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Abstract

Genomic, proteomic, epigenomic, and other “omic” data have the potential to enable 
precision medicine, also commonly referred to as personalized medicine. The volume 
and complexity of omic data are rapidly overwhelming human cognitive capacity, 
requiring innovative approaches to translate such data into patient care. Here, we 
outline a conceptual model for the application of omic data in the clinical context, 
called “the omic funnel.” This model parallels the classic “Data, Information, Knowledge, 
Wisdom pyramid” and adds context for how to move between each successive layer. 
Its goal is to allow informaticians, researchers, and clinicians to approach the problem of 
translating omic data from bench to bedside, by using discrete steps with clearly defined 
needs. Such an approach can facilitate the development of modular and interoperable 
software that can bring precision medicine into widespread practice.
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INTRODUCTION

A wide variety of high‑throughput technologies is 
becoming available for clinical diagnosis and care. These 
include various genomic technologies such as microarrays, 
targeted gene capture chips, whole exome sequencing, and 
whole genome sequencing. Other data sources, such as 
epigenomic, proteomic, metabolomic, and microbiomic, are 
also becoming available. The sheer volume of data involved 
in omic analyses[1] and difficulty of interpretation[2] makes 
it challenging for clinicians to obtain and apply related 
knowledge. These data types overwhelm any individual 

clinician’s cognitive capacity.[3] Nonetheless, the use of 
these new data types in the clinical setting could provide 
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valuable insight and rapidly advance the practice of 
precision medicine. Although integrating each of these data 
types in an electronic health record  (EHR) presents novel 
challenges, the commonalities allow us to refer to these data 
collectively as “omic.” Here, we present a conceptual model 
for omic data management in the clinical context. This 
conceptual model serves to inform and complement our 
implementation‑based model.[4] It is also consistent with the 
National Human Genome Research Institute’s  (NHGRI) 
“base pairs to bedside” vision for genomic medicine[5] and 
the White House’s recently announced Precision Medicine 
Initiative.[6]

This model is based on a series of discussions from 
within the EHR integration workgroup of the Electronic 
Medical Records and Genomics  (eMERGE) Network,[7] 
a consortium funded by the NHGRI to study the use 
of genomic data in research and health care. We have 
observed that both clinicians and current‑generation 
EHRs struggle with the volume of data produced by omic 
analyses.[8] Therefore, the challenge is to reduce omic 
data that may contain billions of individual values into a 
small number of clinically actionable recommendations.

The eMERGE discussions led to two main insights. The 
first was that we could learn from other data‑intensive 
clinical information sources like radiology. These sources 
frequently employ ancillary systems to manage large 
volumes of data, implying that an “omic ancillary” system 
would likely be needed.[4] The second insight was that 
conversion from raw data to actionable knowledge would 
require multiple external knowledge sources. Envisioning 
these multiple external sources as sequential filters 
resulted in the concept of an “omic funnel” [Figure 1].

THE OMIC FUNNEL

The omic funnel aligns with the classic “Data, 
Information, Knowledge, Wisdom  (DIKW) pyramid” 

from information science[9]  [Figure  2]. The DIKW 
pyramid is a hierarchy progressing from Data to 
Information, Knowledge, and Wisdom. The progression 
up each step of the pyramid is based on the addition 
of context to allow interpretation. In other words, data 
in context becomes information. Information in context 
becomes knowledge. Similarly, omic data is successively 
refined through the application of context.

The DIKW pyramid has previously been applied to other 
subdomains of the biomedical field. For instance, it has 
influenced machine learning researchers working with 
patient databases in an effort to discover new knowledge 
from large quantities of clinical data.[10] Here, we adapt 
the same framework to distill clinical knowledge from 
large volumes of omic data. The traditional DIKW layers 
are represented in our conceptual model but are now 
specific to omics. The “omic data” layer represents data 
of various forms, including output from high‑throughput 
sequencing platforms, methylation data, or tissue arrays. 
In the example of genomic data, this may be a sequence 
of letters representing an individual’s entire genome, 
contained in a text file. Because this layer represents an 
overwhelming amount of data to expect anyone to act 
upon, it must be filtered and processed as it moves to the 
subsequent layers of the funnel.

The “biological information” layer contains information 
about the biological state of individuals. This information 
can take many forms, such as single‑nucleotide 
polymorphisms  (SNPs), gene expression levels, or copy 
number variations. In genomics, biological information 
could be represented within a variant call format file, which, 
instead of carrying the entire genome, contains information 
about where the individual’s genome varies from a 
reference sequence. Though many have predicted effects, 
the majority of variants currently have no validated clinical 
significance.[11,12] Information with unknown or uncertain 
significance is rarely helpful in the clinical setting, so such 
information must be filtered for actionability.

Figure 1: The omic funnel Figure 2: The data, information, knowledge, and wisdom pyramid
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The “clinical knowledge” layer represents knowledge that 
is relevant to the clinical setting in that it can be acted 
upon during patient care. In other words, this knowledge 
will include clinically relevant omic associations. Such 
knowledge can be represented in a variety of formats, 
such as a textual report or discrete data elements entered 
into the EHR through HL7. In genomics, clinical 
knowledge could be a CYP2C9 or TPMT genotype, 
which has known pharmacogenomic  (PGx) associations, 
in combination with a clinical recommendation. In some 
cases, this knowledge may be actionable on its own, 
but in other cases, it may need to be combined with 
additional clinical data to be truly applicable.

