vector patch to the potential embedding space. The 2D CNN extracts low-level features
from the image sequence and encodes them preliminarily.

4. Results

To evaluate the proposed method, we carry out comprehensive experiments on the
parotid gland tumor (PGT) dataset and the MRNet dataset. Experimental results demon-
strate that TransMed achieves state-of-the-art performance on two datasets. In the fol-
lowing, we first introduce the datasets and preprocessing details. Next, we introduce the
experimental settings and evaluation criteria. Then we present a comparison of our model
with some state-of-the-arts on the two datasets. Finally, we perform a series of ablation
experiments on the PGT dataset.

4.1. Dataset
4.1.1. PGT Dataset

The PGT dataset contains 344 head and neck MRI examinations carried out at the
Stomatological Hospital of China Medical University. The ethics board approved the use
of the images for this research. This dataset includes two modalities of MRI (T1 and T2), as
shown in Figure 4. The ground truth labels are obtained from biopsies.

The incidence of malignant tumors in PGT is about 20% [40]. Correct preoperative
diagnosis of these tumors is essential for proper surgical planning. Among them, imaging
examination plays an important role in determining the nature of parotid gland masses.
MRI is considered to be the preferred imaging method for preoperative diagnosis of
PGT [41]. It has been proved in previous studies that in radiation therapy, MRI-based
tissue characterization and segmentation are of vital importance for improving the treat-
ment [42,43]. MRI can provide information about the exact location of the lesion, the
relationship with the surrounding structure and can assess the spread of nerves and bone
invasion. However, it is reported that the PGT shows considerable overlap in imaging
features (such as tumor margins, homogeneity, and signal intensity), so it is difficult for
doctors to identify the mass.

According to common clinical classifications, we divide PGT into five categories:
Pleomorphic Adenoma (PA), Warthin Tumor (WT), Malignant Tumor (MT), Basal Cell
Adenoma (BCA), and Other Benign Lesions (OBL) [44]. In the PGT dataset, the patients are
randomly divided into the training set (n = 241), validation set (n = 34), and an independent
test set (n = 69) according to the ratio of 7:1:2. In this study, we use stratified random
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sampling to ensure that at least 5 and 10 positive examples of each label are present in
the validation and test set, respectively. The training set is used to optimize the model
parameters, and the validation set is used to select the best model.

In the data preprocessing stage, we first perform OTSU [45] to extract the foreground
area in the original image. Then the images of different modalities of the same patient are
registered to improve the consistency of the foreground area. Then resample each image
to 18 × 448 × 448. Therefore, each image is a stack of 3D images of MRI T1 and T2, and
the size is 36 × 448 × 448. Data augmentation uses random flipping and random noise.
Random flipping performs flipping of the image with 50% probability. Random noise adds
Gaussian noise with a mean value of 0 and a variance of 0.1 to the image.

Figure 4. An illustration of the images in the PGT dataset. The yellow circle represents the location
of the tumor.

4.1.2. MRNet Dataset

The MRNet Dataset contains 1370 knee MRI examinations that were carried out at the
Stanford University Medical Center [46]. Each case was labeled according to the anterior
cruciate ligament (ACL) tear, meniscus tear, or other signs of abnormalities in the corre-
sponding knee (abnormal). The author randomly split the dataset into 1130 training cases,
120 validation cases, and 120 test cases. The provided dataset includes three modalities
of MRI (T1-weighted images, T2-weighted images, and proton density-weighted). Each
image is of size 256 × 256 and the number of slices ranges between 17 and 61. The data
were preprocessed by applying same procedures used in the MRNet. Data augmentation
strategy is consistent with the strategy used in the PGT dataset.

4.2. Experimental Settings and Evaluation Criteria

We set SGD as the optimizer with a momentum equal to 0.7. The learning rate is
10−3, and the maximum training round is 100. The patch size is set to 2. Our experiments
were carried out on NVIDIA 3080 GPU. The code is implemented using PyTorch [47] and
TorchIO [48]. To eliminate accidental factors, each model is subjected to 10 independent
experiments, and other experimental parameters keep consistent during training.

