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Retinoic acid (RA) signaling pathways mediated by RA receptors (RARs) are essential
for many physiological processes such as organ development, regeneration, and
differentiation in animals. Recent studies reveal that RARs identified in several mollusks,
including Pacific oyster Crassostrea gigas, have a different function mechanism
compared with that in chordates. In this report, we identified the molecular
characteristics of CgRAR to further explore the mechanism of RAR in mollusks. RT-
qPCR analysis shows that CgRAR has a higher expression level in the hemocytes and
gonads, indicating that CgRAR may play roles in the processes of development and
metabolism. The mRNA expression level of both CgRAR and CgRXR was analyzed
by RT-qPCR after injection with RA. The elevated expression of CgRAR and CgRXR
was detected upon all-trans-RA (ATRA) exposure. Finally, according to the results of
Yeast Two-Hybrid assay and co-immunoprecipitation analysis, CgRAR and CgRXR can
interact with each other through the C-terminal region. Taken together, our results
suggest that CgRAR shows a higher expression level in gonads and hemocytes. ATRA
exposure up-regulates the expression of CgRAR and CgRXR. Besides, CgRAR can
interact with CgRXR to form a heterodimer complex.

Keywords: Crassostrea gigas, retinoic acid receptor, retinoid X receptor, molecular characterization, retinoic acid

INTRODUCTION

Retinoic acid (RA), an important hormone derived from vitamin A, plays crucial roles in regulating
many development and differentiation processes, such as axial patterning, tissue formation,
nervous system development, and regeneration (Das et al., 2014; Ghyselinck and Duester, 2019;
Pawlikowski et al., 2019). It has been reported that RA-activated responses are mediated by the RA
receptors (RARs) and the retinoid X receptors (RXRs) in vertebrates (Balmer and Blomhoff, 2002;
Gutierrez-Mazariegos et al., 2014; Ghyselinck and Duester, 2019). Both RARs and RXRs belong
to the steroid hormone/thyroid hormone nuclear receptor superfamily, containing a well-defined
DNA-binding domain (DBD) and a C-terminal ligand-binding domain (LBD) (Bourguet et al.,
2000; Le Maire and Bourguet, 2014).

Many studies have revealed that the RAR gene undergoes duplications through evolution. As
a result, there are three paralogous RAR genes that exist in most vertebrates, including RARα,
RARβ, and RARγ (Bastien and Rochette-Egly, 2004; Escriva et al., 2006). In vertebrates, RARs
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interact with RXRs to form different combinations of a
heterodimer. There are several RA isomers, including all-
trans-RA (ATRA), 9-cis-RA (9cRA), and 13-cis-RA. ATRA is
the primary ligand sensed by RAR–RXR heterodimers during
the development process (Mic et al., 2003; Cunningham and
Duester, 2015). After being combined with ATRA, RAR–RXR
heterodimers regulate transcription by combining with RA
response elements (RAREs) in the regulatory regions of target
genes (Kastner et al., 1995; Bastien and Rochette-Egly, 2004).
In addition, RARs identified in urochordates Polyandrocarpa
misakiensis and cephalochordate Branchiostoma lanceolatum can
form a heterodimer with RXRs and combine with RA to activate
transcription of target genes, with a similar function to that in
vertebrates (Kamimura et al., 2000; Escriva et al., 2006).

It was once thought that RA signaling was unique to
chordate animals for a long time until the signaling pathway was
found in non-chordate animals, including ambulacrarians and
lophotrochozoans, over the past one or two decades (Bertrand
et al., 2004; Gutierrez-Mazariegos et al., 2014). Many studies
focused on RA signaling pathway and the function of RARs
in mollusks over the years. In Lymnaea stagnalis, RA modifies
invertebrate electrical synapses of central neurons and function
in the formation and modulation of invertebrate central synapses
(Rothwell et al., 2017). Disruption of RA signaling in Lymnaea
embryos using RAR antagonists resulted in abnormal eye and
shell development (Carter et al., 2015). In addition, RA reduces
intracellular calcium levels rapidly and affects calcium signaling
in adult molluscan neurons of L. stagnalis (Vesprini et al.,
2015). In Thais clavigera and Nucella lapillus, RXR is involved
in the organotin-induced development of imposex (Nishikawa
et al., 2004; Castro et al., 2007). Moreover, RXR identified from
Biomphalaria glabrata can combine with 9cRA and activate the
transcription of targets genes (Bouton et al., 2005). TcRAR and
NlRAR, identified from T. clavigera and N. lapillus, respectively,
can interact with RXR to form heterodimers but appear not
to be activated by RA when detecting the transcription activity
in mammalian cells (Urushitani et al., 2013; Juliana et al.,
2014). In Crassostrea gigas, both in silico analysis and molecular
experiments indicated that CgRXR shows high potential to
combine with RA, while CgRAR loses the ability to interact
with natural or synthetic RA ligands. In addition, RA can
activate the transcriptional activity of CgRXR but not CgRAR
(Vogeler et al., 2017; André et al., 2019; Huang et al., 2020).
Thus, effects of RA on mollusks might be RAR independent.
RAR may have different functions in these mollusks, including
C. gigas.

