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Minimum Norm Estimation (MNE) is an inverse solution method widely used to reconstruct the source time series that underlie
magnetoencephalography (MEG) data.MNE addresses the ill-posed nature ofMEG source estimation through regularization (e.g.,
Tikhonov regularization). Selecting the best regularization parameter is a critical step. Generally, once set, it is common practice
to keep the same coefficient throughout a study. However, it is yet to be known whether the optimal lambda for spectral power
analysis of MEG source data coincides with the optimal regularization for source-level oscillatory coupling analysis. We addressed
this question via extensive Monte-Carlo simulations of MEG data, where we generated 21,600 configurations of pairs of coupled
sources with varying sizes, signal-to-noise ratio (SNR), and coupling strengths. Then, we searched for the Tikhonov regularization
coefficients (lambda) that maximize detection performance for (a) power and (b) coherence. For coherence, the optimal lambda
was two orders of magnitude smaller than the best lambda for power. Moreover, we found that the spatial extent of the interacting
sources and SNR, but not the extent of coupling, were the main parameters affecting the best choice for lambda. Our findings
suggest using less regularization when measuring oscillatory coupling compared to power estimation.

1. Introduction

Healthy brain function is largely mediated by coordinated
interactions between neural assemblies in different cortical
and subcortical structures. As a result, the study of neuronal
processes requires techniques that can reliably measure the
spatiotemporal dynamics of large-scale networks. To this end,
it is important to assess the modulations of local activations
as well as long-range coupling between brain areas. Over
recent years, the quantification of neuronal interactions in a
given behavioral task or brain state has been the focus of a
large body of research, and various techniques are currently
used to detect and probe the role of functional connectivity

(e.g., [1, 2]). In particular, a widely used technique for the
detection of large-scale interactions among neural assemblies
is magnetoencephalography (MEG) [3–5]. This is primarily
due to its high temporal resolution, which is in the same
order of magnitude as the neuronal processes themselves
(milliseconds). Unlike electroencephalography (EEG), MEG
measures magnetic fields that are less affected by the skull
and brain tissue and provides whole-head coverage, which is
mandatory for the assessment of large-scale brain networks.
The use of MEG has advanced our comprehension of the
mechanisms underlying functional brain connectivity [6]
involved in sensory, motor, and higher-order cognitive tasks
[3, 7–11] higher-order cognitive tasks resting state [6, 12–18].
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The ability to measure brain interactions at the source
level, rather than between sensor channels, is an important
prerequisite if we want to make useful inferences about
the anatomical-functional properties of the network. To
this end, source reconstruction techniques are applied in
order to estimate the spatiotemporal activity of the cortical
generators underlying the recorded sensor-level MEG data.
Solving this relationship is an ill-posed inverse problem for
which numerous methods have been developed [4]. The
differences between the various techniquesmainly stem from
the assumptions theymake about the properties of the neural
sources and from the way they incorporate various forms of
a priori information, if any is available. Conceptually, solving
the MEG inverse problem boils down to solving a system of
equations that is underdetermined (i.e., no unique solution)
since we generally have far more sources (thousands) than
measurements (hundreds). Identifying a solution to such a
problem can be achieved by imposing constraints on the
sources. A typical constraint is to minimize the source power.
Among thesemethods, theMinimumNormEstimate (MNE)
relies on minimizing the L2-norm and is one of the most
widely used techniques [4, 7, 8, 18–37]. By contrast, estimates
obtained by minimizing the L1-norm are referred to as
Minimum-Current Estimates (MCE) [34, 38]. While the L2-
norm assumes a Gaussian a priori current distribution, the
L1-norm assumes a Laplacian distribution [39].