To evaluate the performance of the model, we select the Accuracy (ACC) and Precision
(PR) as the evaluation criteria in the PGT dataset. In the MRNet dataset, to produce
comparable results with other baseline methods, we use ACC, Area Under Curve (ROC-
AUC, or AUC), Sensitivity (SE), and Specificity (SP) as evaluation criteria. TP, TN, FP, and
FN are the number of true positive, true negative, false positive, and false negative. ACC
is defined as the ratio of the number of correctly classified samples to the total number
of samples.

ACC =
TP + TF

TP + TN + FP + FN
(9)
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SE is defined as calculating the ratio that is correctly classified as positive to those that
are true positive samples.

SE =
TP

TP + FN
(10)

SP is defined as calculating the ratio that is correctly classified as negative to those
that are true negative samples.

SP =
TN

TN + TP
(11)

PR is defined as calculating the ratio of samples correctly classified as positive to all
samples predicted to be positive.

PR =
TP

TP + FP
(12)

AUC is used to evaluate the quality of the binary classification model, which is defined
as the area under the ROC curve.

4.3. Baseline Methods
4.3.1. PGT Dataset

The input-level fusion strategy and the decision-level fusion strategy can be im-
plemented using mainstream 2D CNN and 3D CNN, so the selected network includes
Resnet34, Resnet152, 3D Resnet34, P3D [49], C3D [50], and BoTNet50 [31]. In feature-level
fusion experiments, we used two common feature-level fusion methods [15,16]. Since these
two papers focus on segmentation tasks, we modify the network structure to adapt to the
classification tasks.

4.3.2. MRNet Dataset

In the experiments, we compare our method with three state-of-the-art models: MR-
Net [46], ELNet [51], and MRPyrNet [52]. MRNet mainly includes three AlexNets [53],
which independently make predictions for each modality and use decision-level fusion
strategy. ELNet changes the backbone network from AlexNet to Resnet and proposed
two technologies: multi-slice normalization and BlurPool layers to improve performance.
MRPyrNet uses a Feature Pyramid Network and Pyramidal Detail Pooling to gather and
capture small appearing injuries in the knee area. The model was inserted into MRNet and
ELNet and achieved significant performance improvement.

4.4. Experimental Results
4.4.1. PGT Dataset

Table 1 reports the performance of our proposed models, in which three variants are
provided: the tiny version (TransMed-T) use ResNet18 and DeiT-Tiny (DeiT-T) as backbones
for CNN branch and transformer branch, respectively; the small version (TransMed-S)
use ResNet34 and DeiT-Small (DeiT-S) as backbone; the base version (TransMed-B) uses
ResNet50 and DeiT-Base (DeiT-B) as the backbone.

TransMed consistently outperforms previous multi-modal fusion strategies by a large
margin. The confusion matrix of TransMed-S is shown in Figure 5, it achieves on average
about 10.1% improvement in terms of the average accuracy with respect to the BoTNet,
while the larger version TransMed-B slightly suffers from overfitting on the dataset. Table 1
also compares the number of parameters and computational costs between our proposed
models and previous methods. TransMed achieves state-of-the-art performance with much
fewer parameters and computational costs. TransMed is highly efficient as it models the
long-range relationship between modalities very well.
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Table 1. Comparison on the PGT dataset (average ACC % and PR % for each disease. IF, FF, and DF represent input-level
fusion, feature-level fusion and decision-level fusion, respectively). All the results are presented as mean ± standard
deviation. The throughput is calculated as the time consumption (second) of predicting 100 images, which is measured
using 2080Ti GPU.

Method Dim Fusion Params Throughput ACC PA WT MT BCA OBL

P3D 3D IF 67 M 15.8 76.1 ± 5.5 59.9 ± 23.1 84.3 ± 5.3 69.7 ± 19.0 71.4 ± 7.3 78.0 ± 14.0
C3D 3D IF 28 M 32.3 71.0 ± 4.1 68.3 ± 38.9 81.3 ± 15.4 67.8 ± 10.0 71.4 ± 7.5 84.5 ± 12.4

Resnet34 2D IF 22 M 4.0 69.9 ± 4.0 81.0 ± 11.0 77.6 ± 7.4 61.4 ± 10.8 53.8 ± 15.5 68.1 ± 7.9
Resnet152 2D IF 58 M 6.3 69.0 ± 3.5 50.5 ± 18.0 74.1 ± 10.1 64.3 ± 20.0 62.9 ± 8.9 75.2 ± 11.4