Pacific oyster C. gigas is an important marine shellfish in
the world, with great ecological and economic significance. It
is of great significance to explore the RA signaling mechanism
and RAR function in C. gigas. In the current report, we
investigate the molecular characteristics of CgRAR. Tissue
expression pattern and mRNA expression of CgRAR upon ATRA
exposure were analyzed in C. gigas first. Then the subcellular
localization of CgRAR was detected in HEK293T cells. To get
a better understanding of the possible functions of CgRAR,
the interaction between CgRAR and CgRXR was detected, and
the results show that CgRAR interacts with CgRXR through

the C-terminal region. Besides, both CgRAR and CgRXR can
interact with themselves to form homodimers in yeast and
mammalian cells.

MATERIALS AND METHODS

Oyster Collection, Tissue Sampling, and
Retinoic Acid Exposure
Oysters used in this study were collected from a local culture zone
(Yantai, China), with an average shell length of 65 cm. All the
oysters were acclimated in aerated seawater at 15–22◦C for at least
1 week before experiment. For tissue expression analysis, mantle
(Man), gill (Gil), adductor muscle (Amu), hemolymph (Hae),
digestive gland (Dgl), gonad (Gon), and labial palps (Lpa) were
collected from nine wild oyster individuals. For RA exposure
analysis, 48 oysters were divided into two groups randomly.
ATRA was dissolved in dimethylsulfoxide (DMSO); oysters in
two groups were injected with DMSO and 2 µg/µl of ATRA
and given a supplementary injection every 2 days for a total of
five injections.

RNA Extraction and Real-Time
Fluorescence Quantitative PCR Analysis
Total RNA was isolated from different oyster tissues or RA-
treated oysters using an RNA extraction kit (Tiangen). Briefly,
tissue blocks were ground into a homogenate in liquid nitrogen,
the cracking buffer was added to the homogenate, the supernatant
was obtained by centrifugation, and subsequent operations were
performed according to the kit instructions. cDNA synthesis
using PrimeScriptTM RT Master Mix (TaKaRa) was performed
according to the instructions. RT-qPCR analysis was performed
using SYBR Premix Ex Taq II (TaKaRa) and a Bio-Rad CFX
Connect PCR instrument. RS18 was used as reference gene for
normalization of gene expression. 2−11Ct method was used
to calculate the relative expression level. Primers utilized for
RT-qPCR are listed in Supplementary Table 1.

Subcellular Localization Analysis
Full-length coding sequence (CDS) of CgRAR was cloned
into pEGFP-N1 plasmid (Clontech) and then transferred into
HEK293T cells with Lipofectamine 3000 (Invitrogen) when the
confluence of cells reached 60%. Transfected cells were fixed with
4% paraformaldehyde and then incubated with DAPI for 5 min to
stain the nuclei 24 h after transfection. Laser-Scanning Confocal
Microscopy System FluoView FV1000 (Olympus, Japan) was
used to observe fluorescent signal. Primers used for fusion vector
construction are listed in Supplementary Table 1.

Yeast Two-Hybrid Assay
The yeast strain Yeast Two-Hybrid (Y2H) Gold (Clontech)
was used to assess protein–protein interactions in this study.
The CDS fragments of CgRAR, CgRXR, C-terminal of CgRAR,
and C-terminal of CgRXR were cloned into pGAD T7 and
pGBK T7 to generate CgRAR-AD/BD, CgRXR-AD/BD, CgRARC-
AD/BD, and CgRXRC-AD/BD fusion plasmids; fusion plasmids
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were co-transferred into Y2H Gold yeast strain according
to the manufacturer’s instructions (Clontech). Primers used
for fusion plasmids construction are listed in Supplementary
Table 1. Yeast transformants were grown on SD/-Leu/-Trp
double drop out (DDO) medium for 3–5 days and then
screened on selective SD/-Leu/-Trp/-His/-Ade quadruple drop-
out (QDO) medium with aureobasidin A (AbA) and X-
α-gal.

