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ABSTRACT In December of 2019, a novel coronavirus, SARS-CoV-2, emerged in the
city of Wuhan, China, causing severe morbidity and mortality. Since then, the virus
has swept across the globe, causing millions of confirmed infections and hundreds
of thousands of deaths. To better understand the nature of the pandemic and the
introduction and spread of the virus in Arizona, we sequenced viral genomes from
clinical samples tested at the TGen North Clinical Laboratory, the Arizona Depart-
ment of Health Services, and those collected as part of community surveillance
projects at Arizona State University and the University of Arizona. Phylogenetic
analysis of 84 genomes from across Arizona revealed a minimum of 11 distinct
introductions inferred to have occurred during February and March. We show
that �80% of our sequences descend from strains that were initially circulating
widely in Europe but have since dominated the outbreak in the United States. In
addition, we show that the first reported case of community transmission in Ari-
zona descended from the Washington state outbreak that was discovered in late
February. Notably, none of the observed transmission clusters are epidemiologi-
cally linked to the original travel-related case in the state, suggesting successful
early isolation and quarantine. Finally, we use molecular clock analyses to dem-
onstrate a lack of identifiable, widespread cryptic transmission in Arizona prior to
the middle of February 2020.

IMPORTANCE As the COVID-19 pandemic swept across the United States, there was
great differential impact on local and regional communities. One of the earliest and
hardest hit regions was in New York, while at the same time Arizona (for example)
had low incidence. That situation has changed dramatically, with Arizona now hav-
ing the highest rate of disease increase in the country. Understanding the roots of
the pandemic during the initial months is essential as the pandemic continues and
reaches new heights. Genomic analysis and phylogenetic modeling of SARS-COV-2 in
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Arizona can help to reconstruct population composition and predict the earliest un-
detected introductions. This foundational work represents the basis for future analy-
sis and understanding as the pandemic continues.

KEYWORDS Arizona, COVID-19, genome analysis, molecular clock, phylogenetic
analysis

In late 2019, a novel positive-sense RNA virus, family Coronaviridae, genus Betacoro-
navirus, and subgenus Sarbecovirus, emerged in the human population due to

cross-species transmission from an unknown host (1, 2). The virus, SARS-CoV-2, began
widespread circulation in the Chinese city of Wuhan in late December of 2019, with the
first cases in other countries detected around mid-January 2020 (3, 4).

Arizona’s first confirmed case of COVID-19, the disease caused by SARS-CoV-2, was
detected in late January 2020 in a student attending Arizona State University who had
traveled to China (5). Extensive contact tracing and isolation led to zero additional
reported cases stemming from this original case (AZ1). There were no additional cases
reported in Arizona until 3 March, when a traveler returned from Europe and tested
positive (6). On 6 March, the first case of community transmission in Arizona was
announced (7). On 26 March, the Arizona Department of Health Services (AZDHS)
updated the status of community transmission to “widespread.” At the time of writing
this paper, there were �91,860 confirmed positive cases in Arizona, and more than
1,780 deaths (8), where the number of new cases and deaths per day increased by a
factor of 10 and 4 over the previous 2 months, respectively (9). The Navajo Nation,
located mostly in northeastern Arizona (but also Utah, Colorado, and New Mexico) had
among the highest number of cases per capita in the United States: approximately
4,390 confirmed cases per 100,000 individuals (10). This rate was disproportionately
high relative to the rest of Arizona (approximately 1,280 confirmed cases per 100,000
individuals), and about 200% of the per capita cases seen in the hardest-hit regions of
the United States (e.g., New York [11]).

Given the scale of the pandemic, there is an urgent need to understand patterns of
SARS-CoV-2 spread, including the relative roles of local transmission versus repeated
travel-associated introductions, and the accumulation and spread of mutations that
could affect the function of the virus, interfere with testing, or have antigenic effects
that might impact vaccine efforts. Viral genome sequencing has emerged as a key tool
for addressing these questions. In order to assist with both local and global efforts to
track the spread and evolution of this virus, we began intensive sequencing of viral
genomes from across Arizona and deposition of these sequences in the GISAID
database, which makes them accessible to the research community for downstream
analyses, notably including real-time pathogen tracking through Nextstrain (12).