3D Resnet34 3D IF 64 M 23.8 73.3 ± 5.1 69.2 ± 16.2 86.8 ± 5.2 75.3 ± 18.1 68.7 ± 13.8 65.7 ± 6.4
BoTNet50 3D IF 21 M 4.2 77.4 ± 2.0 82.6 ± 14.4 84.0 ± 4.1 76.1 ± 6.9 76.0 ± 12.4 70.8 ± 8.4

[15] 3D FF 45 M 27.9 74.2 ± 2.9 76.0 ± 24.8 86.2 ± 10.0 72.9 ± 16.3 75.2 ± 24.6 80.0 ± 15.2
[16] 3D FF 130 M 30.8 73.3 ± 2.4 46.2 ± 13.2 78.4 ± 7.9 70.2 ± 15.5 69.8 ± 15.8 79.0 ± 10.7
P3D 3D DF 136 M 22.1 74.8 ± 4.6 50.5 ± 20.0 85.1 ± 4.4 70.5 ± 20.2 69.5 ± 8.7 73.4 ± 14.3
C3D 3D DF 57 M 41.3 71.0 ± 3.3 58.3 ± 33.3 70.7 ± 9.3 74.0 ± 8.5 78.9 ± 20.0 73.2 ± 6.7

Resnet34 2D DF 45 M 5.6 71.3 ± 4.5 72.7 ± 21.7 75.3 ± 8.1 72.5 ± 10.3 60.9 ± 16.8 70.3 ± 9.7
Resnet152 2D DF 116 M 9.5 72.2 ± 5.5 63.5 ± 18.3 75.6 ± 10.4 73.4 ± 18.7 83.2 ± 16.3 69.6 ± 11.5

3D Resnet34 3D DF 128 M 34.6 72.1 ± 3.5 64.7 ± 14.4 81.5 ± 9.3 66.8 ± 8.4 69.6 ± 8.9 72.1 ± 14.9
BoTNet50 3D DF 44 M 6.6 78.8 ± 3.4 72.6 ± 6.2 82.9 ± 4.3 73.2 ± 8.2 76.9 ± 16.2 87.9 ± 8.2

TransMed-T 2D —— 17 M 4.2 87.0 ± 2.6 80.1 ± 13.8 87.3 ± 3.0 90.7 ± 5.1 82.5 ± 15.3 93.6 ± 3.3
TransMed-S 2D —— 43 M 4.5 88.9 ± 3.0 90.1 ± 12.2 89.2 ± 6.8 92.0 ± 4.4 82.9 ± 9.3 88.3 ± 6.1
TransMed-B 2D —— 110 M 6.3 87.4 ± 2.1 86.2 ± 15.2 88.4 ± 3.8 88.2 ± 7.0 84.8 ± 13.8 92.2 ± 8.0

Figure 5. Confusion matrix of TransMed-S on the PGT dataset.

4.4.2. MRNet Dataset

Table 2 reports the performance of MRNet, ELNet, MRPyrNet, and TransMed in
the MRNet dataset. Compared with the best performance of the three baseline methods,
TransMed achieved 3.5%, 0.5%, and 5.7% improvements in abnormality, ACL tear, and
meniscus tear, respectively. Our proposed strategy dramatically improves the abnormality
and meniscus tear detection of the baseline method, which shows that the transformer
structure can improve the diagnostic ability of the model. More importantly, the proposed
method is more robust on the SE, representing a better situation for the potential clinical
applications of TransMed. Specifically, compared with the previous techniques, TransMed
has achieved a performance improvement of 13.6% (MRPyrNet) to 31.5% (ELNet) in the
sensitivity of ACL tear detection.

It is noteworthy that in the MRNet dataset, our method surpasses ELNet [51] and
MRPyrNet [52] without inputting any domain knowledge. In ELNet, an experienced
radiologist is asked to determine the most informative slice. MRPyrNet strongly assumes
that the anomaly is always in the center of the MRI slice.
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4.5. Ablation Experiments

To demonstrate the effect of transformers in TransMed, we perform ablation ex-
periments on PGT dataset. For TransMed, changing the backbone from TransMed-T to
TransMed-S results in 1.9% improvement in average accuracy, at the expense of a much
larger computational cost. Therefore, considering the computation cost, all experimental
comparisons in this paper are conducted with TransMed-T to demonstrate the effectiveness
of TransMed.

