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Abstract

An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully
implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes
energy gradients and is parallelized. For large molecules such as ubiquitin a reasonable speedup (up to a factor of six) is
observed for up to 16 cores. The SCF convergence is greatly improved by PCM for proteins compared to the gas phase.
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Introduction

Continuum solvation models such as the polarized continuum

model (PCM) [1] and the conductor-like screening model

(COSMO) [2] offers a computational efficient model of solvation

for molecules treated with electronic structure methods. This

paper describes the implementation of an interface between the

conductor-PCM (C-PCM) model [2,3,4] and the NDDO-based

semi-empirical methods implemented in GAMESS [5] (MNDO

[6], AM1 [7], and PM3 [8]). There has been several different

implementations of semi-empirical/PCM interfaces [2,9,10,11,12]

and this work follows the implementation proposed by Chudinov et

al. [9] However, we also implement the corresponding energy-

gradient terms and both the energy and gradient terms are

parallelized and tested on relatively large systems such as the

protein ubiquitin.

This paper is organized as follows. 1) We review the relevant

expressions for the semi-empirical/PCM interface. 2) We present

results of solvation free energies and compare them to previous

results. 3) We test the numerical stability for geometry optimiza-

tions and vibrational analyses. 4) We present timings and

parallelization speed-ups for protein-sized systems. 5) We summa-

rize our findings and provide possible ideas for future improve-

ments.

Background and Theory

In PCM, a molecule (the solute) is placed inside a solvent-cavity

usually described by introducing interlocked spheres placed on the

atoms of the molecule. The solvent is described as a polarizable

continuum with dielectric constant e. The interaction between the

solute and the solvent is described by the apparent surface charges

(ASCs). The PCM equations are solved numerically by dividing

the surface area up into a finite set of elements called tesserae with

a corresponding ASC qi, an area ai and a position~rri. There are

several implementations of the PCM [13] and in this study we

focus on the conductor-like PCM (C-PCM) [2,3,4]. For high

dielectric solvents such as water C-PCM yields nearly identical

results to the more generally applicable integral-equation-formal-

ism PCM (IEF-PCM) [14] but requires less computational

resources.

For C-PCM the ASCs q are determined by solving the following

matrix-equation

Cq~{
e{1

e
V: ð1Þ

where the matrix C has the elements

Cij~
1

D~rrj{~rri D
, Cii~1:07

ffiffiffiffiffiffi
4p

ai

s
, ð2Þ

and V is the potential of the solute in the solvent for each tessera i.

The potential V(i) on tessera i is given as

V (i)~
X

A

ZA

D~rrA{~rri D
{
X
m,n[A

PmnVmn(i)

" #
, ð3Þ

where A runs over all nuclei in the solute at position~rrA carrying a

charge ZA. P is the density matrix of the solute and Vmn(i) are the

interaction integrals over basis functions on a tessera i given as

Vmn(i)~SmD
1

D~rrA{~rri D
DnT~(s’s’Dmn), ð4Þ
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For NDDO methods the right hand side of equation 4 is the

interaction between a point charge on the surface (represented as

s’s’ in the NDDO approach) and the basis functions of the solute

molecule on atom A. The (s’s’Dmn) integrals needed in equation 4

are listed in Table 1 for s and p functions. The integrals are rotated

from a local ideal coordinate system onto the molecular coordinate

system. The local coordinate system is defined by the distance

between the atom A containing the basis functions mn and the

tessera i

R̂R~
~rri{~rrA

D~rrA{~rri D
~

1

R
(Rx,Ry,Rz)~(R̂Rx,R̂Ry,R̂Rz), ð5Þ

ûu~
1

u
({R̂Ry,R̂Rx,0), ð6Þ

ŵw~R̂R|ûu: ð7Þ

and the four unique integrals from Table 1 are [15]