To better understand the evolution of the virus within the state of Arizona, we
compared our sequences with publicly available SARS-CoV-2 genomes from across the
world in a phylogenetic framework, and we report here our preliminary findings.
Specifically, we sought to answer three key questions regarding the circulation of the
virus in Arizona. First, did the initial case of COVID-19 in Arizona lead to cryptic
community transmission that helped to fuel the ongoing epidemic? (13) Second, how
many independent introductions contributed to the outbreak in Arizona and what was
the approximate timing of each event? Third, are there any unique mutations present
in Arizona sequences that could have potential phenotypic effects or could interfere
with diagnostic detection?

RESULTS AND DISCUSSION

As of 5 April 2020, we have sequenced and assembled a total of 79 nearly complete
SARS-CoV-2 genomes obtained from patients across Arizona. These genomes were
sequenced from nasopharyngeal swabs that were collected over a 28-day period from
5 March to 2 April 2020. This represents a sequencing effort of 4.9% of all reported cases
in Arizona as of 2 April. This data set includes at least one genome from 11 of the 15
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Arizona counties (see Table S3 in the supplemental material). We also included five
SARS-CoV-2 genomes from Arizona that were sequenced by the Centers for Disease
Control and Prevention (CDC), for a total of 84 Arizona sequences. The CDC sequences
include the genome generated from the first documented case in Arizona (AZ1,
collected 22 January 2020), as well as four cases that occurred in early March (see
Table S1).

The initial Arizona case did not lead to sustained local transmission. The first
case of COVID-19 in Arizona (AZ1) was documented in late January 2020, and contact
tracing suggested that this initial case did not result in additional symptomatic infec-
tions within the state (5). We sought to independently verify this conclusion using
Bayesian and maximum-likelihood phylogenetic analyses to compare all 84 Arizona
genomes to a representative subset of the SARS-CoV-2 genomes generated from
around the world. The genomes used in this analysis were selected using a novel
bioinformatics pipeline (see Materials and Methods), which subsampled genomes
uploaded to GISAID to reduce the size of the data set while representing the temporal,
spatial, and genetic diversity of the full data set. This resulted in a set of 388 SARS-CoV-2
genome sequences, including 84 Arizona genomes and 304 additional representatives
(see Table S1). A reduced version of this data set, including 376 genomes with complete
date information, was used in the Bayesian analysis.

Our phylogenetic analyses (Fig. 1; see also Fig. S1) indicated that the genome from
AZ1 belonged to lineage A (all lineage names are according to the Pangolin nomen-
clature [14]). Although 11/83 (13%) of the remaining Arizona genomes also clustered in
lineage A, these genomes belonged to distinct sublineages (A.1, A.2, and A.3), and the
AZ1 genome contained one derived substitution (C to T at nucleotide position 29,031)
that we did not observe in any other Arizona sequences. This substitution was,
however, shared with 12 other genomes included in our analysis, all of which were
sampled in China or Japan. This is consistent with infection of AZ1 occurring during
documented travel to China (5).

Although our analyses cannot completely rule out the possibility of a cryptic
transmission chain originating from this initial case, it is clear that the first documented
introduction of SARS-CoV-2 to Arizona did not play a substantial role in fueling the
ongoing epidemic. Rather, most Arizona cases are linked to later introduction events
(see below). These results demonstrate the power of public health contact tracing and
self-isolation following a positive test for stemming the tide of infections moving
forward.

