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The African naked mole-rat (Heterocephalus glaber) is unique among mam-
mals, displaying extreme longevity, resistance to cardiovascular disease
and an ability to survive long periods of extreme hypoxia. The metabolic
adaptations required for resistance to hypoxia are hotly debated and a
recent report provides evidence that they are able to switch from glucose
to fructose driven glycolysis in the brain. However, other systemic alterations
in their metabolism are largely unknown. In the current study, a semi-
targeted high resolution 1H magnetic resonance spectroscopy (MRS) meta-
bolomics investigation was performed on cardiac tissue from the naked
mole-rat (NMR) and wild-type C57/BL6 mice to better understand these
adaptations. A range of metabolic differences was observed in the NMR
including increased lactate, consistent with enhanced rates of glycolysis pre-
viously reported, increased glutathione, suggesting increased resistance to
oxidative stress and decreased succinate/fumarate ratio suggesting reduced
oxidative phosphorylation and ROS production. Surprisingly, the most sig-
nificant difference was an elevation of glycogen stores and glucose-1-
phosphate resulting from glycogen turnover, that were completely absent
in the mouse heart and above the levels found in the mouse liver. Thus,
we identified a range of metabolic adaptations in the NMR heart that are rel-
evant to their ability to survive extreme environmental pressures and
metabolic stress. Our study underscores the plasticity of energetic pathways
and the need for compensatory strategies to adapt in response to the phys-
iological and pathological stress including ageing and ischaemic heart
pathologies.
1. Introduction
The naked mole-rat (NMR) (Heterocephalus glaber) is a mouse-sized eusocial
African rodent that displays a range of unusual physiological characteristics
from resistance to cardiovascular disease to extreme longevity [1–3]. Unlike
other mammals, they do not conform to Gompertzian laws of age-related mor-
tality as adults show no age-related change in mortality risk [4]. NMRs live in
colonies that may number up to 300 individuals, in extensive underground bur-
rows. Although parts of their burrows may often be normoxic, oxygen is likely
to become scarce in crowded nest chambers where animals huddle together and
sleep [4,5]. To date, the gaseous composition of an NMR nest has not been
sampled in the wild. However, these nest chambers are often more than
0.5 m deep, and may be some distance from brief openings to the surface at
the ephemeral mole-hills [6]. NMRs are thus adapted to be resistant to hypoxia
and in laboratory experiments are able to survive anoxia for up to 18 min [2].
The mechanism underlying this may be their ability to switch from glucose
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to fructose driven glycolysis in the brain as the source of lac-
tate. Other studies have revealed a number of cellular
adaptations enabling tolerance to hypoxia in the brain [7–
10]. The NMR can undergo rapid increases in metabolic
rate to meet energy demand associated with digging through
compacted soils in its xeric natural habitat with patchy food
distribution [11]. They display a low baseline metabolic
rate, and a recent study by Pamenter et al. [10] has shown
that NMRs exhibit a clear decrease in metabolic rate in situ-
ations of acute hypoxia, emphasizing their ability to
physiologically react to the prevailing conditions. NMRs
also have low basal cardiac function accompanied by mor-
phological traits such as cardiomyocyte hypertrophy, which
is commonly associated with cardiac pathology in the Muri-
nae and in humans [12–15]. However, they do not develop
the cardiac disease and unlike pathologically remodelled
hearts have enhanced contractile reserve upon increased
demand [12–15]. What fuels these critical functional adap-
tations as well as what kind of metabolic adaptations and
associated mechanisms render NMR hearts resistant to
hypoxic injury and senescence remain unknown.
2. Methods
(a) Animals
The non-breeding male adult NMRs used in this study were
second-generation or more captive-born, descended from animals
captured in Kenya in the 1980s. Colonies were maintained using
artificial burrow systems as previously described [16]. The ages
selected for this study allowed for physiological age matching
between species such that both were at equivalent percentages
of maximum lifespan and therefore not the same chronological
age.

(b) High resolution 1H nuclear magnetic resonance
spectroscopy metabolomic profiling