In principle, MNE looks for a distribution of sources
with the minimum (L2-norm) current that can give the best
account of the measured data. As the problem is ill-posed,
MNE generally uses a regularization procedure that sets the
balance between fitting the measured data (minimizing the
residual) and minimizing the contributions of noise [22, 40,
41].The Tikhonov orWiener regularization [42, 43] and SVD
truncation are among the most widely used regularization
procedures. Regularization may be considered a necessary
evil: it is required to stabilize the solution of the inverse
problem, yet too much regularization leads to overly smooth
solutions (spatial smearing). Since we do not have a precise
model of brain activity and noise, the choice of the optimal
amount of regularization is a nontrivial step for which no
magical recipe exists [44]. The relationship between optimal
regularization and the patterns of underlying generators is
still poorly understood. In particular, the effect of regulariza-
tion on the detection accuracy of Minimum Norm Estimates
of source power and interareal source coupling has not been
thoroughly investigated. This raises the question of whether
one should use the same regularization coefficient for MNE-
based power and connectivity analyses, as is generally done,
or would one benefit from optimizing the regularization
coefficients separately for each analysis? Furthermore, how
does the optimal regularization coefficient, in such configu-
rations, depend on sensor-level SNR, source size, or coupling
strength?

With these questions in mind, we performed exten-
sive Monte-Carlo simulations, creating over 20,000 pairs
of coupled oscillatory time series in MEG source spaces,
and computed the resulting surface MEG recordings. Then,
we estimated source power and coherence using the MNE
framework with variable degrees of Tikhonov regularization.

Moreover, we used an approach based on an area under the
curve (AUC) to identify the optimal regularization coefficient
(lambda) in the case of power and coherence analyses. We
found a systematic difference between the optimal lambdas
in each analysis: for source-level coherence analysis the
optimal lambda was two orders of magnitude smaller than
the best lambda for power detection. Lastly, our findings are
broken down as a function of SNR, cortical patch size, and
corticocortical coupling strength.

2. Methods and Materials

In this section, we first present the MEG inverse problem
formulation and the MNE framework. Then, we describe
the simulation, reconstruction, and performance assessment
procedures.

2.1.TheMEG Inverse Problem. The inverse problem looks for
an estimation of the active sources S (3𝑛sources × time points)
that generates the measurements M (𝑛channels × time points)
recorded at the sensors. The dimension 3𝑛 of the columns
of S accounts for the three components of the source 𝑛
in the 𝑥, 𝑦, and 𝑧 directions. According to anatomical
observations, the main generators of MEG are located in
the grey matter and their orientation is perpendicular to the
cortical sheet [45]. Here, we used a constrained orientation
approach (perpendicular to the cortical surface), and hence
the dimensions of S are reduced to 𝑛sources × time points.
Assuming a linear relationship between the measurements
and the active sources, the problem is modeled as

M = LS + N, (1)

where L is the lead field matrix (𝑛channels × 𝑛sources) and N
is additive noise applied at the MEG channels (𝑛sources ×
time points).The lead fieldmatrix describes how each source
contributes to the measurements at each sensor, given a
specific head conductivity model and a source space. As the
number of sources is usually much higher than the number
of sensors, the lead field matrix is highly underdetermined
and thus not invertible. The estimation of the activity of the
sources requires the definition of an inverse operatorW:

Ŝ =W𝑇M, (2)

where Ŝ represents the estimated sources (𝑛sources ×
time points) and the superscript 𝑇 denotes matrix transpose.

2.2. Minimum Norm Estimate (MNE). As the MEG inverse
problem is ill-posed, a regularization scheme is needed [22],
and one of the most common options is the Tikhonov
regularization [42, 43]. MNE calculates an inverse operator
W by searching for a distribution of sources Ŝwithminimum
currents (L2-norm) that produces an estimation of the
measurements (LŜ) most consistent with the measured data
(M). The solution is a trade-off between the norm of the
estimated regularized sources current 𝜆2‖Ŝ‖2 and the norm
of the quality of the fit they provide to the measurements
‖M − LŜ‖2. Assuming the noise N and the sources strength
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S to be normally distributed with zero mean and covariance
matrix Q and R, respectively, a general form of the MNE
inverse solution can thus be given as [35, 46, 47]