Multiple introductions have contributed to transmission in Arizona. Our phy-
logenetic analyses indicated that multiple distinct SARS-CoV-2 lineages cocirculated in
AZ during March 2020. We detected 11 distinct lineages and/or sublineages in Arizona
between early March and early April (Table 1), including one that was unnamed by
Pangolin, but contained 13 Arizona genomes and 1 genome from Connecticut and was
well-supported in both of our phylogenetic analyses (B.1.X). None of these lineages
were unique to Arizona; they have all been documented in other parts of the United
States and, in most cases, also in multiple countries around the world (Fig. 2 and 3; see
also Fig. S2). In fact, the geographic ubiquity of the major SARS-CoV-2 lineages, along
with the common observation of identical virus genomes sampled in multiple U.S.
states, as well as other countries and continents, clearly demonstrates how frequently
this virus has been moved among locales. Given the timing and size of the Arizona
outbreak during the period of investigation, relative to outbreaks in other locations
(Fig. 3), we argue it is unlikely that any of these 11 lineages arose within Arizona.
Therefore, the number of observed distinct lineages (12, including AZ1) represents a
conservative estimate for the number of independent introductions of SARS-CoV-2 into
Arizona.

To estimate when community transmission of SARS-CoV-2 first began in Arizona, we
used our Bayesian phylogenetic analysis to estimate dates for the times to most recent
common ancestor (TMRCA) of the Arizona genomes within each of these lineages. In
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total, we sequenced �2 viral genomes from 7/12 of the observed lineages (which we
name “major lineages”), and TMRCA estimates using these genomes (Fig. 2) suggest
that, at the earliest, community transmission in Arizona began around early February
2020. However, we view this as the most extreme estimate because many of these
lineages likely represent multiple distinct introductions to Arizona, rather than a single

FIG 1 Bayesian maximum clade credibility time-calibrated phylogeny inferred from 376 SARS-CoV-2
genomes, including 84 from Arizona and 292 representatives from around the world. Tips are colored by
origin of sequence, and major lineages assigned by Pangolin (https://github.com/cov-lineages/pangolin)
with more than two sequence representatives in Arizona are indicated by vertical bars. B.1.X is a
well-supported sublineage of B.1 that has not been named by Pangolin. All nodes with posterior
probabilities �0.9 are colored black. The tree was visualized with a custom Python script that utilized the
software package BALTIC (https://github.com/evogytis/baltic).
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introduction followed by sustained community transmission. For example, the Arizona
MRCA for B.1, the inferred oldest lineage containing Arizona genomes, effectively
corresponds to the MRCA of the entire B.1 lineage because Arizona genomes assigned
to this lineage are scattered throughout this portion of the tree and interspersed with
genomes sampled from around the world (Fig. 1). Given the global distribution of this
lineage and the high frequency of travel during this time period (15), there have almost
certainly been multiple introductions of viruses from this lineage that have led to
documented cases in Arizona, but which cannot be distinguished genetically. There-
fore, the early February TMRCA likely predates actual community transmission within
Arizona. Likewise, the other two lineages with TMRCAs in February (A.1 and B.1.1) both
include at least one well-supported sublineage containing a mix of genomes from
Arizona and from other locations.

To determine the most likely source of the SARS-CoV-2 introductions to Arizona, we
examined the geographic distribution of sequences within each lineage (Fig. 3). For this
analysis, we considered the full collection of SARS-CoV-2 genomes available on GISAID
(as of 16 April 2020). First, for each of the seven major lineages, Arizona sequences were
always sampled after a sequence from that same lineage or sublineage had been
sampled elsewhere. Although sequencing efforts can influence this result, it appears

TABLE 1 Information on sequence number, timing, and location of each of the lineages
detected in Arizona

Lineage No. of sequences Date collected in AZ County(ies)

A 1 1/22/20 Maricopa
A.1 8 3/5/2020 to 3/23/2020 Graham, Maricopa, Mohave,

Pima, Pinal
A.2 1 3/22/20 Cochise
A.3 2 3/17/20 to 3/27/20 Coconino
B.1 19 3/11/20 to 4/2/20 Coconino, Maricopa, Navajo,