Myocardial tissue was collected from adult, non-breeding NMRs
(n = 5 males, body weight 37 ± 7 g, age ∼7 years), adult C57/BL6
mice (n = 5, Charles River, UK, male, 27 g, 9 weeks) and adult
Wistar rats (n = 5, Charles River UK, male 450 g, 10 weeks) post-
euthanasia. Frozen, weighed and pulverized hearts were subject
to methanol/water/chloroform dual-phase extraction and high
resolution 1H nuclear magnetic resonance spectroscopy (MRS)
metabolomic profiling adapted from Chung et al. [17] (described
in the electronic supplementary material).
3. Results
High resolution 1H MRS based metabolomic analysis of NMR
heart tissue (representative spectra shown in figure 1) revealed
distinctly different metabolomic profiles compared to C57/BL6
hearts (figure 2b) and changes in several key metabolites were
observed (figure 2c,d). Despite reduced contractile performance
and baseline hypertrophy [12–15], NMR hearts were not ener-
getically compromised as the levels of creatine and ATP were
comparable to C57/BL6wild-type hearts.Myocardial glycogen
and glucose-1-phosphate levels (G-1-P) resulting fromglycogen
turnover were significantly higher in the NMR hearts and were
undetectable in C57/BL6 mouse hearts (p < 0.001; figure 2e).
Liver glycogen content was also found to be markedly higher
in NMRs than C57/BL6 (4.1 ± 1.1 versus 0.31 ± 0.08 µmol g−1;
p < 0.001). Surprisingly myocardial glycogen in the NMR was
even greater than the mouse liver which is the principal glyco-
gen storage organ with highest intracellular deposits (1.2 ± 0.02
versus 0.4 ± 0.08 µmol g−1; p < 0.001). A significant difference in
myocardial glycogen levels was also observed in NMRs com-
pared to Wistar rats, the latter was not significantly different
to that found in C57/BL6 mice (thus representing another
hypoxia-intolerant rodent). Glycogen regulation involves a
complex interplay between multiple signalling pathways
including 50 adenosine monophosphate-activated protein
kinase (AMPK) [18]. AcuteAMPK activation stimulates glucose
transport and glycolysis while inhibiting glycogen synthase
activity. However, chronic AMPK activation has been reported
to cause increased glycogen accumulation consistentwithAMP
levels being elevated 2.5-fold inNMRhearts (figure 2c; p < 0.01)
compared to C57/BL6 mouse hearts [19].

Previous work has identified myocardial fumarate and
succinate as key mediators of intracellular ROS damage
during reperfusion [20,21]. In NMRs, differences in fumarate
and succinate were not significant, however, an overall
decrease in succinate/fumarate ratio was significant, when
compared to C57/BL6. This is indicative of reduced reliance
on OXPHOS and oxygen for ATP provision, and in agree-
ment with the elevated NMR cardiac levels of intracellular
lactate (2.5-fold; p < 0.02), indicative of higher glycolytic
versus oxidative flux. There was also as twofold increase in
levels of acetate ( p < 0.01) indicative of higher pyruvate turn-
over [22]. Despite the regular hypoxic conditions experienced
by NMRs in their colony, lack of myocardial succinate
elevation could be an important cardioprotective mechanism,
as succinate has been identified as a metabolic mediator of
hypoxia-related ROS formation and elimination at the cross
roads of several metabolic pathways [23].

Furthermore, increased glutathione levels were also
observed (figure 2c; 2.6-fold, p < 0.01), which is consistent
with the observations of Munro et al. [24,25], where ROS
scavenging and antioxidant defences were found to be elev-
ated in the NMR, conferring a protective role against
oxidative stress and ROS damage [26].

Differences in amino acid metabolism were also observed.
The levels of glutamate were significantly higher in NMRs
(approx. twofold; p-value < 0.01), reflecting an alteration in ana-
plerotic pathways feeding the TCA cycle, while glutamate is also
critical in glutathione synthesis. Reduced myocardial tyrosine
levels corresponded to reduced circulating tyrosine levels pre-
viously reported in NMRs [27]. Levels of isoleucine were
significantly elevated (p< 0.01), providing an important nutrient
source. Isoleucine is also a potent signallingmolecule. Branched-
chain amino acid (BCAA) L-leucine is a highly effective activator
of mTOR signalling, [28] a key pathway for regulation of protein
synthesis in hypertrophy which is exhibited in NMR heart [29–
31]. mTOR activation also triggers metabolic changes in muscle,
liver and other tissues by altering insulin sensitivity[32]. There-
fore, it is plausible that the elevation of local BCAA
concentration observed can lead to chronic induction of cardiac
mTOR activity, in turn, promoting cardiac hypertrophy
observed under normal physiological conditions in NMRs.
4. Discussion
We applied a semi-targeted metabolomic analysis approach
and identified unique metabolic signatures characterized by
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Figure 1. Representative cardiac 1H magnetic resonance spectra (MRS) of (a) naked mole-rat (NMR) compared to (b) control C57/BL6 mouse heart. Inset shows a
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oxygen sparing, ROS damage reduction and readily available
ATP store strategy in NMR cardiac tissue that are a likely
source of cardioprotection during hypoxia and senescence.
Mammalian myocardial glycogen is considered an atavistic
remnant of our amphibian ancestry [33]. Myocardial glyco-
gen is an important source of ATP under conditions of
metabolic stress which would account for the ability of
NMR hearts to increase their cardiac reserve upon sudden
demand, and maintain low basal metabolic rates even
during prolonged hypoxia or decreased nutrition. A large
glycogen store is commonly observed in hypoxia-tolerant
species. The role of glycogen in hypoxia resistance is most
pronounced in amphibian hearts [33], which are particularly
rich in this compound [34,35]. Glycogen accounts for 2% of
the cell volume in the healthy mammalian adult and 30%
in the fetal myocardium [33]. Even though the fetal heart
has better hypoxia adaptation than the adult heart, the phys-
iological role of glycogen remains controversial [33]. Some
consider it to be the damaging lactate and proton source in
the ischaemic or stressed heart, causing severe contractile
dysfunction particularly upon reperfusion [33,36]. However,
previous work showed that blood and tissue pH levels in
NMRs are largely unchanged after acute hypoxia, suggesting
the absence of a metabolic acidosis [10]. As glycogen stores
are markedly increased in the myocardium of hibernating
mammals [37,38] and linked to increased hypoxia survival
[39], there are others attributing a cardioprotective effect to
glycogen in the ischaemic heart [40–42]. Glycogen-rich
hearts have been characterized by enhanced ischaemia toler-
ance, decreased protein loss and cell damage upon
reperfusion, [33,43] leading to a hypothesis that glycogen
acts as an anchoring molecule for other macromolecular cell
constituents including adenine nucleotides and proteins
[33,44,45] thereby integrating metabolic pathways required
for myocardial survival during hypoxia [33].