(s’s’Dss)~
1

D~rrA{~rri D
, ð8Þ

(s’s’Dsps)~
1

2

1

D~rrA{~rri D{D1
{

1

D~rrA{~rri DzD1

� �
, ð9Þ

(s’s’Dpsps)~
1

4

1

D~rrA{~rri Dz2D2
z

1

D~rrA{~rri D{2D2
z

2

D~rrA{~rri D

� �
, ð10Þ

(s’s’Dpppp)~
1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D~rrA{~rri D2z4D2

2

q z
1

D~rrA{~rri D

2
64

3
75: ð11Þ

Here, D1 and D2 are empirical parameters describing charge-

separation for the multipoles. They are defined elsewhere. [15]

Following Chudinov et al. [9] the density parameters al are set to

zero in this work and are therefore not shown in the equations.

The electrostatic interaction of the ASCs q on the surface and

the molecule is treated by introducing the following one-electron

contribution to the Fock matrix

F ’mn~FmnzVmn, ð12Þ

where

Vmn~{
XNts

i

qiVmn(i): ð13Þ

Finally, the PCM electrostatic interaction free energy is calculated

as

G~
1

2
VT :q: ð14Þ

Optimization of the molecular geometry in the PCM field

requires the derivative of G with respect to an atomic coordinate

Ax

LG

LAx

~
LVT

LAx

qz
e

1{e
: 1

2
qT LC

LAx

q ð15Þ

the last term is computed analytically [16]. The derivative of the

potential with respect to an atomic coordinate is done analytically

and we give explicit expressions for all terms in Text S1.

Methods

Computational Details
The semi-empirical/PCM interface was implemented in a

locally modified version of GAMESS [5]. The semi-empirical

energy and gradient evaluations were allowed to run in parallel

but no efforts were made to parallelize the integral evaluation or

the assembly of the Fock matrix since the diagonalization is the

major computational bottle-neck for large systems. The evaluation

of the electrostatic potential (equation 3) and its derivative

(equation 15) was parallelized. We note that the remaining semi-

empirical integral-derivatives in GAMESS is evaluated numeri-

cally.

We compared our implementation to that of Chudinov et al. for

twenty smaller ammonium and oxonium type molecules used in

that study. The structures were generated from their SMILES

string (see Table 2 and Table 3) using Open Babel [17,18] and

optimized in the gas phase and afterwards using the newly

implemented code.

Geometry optimizations used a convergence threshold of

5:0:10{4HartreeBohr{1 (OPTTOL = 5.0E-4 in $STATPT). To

verify the minima, hessians were calculated for all optimized

Table 1. Ideal integrals rotated onto the molecular frame.

s px py pz

s (s’s’Dss) (s’s’Dsps)R̂Rx (s’s’Dsps)R̂Ry (s’s’Dsps)R̂Rz

px (s’s’Dpsps)R̂R2
xz(s’s’Dpppp)½ûu2

xzŵw2
x� (s’s’Dpsps)R̂RxR̂Ryz(s’s’Dpppp)½ûuxûuyzŵwxŵwy� (s’s’Dpsps)R̂RxR̂Rzz(s’s’Dpppp)ŵwxŵwz

py (s’s’Dpsps)R̂R2
yz(s’s’Dpppp)½ûu2

yzŵw2
y� (s’s’Dpsps)R̂RyR̂Rzz(s’s’Dpppp)ŵwyŵwz

pz (s’s’Dpsps)R̂R2
zz(s’s’Dpppp)ŵw2

z

doi:10.1371/journal.pone.0067725.t001
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geometries by double difference (NVIB = 2 in $FORCE). When

using PCM for geometry optimizations the FIXPVA [19]

tessellation scheme was used (MTHALL = 4 in $TESCAV) and

the tesserae count for each sphere was set to 60 (NTSALL = 60 in

$TESCAV). For solvation free energies the tesserae count was

raised to 960 (NTSALL = 960 in $TESCAV) and the GEPOL-GB

(Gauss-Bonet) [20] tessellation scheme (MTHALL = 1 in $TES-

CAV) was used.