Pima, Pinal, Yuma
B.1.1 6 3/2/20 to 3/23/20 Coconino, Maricopa, Pinal
B.1.X 13 3/20/20 to 4/2/20 Maricopa
B.1.2 25 3/12/20 to 4/1/20 Coconino, La Paz, Maricopa,

Navajo, Pinal, Yavapai
B.1.21 1 3/13/20 Pima
B.1.29 6 3/13/20 to 4/1/20 Maricopa
B.1.3 1 3/19/20 Coconino
B.2 1 3/17/20 Coconino

FIG 2 Posterior density estimates of TMRCAs for Arizona genomes that belong to seven major
lineages/sublineages. Posterior density estimates were parsed from 12,001 trees sampled from four
independent MCMC chains, following burn-in removal. Hatch marks indicate regions outside the 95%
HPD. The samples included in each lineage can be seen in Fig. 1.
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unlikely that any of the major lineages emerged in Arizona; rather, they were likely
imported. Second, there are very few sequences from Asia clustered within each of the
major lineages. Instead, it appears importation was largely driven by domestic travel (in
the case of A.1, B.1.2, and B.1.29), or perhaps imported from Europe (B.1 and B.1.1) or
Oceania (A.3), although both B.1 and A.3 have also been commonly observed else-
where in the United States. Given the widespread distribution of many nearly identical
genomes, it would be impossible to directly estimate the location of each of these
importations beyond the continent level.

The Arizona sequences are largely represented by two lineages, A.1 and B.1,
including several sublineages of B.1. We focus the remaining results and discussion on
these two lineages. A.1 was identified in Washington State in late February and has
since spread across the globe (Fig. 3) (13). It was previously proposed that the A.1
Washington outbreak, announced on 28 February as the second instance of community
transmission in the United States (16), is derived from the first Washington case, a
lineage A sequence, back in January 2020 (13). For the purposes of our discussion, we
only focus on the A.1 sublineage, which, regardless of the ultimate source of A.1, had
begun circulating in Washington in the middle of February at the latest.

Eight of the Arizona genomes are members of the A.1 clade, and this includes
sequences from at least five counties across Arizona (Table 1; see also Fig. S1). We infer
that the MRCA of these Arizona sequences likely existed around 16 February 2020 (95%
highest posterior density [HPD], 8 to 24 February). If these eight Arizona genomes stem
from a single introduction of the A.1 lineage, this TMRCA estimate suggests the lineage
was already present in Arizona prior to when community transmission was announced
in Washington, on 29 February (Fig. 2). However, it is likely that the eight A.1 lineage
genomes from Arizona arose from multiple introductions into the state, given that the
same lineage was being spread throughout the country (15). Although multiple intro-
ductions could push the TMRCA estimate of the A.1 introduction to be more recent, we
argue that epidemiological data support an initial importation of the A.1 lineage near
the dates inferred.

FIG 3 Sequence database representation through time for each of the six major named lineages or sublineages observed in Arizona.
Stacked bars are colored according to location. To estimate A.1, B.1, and A.3, nested sublineages were collapsed to calculate the
frequencies for the broader clades. Lineages were assigned using Pangolin (37) for all sequences uploaded to GISAID as of 16 April 2020.
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The first A.1 Arizona genome we sequenced was from a sample collected on 5 March
from a person who was a household contact of another case, representing the first
known community transmission event in Arizona; the other individual tested positive
on 3 March and held a health care job in Phoenix (their SARS-CoV-2 genome has not
been sequenced) (38). The close epidemiological link between these cases suggests
direct transmission of the virus, in which case the first documented example of
community transmission in Arizona likely involved an A.1 lineage virus. Given the
median incubation time of 5 days (17) and assuming the health care worker was
infected by someone traveling directly from Washington with no additional trans-
mission in between, that would place the time of importation to be approximately
28 February. This falls outside our 95% HPD TMRCA estimate of 24 February;
however, this timeline makes it clear that even if multiple A.1 introductions caused
the TMRCA to be artificially early, it is not by more than a week or two.