Our study reveals similarities in glycogen metabolism
between the hearts of NMRs and diving seals which have
the ultimate physiological adaptation to prolonged and vary-
ing degrees of hypoxia [46–51] as well as Himalayan Sherpas
[52]. The first lines of myocardial hypoxia defence include
suppression of ATP supply and demand pathways [33],
thus reducing ROS generation, during which hypoxia-
tolerant systems activate protective mechanisms including
metabolic reliance on intracellular glycogen [33,47,53].
When exposed to hypoxia, augmented glycogen stores
would enable the NMR heart to switch to carbohydrates as
the main fuel for respiration thus improving the metabolic
efficiency (ATP produced per mole of oxygen consumed)
[33,54], responding to acute increases in workload and
stress by catabolizing their large intracellular glycogen
store. This energetic advantage of glucose oxidation in the
heart is well documented [33,55]. MRS and positron emission
tomography (18FDG PET) studies in Sherpa hearts have
suggested that enhanced glucose uptake, deposition and
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utilization in hypoxia are also advantageous for aerobic
metabolism when O2 is present but at a premium [52]. Fur-
thermore, the burst in glycogen oxidation is usually quickly
followed by enhanced glycogen re-synthesis [54,56], and
when an alternative metabolic substrate such as lactate is
available for oxidation, glycogen stores are completely pre-
served [33,57]. Although both fatty acids and glucose are
believed to be cycled through tissue-storage pools in the myo-
cardium, the effect of such cycling has different consequences
in terms of ATP provision. The incorporation of glucose into
glycogen and the incorporation of fatty acids into triglycer-
ides both consume ATP. However, in the breakdown of
glycogen the energy expended in the synthesis is almost
fully recovered with the efficiency of temporary storage pro-
cesses close to 100% [58].

The cardioprotective effects of glycogen in NMRs could
extend beyond its role as an endogenous metabolic substrate.
It is plausible that cellular proteins are protected from glyco-
sylation and in turn glucotoxicity by intracellular free glucose
shunting into glycogen, comparable to shunting of fatty acid
metabolites into triglycerides to protect the heart from lipo-
toxicity [33,59]. Furthermore, the rapid glycogen
replenishment was shown to restore Ca2+ sensitivity and
maximum Ca2+-activated force in glycogen-depleted skeletal
muscle [60]. Glycogen and glycogen-metabolizing enzymes
co-locate with sarcoplasmic reticulum [61], thus playing a
major role in the complex metabolic signalling systems of cal-
cium homeostasis and cell survival [33,46].
5. Study limitations
In the current study, we have investigatedmyocardial metabo-
lomic differences in C57/BL6 mice and NMRs. Significant
errors are known to be associated when inferring environ-
mental adaptation from a given observation in two species
where there are potential phenotypic differences between the
two species at baseline, for example, due to evolution [62].
Our study was performed under basal O2 conditions and
therefore not representative of the environmental adaptations
to hypoxia per se. Our study, therefore, likely reflects phenoty-
pic alterations in the two species under normoxic conditions,
some of which are likely relevant to their ability to survive
extreme environments such as hypoxia. However, further
work will be required to elucidate the complex interplay
between environmental hypoxia and evolution in these
species.

A further limitation of the current study is the use of MRS
for quantification of glycogen. 1H magnetic resonance gives a
measure of the concentration of glucose monomers that are
present in the observed peak normalized to the reference tri-
methylsilyl propanoic acid (TSP) peak. Despite being a large
macromolecule, with possible differences in the mobility of
glycosyl units, glycogen has been reported to be fully visible
by MRS [63]. However, we used a modified dual-phase Folch
extraction method used for separating aqueous and lipid
metabolites which has not been optimized for the extraction
of glycogen per se. Thus, a direct comparison of the glycogen
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tissue values obtained in this study to the values published
by traditional enzymatic techniques may be at variance. Not-
withstanding, the application of the same methods to all
three species allows an assessment of fold changes between
groups and therefore our assessment of between species vari-
ation remains valid.
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