The Mean Absolute Deviations (MADs) of vibrational frequen-

cies between solvated (s) and gas-phase (g) calculations were

calculated by

MAD~
1

n

Xn

i~1

Df s
i {f

g
i D ð16Þ

We also carried out single point energies and gradients

calculations for Chignolin (PDB: 1UAO), Trypthophan-cage

(PDB: 1L2Y), Crambine (PDB: 1CRN), Trypsin Inhibitor (PDB:

5PTI) and Ubiquitin (PDB: 1UBI). The proteins were all

protonated with PDB2PQR [21,22] and PROPKA [23] at

pH~7 yielding overall charges of 22, 1, 0, 6 and 0 respectively.

Either no convergence acceleration, Direct Inversion of the

Iterative Subspace [24] (DIIS = .T. in $SCF) or Second-Order

Self Consistent Field [25,26] (SOSCF = .T. in $SCF) was used. In

all cases the C-PCM equation was solved iteratively. [27] The

timings were performed on up to 24 cores on AMD Optirun 6172

shared-memory CPUs. The method is included in the latest

release of the GAMESS program.

Results and Discussion

Electrostatic Solvation Free Energies
The electrostatic solvation free energies are presented in

Tables 2 and 3 for ammonium and oxonium species calculated

using PM3/PCM and compared to results published by Chudinov

et al. [9] In general, our results underestimate the electrostatic

solvation free energy by an average of 21.3 kcal mol{1 and

21.9 kcal mol{1. The main source of the difference is likely the

Table 2. Predicted electrostatic solvation free energies of ammonium type molecules.

Ref PM3/PCM RHF/STO-3G/PCM

[NH4+] A1 83.9 82.4 (21.5) 78.6 (23.8)

C[NH3+] A2 73.7 72.6 (21.1) 71.3 (21.3)

CC[NH3+] A3 70.2 69.2 (21.0) 68.6 (20.6)

CCC[NH3+] A4 69.9 68.5 (20.8) 67.6 (21.0)

CC([NH3+])C A5 67.1 65.9 (21.2) 66.2 (0.3)

CCCC[NH3+] A6 69.3 68.3 (21.0) 67.1 (21.2)

CC([NH3+])(C)C A7 64.1 62.8 (21.3) 67.1 (1.2)

C[NH2+]C A8 65.9 64.4 (21.5) 65.3 (0.9)

CC[NH2+]CC A9 59.5 58.0 (21.5) 60.7 (2.7)

C[NH+](C)C A10 59.7 57.7 (22.1) 61.8 (4.2)

AVG 21.3

Obtained results using PM3/PCM compared with results by Chudinov et al. (labelled "Ref") and RHF/STO-3G/PCM results. PM3/PCM numbers in parenthesis are
deviations to the reference. RHF/STO-3G deviations are taken to PM3/PCM results. All numbers are in kcal mol{1 .
doi:10.1371/journal.pone.0067725.t002

Table 3. Predicted electrostatic solvation free energies of oxonium type molecules.

Ref PM3/PCM RHF/STO-3G/PCM

C[OH2+] O1 74.1 72.6 (21.5) 73.7 (3.0)

CC[OH2+] O2 69.2 67.1 (22.1) 70.2 (3.0)

C[OH+]C O3 65.1 63.4 (21.7) 65.5 (2.1)

C[OH+]CC O4 61.1 59.0 (22.1) 62.5 (3.5)

C1C[OH+]CC1 O5 59.6 57.3 (22.3) 61.0 (3.8)

CC[OH+]CC O6 57.4 55.4 (22.0) 59.8 (4.1)

C[OH+]c1ccccc1 O7 54.5 53.3 (21.2) 57.4 (4.4)

CC( = [OH+])C O8 62.5 60.0 (22.5) 64.3 (4.3)

CC(C)C( = [OH+])C(C)C O9 53.2 51.0 (22.2) 56.0 (5.0)

COC( = [OH+])C O10 60.0 58.7 (21.3) 62.6 (3.9)