Finally, the “action” layer represents methods by which 
clinical knowledge is translated to the bedside and 
applied to change clinician behavior. Clinical knowledge 
derived from omic data will be considered in treatment 
and combined with other clinical factors to personalize 
care. In genomics, action could refer to the use of a 
patient’s CYP2C9 and VKORC1 status, along with age, 
weight, smoking status, and other clinical indicators, to 
individualize the dose of a new warfarin prescription.[13]

This layered approach is analogous to the open systems 
interconnection model  (OSI).[14] The OSI model 
allows for modularized computing by defining distinct 
architectural layers. These layers each exist independently 
with localized functions and communicate with each 
other through defined protocols. Similarly, the omic 
funnel allows data, information, knowledge, and action 
to exist independently. The modularized software could 
then be designed for each layer and the transitions 
between them.

FROM DATA TO ACTION

Transitioning between the layers of the omic funnel 
model is difficult in practice and requires collaboration 
between multiple parties. One cannot spontaneously 
jump from a complete genetic sequence to a list of 
SNPs. Nor can one view a list of SNPs and instantly 
recognize clinically relevant genotypes. It is also 
unrealistic to provide raw omic data to clinicians and 
expect them to be able to act on this data in practice. 
Instead, it is necessary to have an infrastructure in place 
to support each of the necessary transitions from bench 
to bedside.

The first transition is from raw omic data to biological 
information. This requires basic research into the 
nature of individual genes, proteins, and epigenetic 
features. These results are then vetted and published 
in the scientific literature to form a basis for clinical 
investigation. In the past, gene discovery and analysis 
were largely performed through targeted candidate gene 
studies. Today, with the advent of high‑throughput 

sequencing, whole‑genome variant analyses, genome‑wide 
association studies, and RNA-seq analyses are commonly 
used. In the future, research that goes beyond the 
genome by including epigenomic, proteomic, and other 
datasets, will become more prevalent.

The next transition is from biological information to 
clinically relevant knowledge. The number of clinically 
significant variants is currently small,[15] but this number 
will continue to grow. Moreover, our understanding of the 
functional effect of variants will change over time, and 
clinical recommendations will be updated accordingly. 
In the past, omically‑driven knowledge was rarely used 
in the clinical setting, so it was unnecessary to centrally 
catalog. Today, genome‑driven care is beginning to take 
hold in areas such as PGx‑based drug prescribing. This 
places a significant burden on provider organizations to 
maintain current, accurate knowledge of the field. We 
believe that it will be impossible for any single provider 
organization to catalog all relevant variants and keep 
them up to date. Instead, outside organizations will be 
needed to help track the expanding knowledge base. To 
this end, the Clinical Pharmacogenetics Implementation 
Consortium  (CPIC) is developing a central repository 
of evidence‑based guidelines for clinically actionable 
gene‑drug interactions.[16] The NHGRI also awarded over 
$25 million in grants in 2013 for ClinGen, an effort to 
create a central repository containing clinically relevant 
genetic variants.[17] Such efforts have the potential to 
remove the burden of maintaining clinically relevant, 
omic‑derived knowledge from individual providers.

The final transition is to turn clinical knowledge 
into action. This can often be a complicated process 
incorporating multiple data points. Take, for example, 
the algorithms that are currently available for warfarin 
dosing.[13] In the past, clinicians had to manually run the 
algorithms and calculate dosages by hand  (an onerous 
and error‑prone process). This represents an ideal 
application for clinical decision support (CDS) integrated 
into the EHR. Today, tools such as WarfarinDosing.org 
have automated the calculation process and organizations 
like eMERGE have begun to implement PGx‑driven 
CDS tools in clinical workflows on a limited basis.[18,19] In 
the future, CDS will be a powerful tool when it is driven 
by both local clinical data and easily accessible knowledge 
from databases like those being created by CPIC and 
ClinGen.

When achieved, such carefully designed CDS 
presented at the time of clinical action is the critical 
component that will reduce the cognitive overload 
clinicians would otherwise experience when presented 
with omic data. However, making the transition from 
clinical knowledge to action through CDS will require 
a computable knowledge format. Similar work has 
been done with drug‑drug interaction knowledge. 



J Pathol Inform 2015, 1:46	 http://www.jpathinformatics.org/content/6/1/46

With the  SFINX  database, drug‑drug interaction 
knowledge is coded and stored in a format that can 
be shared and integrated into CDS systems.[20] This 
approach could serve as a model for omic knowledge. 
For example, the CPIC guideline for clopidogrel dosing 
breaks therapeutic recommendations down by poor, 
intermediate, extensive, or ultrarapid metabolizer 
status, determined by genotype. Each status has a 
recommendation such as “alternative antiplatelet 
therapy (if no contraindication); e.g.  prasugrel, 
ticagrelor.”[21] However, this knowledge is currently 
only available through journal publications or in a web 
format on PharmGKB.org. If this were available in a 
standard format that CDS systems can recognize, then 
it could be directly integrated into clinician workflows 
with significantly less effort.

CONCLUSION

Whereas previous literature generally focused on practical 
considerations for individual steps in the translation of 
omic data to patient care,[4,8,22] the model presented here 
serves as a generalized conceptual framework in which to 
understand the end‑to‑end translation of omic data from 
bench to bedside. There are likely to be many different 
software and data management architectures and strategies 
employed to implement these transitions in practice. Even 
so, our conceptual model provides a step‑by‑step process to 
filter an overwhelming amount of complex omic data down 
to clinical action. We believe that explicitly acknowledging 
these different transitions will aid the creation of modular, 
interoperable software solutions. The difficult work of 
creating practical, real world standards and tools for the 
transition between each of the layers is early, but under way. 
Continued biological research, comprehensive electronic 
knowledge bases, and robust CDS tools are all necessary to 
translate bench data to the bedside.
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