Of the 84 Arizona genomes, 72 (85.7%) belong to the B.1 lineage (including the
various B.1 sublineages), making B.1 the most abundant lineage in Arizona (as it is
globally) (https://github.com/cov-lineages/lineages). Arizona sequences from this lin-
eage were collected from 2 March to 2 April 2020 and were detected in samples from
eight counties (Table 1). One of the substitutions that is present in all B.1 lineage viruses
occurred in the gene for the spike protein and resulted in an aspartic acid-to-glycine
substitution at residue 614 (D614G). Based on viral RNA quantifications from clinical
samples, phylogenetic analyses, and in vitro experiments (18), it was recently suggested
that this substitution may have increased the transmissibility of the virus. Although the
outbreak in Arizona was already dominated by B.1 lineage viruses in early March 2020,
we did see a gradual increase in the relative proportion of B.1 throughout March and
into early April (Fig. 4A). We also compared reverse transcription-PCR (RT-PCR) cycle
threshold (CT) values for clinical samples with and without this substitution. Our results
show a trend similar to that reported from patients in Sheffield, England (18), with a
lower mean CT (higher viral load) in samples containing the D614G substitution;
however, this is not a statistically significant difference (P � 0.85) with our current
sample size (Fig. 4B). Combined, these data, along with those published by other
groups (18–20), are consistent with a replication and/or transmission advantage of
viruses containing the D614G substitution. However, demonstrating a viral mutation
has an in vivo fitness advantage is difficult and in previous viral outbreaks has contra-
dicted in vitro experiments (43, 44). An additional explanation is that the B.1 lineage has

FIG 4 Abundance over time (A) and cycle threshold values (B) for viruses in Arizona with or without the D614G substitution.
Both panels were generated using the 79 Arizona genomes we report here. Plots of abundance over time were generated
using a window size of 1 week and a step size of 2 days.
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simply been increasing in frequency globally, due to chance events that led this lineage
to dominate in early outbreaks (e.g., in Italy), from which the virus has been spread
widely throughout the world and has seeded outbreaks in many other locations.

The B.1 lineage has also dominated the large outbreak in New York, and in some
reports (39), the B.1 lineage has been used as an indication of an epidemiological link
to the New York outbreak. However, we would urge caution with this approach. Based
on ancestral state reconstructions, this lineage is predicted to have first emerged in Asia
or Europe (Nextstrain), and this lineage was observed in multiple European countries,
including the large Italian outbreak, before it was first documented in New York
(Nextstrain). In fact, just within Arizona, we have documented at least two instances in
which B.1 lineage viruses were imported directly from Europe. The second case of
COVID-19 in Arizona was reported on 3 March from a traveler who returned from
France on 27 February (40). This individual self-reported being symptomatic on the
plane back to Phoenix and went to multiple social gatherings before being officially
diagnosed (41). At one of these social events, at least one other individual was infected
(42). Virus from this individual was sequenced by the CDC (EPI_ISL_420784), and the
genome belongs to the B.1 lineage (sublineage B.1.1; see Fig. S1). We also have records
shared to us by the Coconino Health and Human Services Department that one of the
B.1 genomes we sequenced from Coconino County came from an individual who had
recently traveled to Rome, Italy, and who presumably was infected there. Thus, al-
though it is tempting to speculate that most of the B.1 infections across the United
States came from the New York outbreak, we show at least two confirmed instances of
direct importation of B.1 into Arizona from Europe.