AVG 22.0

Obtained results using PM3/PCM compared with results by Chudinov et al. (labelled "Ref") and RHF/STO-3G/PCM results. PM3/PCM numbers in parenthesis are
deviations to the reference. RHF/STO-3G deviations are taken to PM3/PCM results. All numbers are in kcal mol{1 .
doi:10.1371/journal.pone.0067725.t003
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fact that Chudinov et al. uses the original PCM implementation of

Miertus, Scrocco and Tomasi [28] often referred to a D-PCM)

while we use the C-PCM implementation. The solvation free

energies from these implementations can differ by several kcal/

mol even for neutral molecules [29]. (While the reference describes

a comparison of D-PCM to IEF-PCM, IEF-PCM and C-PCM

yield nearly identical solvation free energies for water.) Another

likely source of error is that we use the GEPOL-GB scheme where

Chudinov et al. uses a more elaborate scheme to reach

convergence of the solvation free energies by subdividing the

surfaces incrementally.

Vibrational Frequencies
To test the numerical accuracy of the PCM gradients we

optimized the molecules listed in Tables 2 and 3. As indicated in

Table 4 three of the geometry optimizations (A1, O1, and O2) do

not converge. A1 can be made to converge by skipping the update

of the empirical Hessian matrix (UPHESS = SKIP) but this does

not appear to be a general solution to the problem. While some

gradient components in these minimizations are quite large the

optimizing algorithm eventually settles on a zero step size causing

the optimization to effectively stall. The cause of this behavior is

not clear since it is only observed for the smallest systems and was

not investigated further. The resulting geometries still lead to a

positive definite Hessian and the frequencies are not unusually

different from the gas phase values.

In four cases (A7, O4, O6, O8 and O9) the vibrational analyses

yields imaginary frequencies between 26 and 200 cm{1. In the

case of O8 and O9 this also occurs for the RHF/STO-3G

calculations and in the case of O7–O9 this also occurs for PM3

structures optimized in the gas phase. In most cases the imaginary

frequency is associated with the O+ ion and a neighbouring

methyl group. The most likely source of these imaginary

frequencies is a flat PES associated with the O+ group combined

with numerical inaccuracies in the PCM and PM3 gradients.

Timings
In Table 5 we show absolute timings for single point energy and

gradient evaluations of proteins either in the gas phase, using DIIS

to obtain convergence, or by including the PCM field either with

or without SCF convergence acceleration. None of the listed

proteins converged in the gas phase without DIIS and even then

the SCF converged only for the three smallest proteins: Chignolin,

Tryptophan-Cage and Crambine.

The cost of optimizing the wavefunction in PCM is between two

(Crambine) and three (Chignolin and Tryptophan-cage) times

more expensive than without. For Chignolin, which is the smallest

protein in our test set, it took 21 SCF iterations to converge in

PCM while only 13 for PCM/DIIS and 14 for PCM/SOSCF.

The other proteins converged within 17 iterations without

convergence acceleration and within 14 iterations with. For

absolute timings regarding larger proteins, Crambine, Trypsin

Inhibitor and Ubiquitin finished in 1293, 3455 and 6732 seconds

with PCM without convergence accelleration, but are slower

(1314, 3649 and 8777 seconds, respectively) with PCM and DIIS

enabled. Using SOSCF did not result in an appreciable decrease

in CPU time. The increase in CPU time when using DIIS is due to

the extra matrix operations associated with this method, which

Table 4. Optimization steps and frequencies for solvated
molecules.

Nsteps MAD [cm{1]