In the experiment, TransMed’s CNN and transformers were removed, respectively,
and all other conditions remained unchanged. The results are shown in Table 3. The
results indicate that the transformer greatly improves the ability of the deep model to
explore the relationship between modalities with little increase of parameters and com-
putation. However, the performance of the pure transformer structure is poor due to the
small dataset.

We also explored the impact of different patch sizes on performance in image serial-
ization by changing K values, respectively, while other conditions remain unchanged. The
results are shown in Table 4. The experimental results show that the performance is poor
when the K value is large. The possible reason is that too small image patches destroy the
semantic information of the image.

Table 2. Comparison on the MRNet dataset.

Pathology Method ROC-AUC ACC SE SP

Abnormality

MRNet 0.936 0.883 0.947 0.64
ELNet 0.941 0.917 0.968 0.72

MRPyrNet (with MRNet) —— —— —— ——
MRPyrNet (with ELNet) —— —— —— ——

TransMed-T (Ours) 0.974 ± 0.007 0.907 ± 0.010 0.955 ± 0.002 0.728 ± 0.016
TransMed-S (Ours) 0.976 ± 0.004 0.918 ± 0.006 0.958 ± 0.011 0.720 ± 0.000
TransMed-B (Ours) 0.958 ± 0.018 0.898 ± 0.012 0.951 ± 0.016 0.696 ± 0.020

ACL Tear

MRNet 0.955 ± 0.005 0.847 ± 0.005 0.722 ± 0.000 0.950 ± 0.009
ELNet 0.940 ± 0.001 0.808 ± 0.000 0.648 ± 0.019 0.939 ± 0.015

MRPyrNet (with MRNet) 0.976 ± 0.003 0.886 ± 0.010 0.815 ± 0.019 0.944 ± 0.009
MRPyrNet (with ELNet) 0.960 ± 0.015 0.881 ± 0.034 0.827 ± 0.039 0.924 ± 0.030

TransMed-T (Ours) 0.969 ± 0.009 0.938 ± 0.009 0.935 ± 0.021 0.939 ± 0.008
TransMed-S (Ours) 0.981 ± 0.011 0.949 ± 0.003 0.963 ± 0.007 0.938 ± 0.005
TransMed-B (Ours) 0.949 ± 0.013 0.931 ± 0.012 0.924 ± 0.027 0.936 ± 0.006

Meniscus Tear

MRNet 0.843 ± 0.016 0.778 ± 0.027 0.750 ± 0.067 0.799 ± 0.009
ELNet 0.869 ± 0.031 0.775 ± 0.044 0.814 ± 0.109 0.745 ± 0.075

MRPyrNet (with MRNet) 0.889 ± 0.006 0.808 ± 0.008 0.853 ± 0.048 0.775 ± 0.052
MRPyrNet (with ELNet) 0.895 ± 0.008 0.761 ± 0.042 0.872 ± 0.106 0.676 ± 0.149

TransMed-T (Ours) 0.939 ± 0.015 0.830 ± 0.024 0.869 ± 0.018 0.800 ± 0.032
TransMed-S (Ours) 0.945 ± 0.011 0.848 ± 0.016 0.881 ± 0.037 0.824 ± 0.026
TransMed-B (Ours) 0.952 ± 0.012 0.853 ± 0.018 0.879 ± 0.039 0.834 ± 0.007

Table 3. Ablation study on the effectiveness of CNN branch and transformer branch.

Model Params TFlops Acc PA WT MT BCA OBL

TransMed-T 17 M 0.09 87.0 ± 2.6 80.1 ± 13.8 87.3 ± 3.0 90.7 ± 5.1 82.5 ± 15.3 93.6 ± 3.3
w/o transformer 12 M 0.01 71.3 ± 2.5 71.6 ± 17.8 78.9 ± 3.9 73.9 ± 12.5 66.9 ± 13.1 69.9 ± 13.3

w/o CNN 5 M 0.07 51.3 ± 5.9 20.0 ± 18.7 61.5 ± 13.5 37.0 ± 5.7 41.7 ± 40.1 51.0 ± 16.4

Table 4. Ablation study on different patch sizes.