Nonsynonymous mutations of interest observed in Arizona SARS-CoV-2 se-
quences. Like all RNA viruses, SARS-CoV-2 accumulates mutations over time, some of
which may impact virulence, replication, and intervention strategies and some of which
have no functional, clinical, or antigenic importance. We identified nonsynonymous
mutations in coding sequences of SARS-CoV-2 genomes from Arizona (Fig. 5; see also

FIG 5 Nonsynonymous mutations in Arizona isolates. (A) Diagram showing the SARS-CoV-2 genome and annotated open reading frames. The genome
positions of nonsynonymous mutations in Arizona SARS-CoV-2 isolates are indicated in orange. (B) Nonsynonymous mutations of Arizona isolates in nsp’s
involved in the SARS-CoV-2 RNA synthesis complex. Mutations (indicated in orange) are labeled by amino acid position within the protein, reference amino acid,
amino acid change, and number of Arizona isolates with the mutation. (C) ORF10 alignment showing a 2-nucleotide insertion and subsequent early truncation
in two Arizona SARS-CoV-2 isolates. GenBank and GISAID accession numbers: SARS-CoV-2 AZ-TG271866 (EPI_ISL_427271), SARS-CoV-2 AZ-TG271868 (EPI-
_ISL_427272), SARS-CoV-2 AZ1 (MN997409.1, EPI_ISL_406223), Bat-RaTG13 (MN996532.1), Pangolin (EPI_ISL_410721), and SARS-CoV (NC_004718.3).
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Table S1). These include mutations in the spike protein, nonstructural proteins (nsps)
involved in RNA synthesis, nucleocapsid protein, and the putative ORF10. Several of
these mutations have also been reported as being associated with SARS-CoV-2 se-
quences from Europe (22). Below, we hypothesize about potential phenotypic impacts
of these substitutions; however, it is important to note that experimental studies need
to be conducted to test these hypotheses, and the vast majority of substitutions that
occur during viral replication will not have a significant impact on virulence or trans-
missibility.

As the virus genome mutates there are several concerns, such as evasion of
therapeutics and vaccines but also regarding diagnostics. In order to identify any
mutations that could affect the specificity of currently used RT-PCR assays, an in silico
approach was employed. A screen of 12 current primer/probe sets (Table S4) demon-
strates that seven widely used assays are valid in this isolate set, yielding no predicted
false negatives based on exact primer/probe matches. Several of the primers/probes
align with stretches of “N” characters in individual genomes and the amplification
potential is therefore ambiguous. Interestingly, the CDC nCoV_N1 assay demonstrates
mismatches in six of the genomes screened in this study, including one genome from
Arizona (TG271862, Cochise County). This is not a guarantee of future validity; however,
automated in silico methods offer nearly effortless monitoring.

Spike. The SARS-CoV-2 spike (S) protein mediates receptor binding and cell entry

and is the primary target of neutralizing antibodies (23). Mutations in the spike protein
may have implications for viral entry and recognition by the immune system. We found
several mutations in the spike protein gene, including in two related isolates (TGEN-
CoV-AZ-WMTS-TG268282 and TGEN-CoV-AZ-WMTS-TG271435) harboring an alanine to
valine substitution at Spike amino acid residue 475 (A475V, nucleotide position 22986)
in the receptor-binding domain (RBD). Structural studies indicate that A475 interacts
with S19 of ACE2 (24, 25).

Nsp12 and RNA synthesis complex. During replication of the SARS-CoV-2 RNA

genome, RNA synthesis is driven by the key component nsp12 RNA-dependent RNA
polymerase in complex with nsp7 and nsp8 (26, 27). Studies of SARS-CoV replication
demonstrate that nsp14 regulates replication fidelity through its 3=-to-5= exonuclease
activity (28, 29). Mutations in nsp7, nsp8, nsp12, and nsp14 may therefore affect viral
RNA synthesis and susceptibility to antiviral treatments such as remdesivir (30). We
identified several nonsynonymous mutations in nsp7 residue 25 (S¡L) and 26 (S¡F),
but none in nsp8 (Fig. 5B). One of the nsp12 mutations at residue 323 (P¡L) identified
in 69 Arizona sequences was previously associated with SARS-CoV-2 sequences from
Europe (22). We did not find nsp12 mutations at sites predicted to be the contact
interface with remdesivir (30). Finally, the two related isolates with nsp14 mutation at
residue 233 (F¡L) were the same genomes harboring the spike RBD A475V mutation.