Ŝ = argmin
S
{
󵄩󵄩󵄩󵄩󵄩
Q−1/2 (M − LS)󵄩󵄩󵄩󵄩󵄩

2

+ 𝜆
2 󵄩󵄩󵄩󵄩󵄩
R−1/2S󵄩󵄩󵄩󵄩󵄩

2

} , (3)

where 𝜆 is the Tikhonov regularization parameter. Thus, the
inverse operatorW is defined as

W = RL𝑇 (LRL𝑇 + 𝜆2Q)
−1

, (4)

where the superscript −1 denotes matrix inverse.
The Minimum Norm Estimate embodies the assumption

of independently and identically distributed (IID) sources,
which corresponds to an identity matrix R in the above
formula. Alternatively, R can incorporate more informed
(spatial) assumptions, yielding a so-called weighted Mini-
mum Norm Estimate [28, 35, 44]. Here, we use the general
and classical minimum norm solution. The noise covariance
matrix Q was computed from the actual noise which was
added to the sensors in each simulation.

2.3. Simulations. We simulated 117s of oscillatory activity in
pairs of cortical sources with different degrees of coupling in
the alpha band (9–14Hz).We computed the resulting sensor-
level data through forward modeling based on a 275-channel
CTF MEG system configuration. Our sources consisted
of current dipoles placed at the vertices of a tessellated
MNI-Colin 27 cortical surface, which was segmented and
tessellated using FreeSurfer [48] and downsampled to 15028
vertices. Different strengths of coupling were obtained by
forcing the time series of the second source to have a certain
level of coherence with the first source time series. The
magnetic fields at the sensors were calculated using a single
sphere head model and constraining the orientations of the
sources to be normal to the cortical surface. The simulated
datawere generated using a combination of customMATLAB
code, in addition to functions from Brainstorm [49] and
FieldTrip [50] toolboxes. The source time courses were
simulated by first setting the base frequency of the oscillator
(e.g., 12Hz) and inducing a small jitter to its instantaneous
frequency across time points. The frequency modulated time
courses were then generated using an exponential function.
This procedure causes fluctuations in the phase relationship
between two oscillators with the same base frequency, allow-
ing us to achieve coherence levels below 1. The frequency
jittering was performed randomly in a loop until the desired
coherence level (e.g., 0.4) between the time courses of the two
oscillators was reached.

We randomly selected two locations (seeds) for each sim-
ulated pair of sources (600 pairs). Next, for each pair, we var-
ied three additional parameters in the simulations: the spatial
extent of the sources, the strength of the coupling between
the two sources, and the signal-to-noise ratio (SNR) at the
sensors.These parameters are described inmore detail below.

(i) Patches and Point-Like Sources. We simulated point-like
sources (i.e., 1 dipole) and cortical patches (with surface areas:
2, 4, or 8 cm2). The activity of a cortical patch was simulated

by placing identical time series at the vertices that make up
the patch. As described above, the vertices were obtained via
tessellation of the MNI brain (Colin 27).

(ii) Coupling Strength. When generating the time series for
each of the two sources of a pair of simulated generators, we
defined the coupling by setting the alpha-band coherence to
either 0.1, 0.2, or 0.4.We simulated time series that were 7000
samples long (600Hz sampling frequency). Note here that
by actually simulating true coherence at the source level, we
circumvent debates about spurious coupling that arises from
field spread. As such, we assess here the ability to recover truly
coherent cortical activity.

(iii) Signal-to-Noise Ratio (SNR). White noise was added to
the sensor signals in order to achieve three levels of SNR
(0 dB, −20 dB, and −40 dB), calculated as the ratio of the
Frobenius normof signal and noise amplitudes at the sensors.