Model K ACC PA WT MT BCA OBL

TransMed-T 1 86.8 ± 2.3 83.1 ± 12.4 90.1 ± 3.9 88.7 ± 10.1 78.3 ± 13.7 95.3 ± 5.9
TransMed-T 2 87.0 ± 2.6 80.1 ± 13.8 87.3 ± 3.0 90.7 ± 5.1 82.5 ± 15.3 93.6 ± 3.3
TransMed-T 4 86.4 ± 3.3 86.3 ± 17.2 87.0 ± 6.5 89.5 ± 3.6 75.5 ± 8.3 92.1 ± 7.2
TransMed-T 8 80.0 ± 5.8 81.2 ± 17.4 81.1 ± 5.3 88.5 ± 4.2 63.9 ± 12.1 88.2 ± 13.6
TransMed-T 16 65.2 ± 5.8 49.0 ± 32.2 72.1 ± 7.7 70.4 ± 7.9 62.3 ± 23.0 64.1 ± 14.5
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5. Discussion

Mining different sequences of information in multi-modal medical images are essential
to improve the performance of deep models. Our work applies transformers to multi-modal
medical image classification for the first time because it can effectively explore sequence
information that is difficult to capture by CNN. In this work, we first use ResNet to
extract the image features and then use Transformer to capture the long-range dependency
between the sequences. The experimental results show that our method surpasses the
previous state-of-the-art model in the two datasets and has high stability. This study
indicates that a hybrid architecture based on CNN and transformers can significantly
improve multi-modal medical image classification performance.

To verify the validity of the model, we implement two ablation experiments. The first
ablation experiment shows that there is still a big gap between the pure transformer and
the typical CNN in small medical image datasets. The reason for the poor performance
of the standard vision transformer structure is that the self-attention mechanism does not
have an inductive bias similar to the CNN structure. Although when the amount of data
is large enough, the transformer structure is proven to surpass the domain knowledge
brought by the inductive bias [4]. However, the medical image dataset is small and cannot
achieve satisfactory performance.

The second ablation experiment shows that the gain of serializing two-dimensional
images is marginal (87.0% vs. 86.8%). Moreover, the model’s performance tends to decline
with the increase of K. In our work, we follow the existing technology of image serialization
in the natural image classification model based on transformers. However, in medical
images, such techniques may lead to the degradation of model performance. Because
image serialization will separate the tumor, thus the separated tumor area is difficult to
recognize as a tumor.

In summary, the preliminary results of our proposed method are encouraging, but
there are still many challenges. In order to make the transformer-based structure better used
in medical image analysis, it is very important to modify it according to the specific task.

In future work, we will try to overcome the limitations of current research. The
first is to apply TransMed to more medical image datasets of different modalities (such
as Computed Tomography (CT) and Positron Emission Computed Tomography (PET))
to further investigate the superiority of the proposed model. Moreover, It is necessary
to build a robust cross-modality, transformer-based model. Second, we should apply
TransMed to other medical image analysis tasks, such as tumor segmentation and lesion
detection. Third, we will improve the image serialization technology to further adapt
to multi-modal medical images. The fourth is to explore the high-performance structure
based on pure transformers. Last but not least, as a fast-developing deep network, the
transformer structure requires a reliable and mature visualization technology to improve
the interpretability of the model and intuitively illustrate its advantages in capturing
long-range dependencies of multi-modal images. Therefore, our future work includes
proposing or improving visualization techniques suitable for transformer-based medical
image analysis.

6. Conclusions

The transformer is a powerful deep neural network structure for processing sequences
in NLP, but it has received little attention in medical image analysis. In this paper, we
propose TransMed, which is a novel design of multi-modal medical image classification
based on transformers. Unlike CNN-based methods, TransMed uses a hybrid model
including CNN and transformer. Among them, CNN is used as a low-level feature extractor
to generate local feature sequences of multi-modal images; while transformers effectively
extract long-range dependencies between sequences from low-level feature sequences to
achieve good performance. In the two multi-modal medical image classification datasets,
our method achieved an average accuracy improvement of 10.1% and 1.9%, respectively,
compared with the previous state-of-the-art models. Our experiments provided insights on
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the inclusion of transformers in deep networks for medical image analysis, particularly in
multi-modal scenarios. Combining these promising results, we believe that the transformer
structure has tremendous potential in a large number of medical image analysis tasks.
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