Nucleocapsid. The nucleocapsid (N) protein encapsulates the genomic RNA and is

a target for diagnostic and therapeutic applications (31). The N protein is also associ-
ated with replication-transcription complexes and facilitates template switching during
viral subgenomic mRNA synthesis (32). N is expressed at high levels during early stages
of replication and, like the S protein, is also a major immunogenic target of antibodies
(33). Five AZ sequences had a triple nucleotide substitution (GGG¡AAC) that resulted
in a tandem amino acid change in the N protein at residues 203 and 204 (RG¡KR). Over
the relatively short time frame of SARS-CoV-2 evolution, these tandem substitutions are
relatively uncommon (22).

ORF10. ORF10 is a short putative protein of unknown function, predicted in the 3=
end of the SARS-CoV-2 genome, which is conserved in the closely related bat and
pangolin coronavirus sequences (Fig. 5C). We identified a 2-nucleotide insertion in
ORF10 within two AZ genomes that results in a premature stop codon and early
truncation of ORF10. A similar truncation is present in the SARS-CoV genome due to the
presence of an upstream stop codon. This may indicate a region of the virus genome
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with relaxed evolutionary constraints, consistent with a report that did not detect
subgenomic ORF10 mRNA in vitro (34).

Conclusions. Based on our phylogenetic analysis, it is clear that the ongoing
COVID-19 outbreak in Arizona has been fueled by multiple distinct introductions of
SARS-CoV-2 to the state. We estimate a minimum of 11 introductions over the course
of February and March, though this is surely an underestimate. By estimating the timing
of introductions, we find no evidence for cryptic community transmission in Arizona
prior to late January. Rather, our analyses indicate that community transmission likely
did not occur within Arizona until at the earliest early- to mid-February, when viruses
from lineages B.1 and A.1 may have been first introduced. It appears that most of the
introductions of SARS-CoV-2 to Arizona have had domestic origins, in line with reports
from other states (15); however, there have also been instances of Arizona cases linked
directly to international travel, and these have likely also contributed to the local
outbreak. Several nonsynonymous mutations were identified in the Arizona isolates,
including within regions of the receptor-binding domain of the spike protein and
nonstructural proteins involved in the RNA synthesis complex. However, we see very
little evidence for mutations that will impact the most commonly used molecular
diagnostics. The functional consequences of the observed mutations are unknown,
highlighting the need for mechanistic studies. Our phylodynamic tracing provides
unique epidemiological insights into the origins and transmission of SARS-CoV-2 in
Arizona and will form the basis for future understanding as the pandemic continues.

MATERIALS AND METHODS
Reference genome. Any sequence positions mentioned in this work refer to GenBank sequence

NC_045512.2, a genome isolated and sequenced from Wuhan, China, early in the pandemic.
TGen North genome sequencing. RNA was extracted from specimen transport medium with a quick

viral RNA kit (Zymo Research). Total RNA sequencing libraries were prepared with the SMART-Seq
stranded kit (TaKaRa) or the Ovation RNA-Seq system (NuGEN). Libraries were sequenced on a NextSeq
(high-output kit; Illumina). Viral genome consensus sequences for each sample were constructed using
TGen’s amplicon sequencing analysis pipeline (ASAP; https://github.com/TGenNorth/ASAP), which con-
sists of mapping the reads to a reference genome (hCoV-19/USA/AZ1/2020|EPI_ISL_406223 (https://www
.gisaid.org/) and analyzing the alignment pileup position by position to determine coverage depth,
coverage breadth, and the consensus sequence. Positions covered by fewer than 10 reads were
considered a gap in coverage and were converted to Ns. Consensus sequences were saved and used for
further analysis when they had �90% breadth of coverage and �30� average depth of coverage.

University of Arizona genome sequencing. After sample collection, the nasopharyngeal swab was
soaked in TRIzol (Thermo Fisher) and removed. Total RNA was then extracted from 400 �l of TRIzol with
a Direct-zol RNA isolation kit (Zymo Research) according to the manufacturer’s instructions. RNA was
eluted in 30 �l of nuclease-free water.