PM3 RHF/STO-3G PM3 RHF/STO-3G

A1 – 14 135.1 131.9

A2 9 10 121.5 90.8

A3 6 8 64.6 39.2

A4 6 18 25.7 37.9

A5 4 17 16.9 24.6

A6 10 9 30.4 15.5

A7 32 32 a24.8 22.3

A8 25 24 56.2 32.8

A9 34 19 27.3 31.3

A10 32 18 58.3 62.2

O1 – 6 151.8 60.1

O2 – 8 111.5 36.2

O3 15 8 96.8 57.0

O4 6 8 a67.1 28.3

O5 11 9 85.6 29.8

O6 15 11 a56.0 54.5

O7 6 6 50.1 24.5

O8 11 7 a87.7 a22.0

O9 6 8 a28.8 a12.6

O10 3 6 20.8 19.9

Number of optimization steps for PM3/PCM and RHF/STO-3G/PCM
optimizations along with Mean Absolute Deviations (MADs) of vibrational
frequencies when going from gas phase to a solvated molecule for all 20 small
molecules tested in this work. All optimizations were done in Cartesian
coordinates. Translational and rotational frequencies are not included. Dashes
marks unconverged structures after 100 optimization steps.
amarks optimized structures with at least one imaginary frequency.
doi:10.1371/journal.pone.0067725.t004

Table 5. Absolute timings for energy and gradient evaluations.

System PDB Nat Ntes DIIS PCM PCM/DIIS PCM/SOSCF

Chignolin 1UAO 138 1355 6 29 21 21 (0.4)

Trp-cage 1L2Y 304 2609 61 159 158 141 (1.4)

Crambine 1CRN 642 4112 563 1293 1314 1277 (6)

Trypsin Inhibitor 5PTI 892 6315 – 3455 3649 3409 (12)

Ubiquitin 1UBI 1231 7956 – 6732 8777 7607 (22)

Absolute timings in seconds for energy and gradient evaluation for various proteins using both gas phase PM3 and PM3/PCM. Numbers in parenthesis are analytic
electronic field gradient timings used in the analytical PM3/PCM gradient. No gas phase SCF converged without DIIS.
doi:10.1371/journal.pone.0067725.t005
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represent the computational bottleneck for sem-empirical meth-

ods.

Evaluating the ASC potential derivative (equation 15) analyt-

ically has a negligible computational cost compared to evaluating

the wavefunction as can be seen from the last column of Table 5.

The relative speedup from running in parallel in the gas phase is

shown on Figure S1 where no improvement is observed beyond 4

cores (with a speed up factor of 3) and is not discussed further. The

PM3/PCM timings (Figure 1) show better improvement when

utilizing multiple cores for all systems. The smaller systems obtain

some improvement (a factor 3.4 and 4.2 for Chignolin and

Tryptophan-cage, respectively) whereas the larger systems sees

improvements of 5.7, 5.7 and 5.9 for Crambine, Trypsin Inhibitor

and Ubiquitin, respectively. In all cases maximum speed up is

reached for 16 cores because the use of 24 cores introduces some

communication overhead which degraded performance.

Conclusions
An interface between semi-empirical methods and the polarized

continuum model (PCM) of solvation successfully implemented

into GAMESS following the approach by Chudinov et al. [9] The

interface includes energy gradients and is parallelized.

For very small systems we found some numerical instability

problems in the gradient which caused geometry convergence

failure, but geometry optimization appears robust for larger

molecules. The use of PCM occasionally introduces imaginary

frequencies in the Hessian analysis, but this was also found for

RHF/STO-3G PCM calculations and even in a few semi-

empirical gas phase calculations so these problems do not appear

to be specific to the to the current implementation. We therefore

consider the current implementation a working code for all

practical purposes, but welcome feedback from readers who

encounter numerical stability problems for large molecules.

For semiemprical methods the most time CPU-intensive part of

the calculation remains the solution of the SCF equations. This

part of the code was already parallelized in GAMESS and we

show, for the first time, that this implementation applies to semi-

empirical methods and the new PCM interface. For large

molecules such as Ubiquitin a reasonable speedup (up to a factor

of six) is observed for up to 16 cores.

It will be interesting to see how much the numerical stability

and computational efficiency will improve once the interface is

combined with the recently developed FIXSOL/FIXPVA2

method developed by Li and coworkers [30]. We are currently

working on implementing the PM6 method in GAMESS to

further increase the accuracy and range of application that this

new interface offers.

Supporting Information

Text S1 Analytical derivative of the interaction poten-
tial.
(PDF)

Figure S1 Speedup by using multiple cores single gas
phase gradient evaluation.
(TIFF)
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