Co-immunoprecipitation Assay
The full-length CDSs of CgRAR and CgRXR were constructed
into pCMV-Myc and pCMS-flag to generate the fusion vectors.
Primers used for fusion vectors construction are listed in
Supplementary Table 1. The fusion vectors were introduced into
the HEK293T cells by Lipofectamine 3000 (Invitrogen). Thirty-
six hours after transfection, proteins were extracted from co-
transferred HEK293T cells with lysis buffer (Beyotime, China).
Anti-flag magnetic beads (Sigma, United States) were used for
co-immunoprecipitation (co-IP) as indicated. After the IP, beads
were washed at least three times in wash buffer. Input samples
were separated from the cell lysate without anti-flag magnetic
beads. Samples were boiled for 5 min in 2× protein sodium
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE)
loading buffer (TAKAEA) and subjected to western blot (WB)
analysis using anti-flag and anti-myc (Sigma, United States).

RESULTS

Tissue Expression Pattern of CgRAR
Transcriptional expression pattern of CgRAR was detected in
different tissues isolated from healthy adult oysters under normal
growing conditions, including the mantle, adductor muscle, gill,
digestive gland, gonad, labial palp, and hemocytes. As a result,
the CgRAR gene is widely expressed in all the detected tissues,
with a higher expression in hemocytes and gonads (Figure 1A),
suggesting that CgRAR may function in these tissues.

FIGURE 1 | Relative expression of CgRAR in different tissues (A) and in
response to retinoic acid (RA) treatment (B). Relative mRNA expression levels
of CgRAR and CgRXR was normalized to that of CgRS18. Bars represent
means of three replicates ± SD (standard deviation). One-way ANOVA and
Student’s t-test (*P < 0.05) were used for significance analysis in (A,B)
respectively. Hae, hemolymph; Gon, gonad; Amu, adductor muscles; Man,
mantle; Gil, gill; Dgl, digestive gland; Lpa, labial palps.

The Expression of CgRAR Can Be
Activated by ATRA
To explore the relationship between CgRAR and RA-induced
responses, we performed RT-qPCR analysis to detect the relative
expression level of CgRAR and CgRXR after ATRA treatment.
As shown in Figure 1B, the transcript level of both CgRAR
and CgRXR was up-regulated after ATRA injection. This result
indicates that mRNA expression of CgRAR and CgRXR can be
up-regulated by ATRA exposure.

CgRAR Protein Mainly Localized in the
Nucleus in HEK293T Cells
To reveal the subcellular localization of CgRAR protein, a green
fluorescent protein (GFP)-tagged CgRAR was transferred into
HEK293T cells. GFP plasmid was also transferred into HEK293T
as control. As show in Figure 2, fluorescent single was observed
on cytoplasm in GFP-transfected cells; in the cells transferred
with CgRAR–GFP, fluorescent single was detected in the nucleus.
This result suggests that CgRAR protein localized in the nucleus
in HEK293T cells.

CgRAR Physically Interacts With CgRXR
To verify the interaction between CgRAR and CgRXR, a Y2H
assay was carried out using the full-length CDSs of CgRAR and
CgRXR first. Both CgRAR and CgRXR fusion vectors exhibit
strong self-activation (Figure 3B). Thus, the DBD domain of
CgRAR and CgRXR was deleted to generate CgRARC-AD/BD
and CgRXRC-AD/BD fusion vectors, respectively (Figure 3A).
Yeast strain co-expressing CgRARC and CgRXRC can be grown
on QDO selection medium without self-activation (Figure 3C),
indicating that CgRAR interacts with CgRXR through the
C-terminal region. Co-IP analysis was also taken to confirm the
interaction between CgRAR and CgRXR (Figure 3D). As a result,
CgRAR was co-precipitated with CgRXR in HEK293T cells. In
addition, both CgRAR and CgRXR can interact with themselves
to form homodimers (Figures 3C,D). Taken together, these
results demonstrate that CgRAR can either form a heterodimer

FIGURE 2 | Subcellular localization of CgRAR in HEK293T cells. Confocal
microscopy images of green fluorescent protein (GFP) (top) and CgRAR–GFP
(bottom). HEK293T cells were transfected with pEGFP-N1 and CgRAR–GFP
respectively. Bar, 50 µm.
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FIGURE 3 | CgRAR physically interacts with CgRXR. (A) Representation of truncated CgRAR and CgRXR proteins. (B) Yeast two-hybrid assay for interactions
between CgRAR and CgRXR protein. (C) Yeast two-hybrid assay for interactions between truncated CgRAR and CgRXR protein. AD and BD empty vectors were
co-transformed as negative control. QDO/X/A, quadruple drop-out medium to test interaction; DDO, double drop-out as control. QDO, SD/-Trp/-Leu/-His/-Ade;
DDO, SD-Leu-Trp; X, X-α-gal; A, aureobasidin A (AbA). (D) Co-immunoprecipitation assays verified the interaction between CgRAR and CgRXR protein. WB analysis
using anti-myc and anti-flag on total protein extracts (“Input”) and on eluted proteins after immunoprecipitation (IP) with anti-flag magnetic beads.

by binding CgRXR or form a homodimer with itself in yeast and
in HEK293T cells.