We used primers and methods from the ARTIC consortium (https://artic.network/) with the following
modifications. cDNA synthesis was performed with GOscript (Promega) using 10 �l of RNA in a final
volume of 20 �l according to the manufacturer’s instructions. Next, a multiplex PCR amplifying overlap-
ping 400-bp amplicons was performed with the V2 set of primers designed by the ARTIC group. We used
2.5 �l of cDNA in each 25-�l reaction with the Q5 Hot Start high-fidelity DNA polymerase (NEB), with two
separate reaction mixtures containing each of the nonoverlapping primer pools. We used an initial
denaturation step of 98°C for 30 s and then 35 cycles at 98°C for 10 s and 65°C for 2 min.

The reaction mixtures were pooled and visualized on a 2% agarose gel to confirm successful
amplification. Amplicons were then cleaned with a 1:1 mixture of AMPure XP magnetic beads (Beckman
Coulter). The mixture was incubated for 5 min at room temperature and then placed on a magnetic rack
until all of the beads were pulled out of the solution. The remaining liquid was pulled off and discarded.
Next, 200 �l of 80% ethanol was used twice to wash the bead mixture. The beads were allowed to dry
and resuspended in 30 �l of water. After a 5-min incubation, the tube was placed back on a magnetic
rack until the beads were pulled out of the solution. Then, a 30-�l portion of the cleaned amplicons was
transferred to a fresh tube.

The remainder of the protocol was identical to the ARTIC protocol which includes end-repair, ligation
of Oxford Nanopore sequencing adapters, and additional cleaning steps using the AMPure XP beads. The
final prepared library was loaded onto a flongle inserted into a MinION sequencer. Sequence data were
collected for 12 h. In order to remove the sequencing adapter and primer sequence, we trimmed the first
40 bp off the reads. Reads were then aligned to a SARS-CoV-2 reference sequence (MN908947) using
Geneious Prime (Biomatters, Inc.). A consensus sequence was generated from these reads for sections
that contained �40� coverage with Ns placed at sites with lower coverage.

Arizona State University genome sequencing. SARS-CoV-2 genomes were sequenced from naso-
pharyngeal swabs as previously described (35). Briefly, total nucleic acid was extracted using the
bioMérieux eMAG platform. RNA was subjected to Ribo-Zero Gold depletion, TruSeq RNA library
preparation, and sequenced on Illumina NextSeq (2 � 76). Sequencing reads were quality filtered with
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BBtools (BBMap; Bushnell B.; https://sourceforge.net/projects/bbmap/) and mapped to a SARS-CoV-2
reference genome (MN908947).

Bioinformatics. Sequences included in the analyses presented here were derived from GISAID
(accessed on 16 April 2020), NCBI GenBank, and sequences generated by our teams at Northern Arizona
University and TGen North (n � 75), Arizona State University (n � 3), and University of Arizona (n � 1)
(collectively referred to as the “Arizona sequences”). To support efficient Bayesian phylogenetic analysis
of this large number of sequences, we developed genome-sampler (36), a novel protocol and software
for sampling sequences from GISAID across time of sequence acquisition, geographic source of se-
quence, and SARS-CoV-2 diversity. The software developed for this workflow is available at https://github
.com/caporaso-lab/az-covid-1, and our application of this workflow is detailed in our protocol in the
supplemental methods (see Text S1 in the supplemental material).

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
TEXT S1, PDF file, 0.1 MB.
FIG S1, PDF file, 0.6 MB.
FIG S2, PDF file, 0.4 MB.
TABLE S1, XLSX file, 0.1 MB.
TABLE S2, XLSX file, 0.1 MB.
TABLE S3, PDF file, 0.1 MB.
TABLE S4, PDF file, 0.1 MB.
TABLE S5, PDF file, 0.1 MB.
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