DISCUSSION

Retinoic acid is an important hormone playing critical roles
in the processes of organogenesis, neuronal differentiation, and
embryonic development in vertebrates (Duester, 2008; Kam
et al., 2012; Janesick et al., 2015). The important roles of RA
signaling were also found in physiological process in mollusks,
such as maturation of neurons, imposex, and formation of central
synapses (Nishikawa et al., 2004; Vesprini et al., 2015; Rothwell
et al., 2017). RARs are the primary receptors that sense RA ligand

and regulate target gene transcription in chordates. However,
the RA signaling mechanism in non-chordate animals, especially
in some mollusks, seems different from that in chordates
(André et al., 2019).

To help predict the possible function of CgRAR, tissue
expression pattern was first examined in adult oysters under
normal indoor culture environment in this study. A universal
distribution of CgRAR gene was detected in different tissues
of oyster, with a higher expression in gonads and hemocytes
(Figure 1A). Since both gonads and hemocytes are tissues
closely related to the processes of reproduction, differentiation,
and development, we speculated that the elevated expression of
CgRAR in these two tissues suggested that CgRAR might be
involved in the development process of C. gigas. In chordates,
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RARs and RXRs form a heterodimer to regulate the expression of
target genes in the perception of ATRA (Niederreither and Dolle,
2008; Gutierrez-Mazariegos et al., 2014). A recent study revealed
that CgRXR is widely expressed in all tissues examined in Pacific
oyster, with the highest relative expression in the mantle and
lowest in gonads (Huang et al., 2020). Thus, the main function
of CgRAR and CgRXR may not be exactly the same.

All-trans-RA exposure activates the mRNA expression of both
CgRAR and CgRAR in Pacific oyster (Figure 1B). This result
indicates that transcriptions of both CgRAR and CgRXR can be
respond to ATRA exposure. It is worth noting that activation at
the transcriptional level does not mean that CgRAR and CgRXR
proteins can sense and bind to ATRA ligands. Whether CgRAR
and CgRXR function in this process and what role they play need
to be further studied.

Both RARs and RXRs belong to the nuclear receptor family
and can regulate target gene transcription in the nucleus in
vertebrates (Bastien and Rochette-Egly, 2004). A recent study
demonstrated that CgRXR localized in the nucleus in the human
cell line (Huang et al., 2020). CgRAR–GFP fusion plasmid was
constructed and transferred into HEK293T cells to explore
the subcellular location of CgRAR. The results showed that
CgRAR was also localized in the nucleus in the human cell line
(Figure 2). Therefore, we speculate that CgRAR’s function in the
nucleus may be to regulate the transcription of target genes as a
transcription factor.

In vertebrates, RA–RAR–RXR complex targets RARE of
downstream genes, activating or repressing gene transcription
(Kastner et al., 1995; Cunningham and Duester, 2015). Several
studies have shown that RAR gene identified in some mollusks,
including T. clavigera, Patella vulgata, N. lapillus, and C. gigas,
lose the ability to bind ligand RA. In addition, the transcriptional
activity of these RARs cannot be activated by RA (Urushitani
et al., 2013; Juliana et al., 2014; Vogeler et al., 2017; André et al.,
2019). It is reported that the RAR–RXR heterodimer still has
the ability to bind RAREs and recruit co-repressors to negatively
regulate transcription in the absence of ligand (Niederreither
and Dolle, 2008). In this study, the physical interaction between
CgRAR and CgRXR was confirmed by Y2H assay and Co-
IP analysis (Figure 3). Whether CgRAR or CgRAR–CgRXR
heterodimer regulate target gene transcription in the nucleus
remains to be further studied. Taken together, this study indicates
that CgRAR localized in the nuclear and can interact with CgRXR
to form a heterodimer complex. The transcription of CgRAR
can respond to ATRA, and CgRAR may function during the
development process. This work may help to better understand
the possible functions of CgRAR and to provide data reference
for the further research.
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