In summary, we randomly chose 600 different pairs of
cortical location configurations, for which we varied source
size (4 levels: point-like, 2, 4, or 8 cm2), coupling strength (3
levels: 0.1, 0.2, or 0.4), and SNR (3 levels: 0 dB, −20 dB, and
−40 dB). This yielded a total of 21,600 sets of simulated MEG
sensor-level data. Next, we evaluated the effect of varying the
Tikhonov regularization parameter 𝜆 on detection perfor-
mance of MNE, independently, for power and for coherence
mapping.

2.4. Power and Coherence Reconstructions. The previous
section described the cortical power and coherence config-
urations that were generated in the MEG data simulation
step. Now, in order to assess our ability to reconstruct
these simulated (i.e., known) source configurations, we first
reconstruct the source time series by applying MNE to the
simulated sensor data, and then we compute spectral power
and coherence from these estimated time series.

Most MEG studies that use MNE select a single lambda
value once and for all to be used throughout the study; the
same regularization coefficient is hence used for both power
and coupling estimations (assuming both are performed
within the study). This is not the case here, precisely because
our objective is to test whether optimal lambda values differ
between power and coherence mapping.

Therefore, in order to find the regularization coefficient
providing the most accurate reconstruction of (a) power
and (b) interareal coherence across all 21,600 simulated
configurations, we used multiple values for 𝜆 ranging from
1𝑒 − 11 to 1𝑒 − 5 (7 values). In addition to searching for
the optimal lambda that provides the best results across all
simulations, the definition of best lambda was also separately
examined as a function of SNR, coupling strength, and source
extent. Finally, for the sake of comparison, we also computed
the optimal 𝜆 value obtained from the standard L-curve
method [51]. The range of possible lambda values examined
in our estimations was selected based on visual inspection in
a subset of simulations and chosen to ensure it included the
lambda obtained via the L-curve approach.

Notably, for the coupling analysis, we used the recon-
structed time series at one of the two simulated dipoles as
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reference point, and we calculated coherence with all other
source time series across the brain. Spectral power (at any
location 𝑟) and magnitude squared coherence (between two
locations 𝑟

1
and 𝑟
2
) were calculated as follows:
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1
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2
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2
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,

(5)

where Cs is the cross-spectral density matrix and 𝑓 is the
frequency bin. Power and MS coherence were calculated
via built-in standard MATLAB (Mathworks Inc., MA, USA)
functions based on Welch’s averaged and modified peri-
odogram method [52].

2.5. Receiver Operating Characteristic (ROC) Curves. We
evaluated the performance of each method using the area
under the curve (AUC) from the ROC curves obtained by
plotting the True Positive Fraction (TPF) versus the False
Positive Fraction (FPF) at a given threshold 𝛼, calculated as
follows:

TPF (𝛼) = TP (𝛼)
Number of simulated dipoles

,

FPF (𝛼)

=
FP (𝛼)

Total number of dipoles −Number of simulated dipoles
,

(6)

where TP(𝛼) represents the true positives (defined as the
intersection between simulated sources and active sources
at threshold 𝛼) and FP(𝛼) represents the false positives
(defined as all active sources but excluding the true positives
at activation threshold 𝛼). By computing TPF and FPF
repeatedly for successive values of activation thresholds 𝛼,
we obtain a ROC curve from which we derive the AUC.
The AUC is taken as a measure of performance; that is, the
best regularization coefficient would be the one that yields
the highest AUC. Statistical comparisons were performed
using standard parametric two-tailed 𝑡-tests. Note that, for
reference-based coherence reconstruction, computing true
positives can be ambiguous if we consider the sources within
the “reference patch” (location 1) to be true positives. To
avoid this problem, we chose to quantify how well the distant
coherent patch (location 2) was detected. In other words, we
used the time series estimated at location 1 (as a seed) and
considered only the simulated activity that make up the patch
at location 2 to be the vertices we wish to detect. Therefore,
the vertices within the reference patch were excluded from
the ROC calculations for coherence evaluations.

3. Results

3.1. Optimal Tikhonov Regularization Coefficient Is Not the
Same for Power and Coherence Reconstructions. Figure 1(a)
shows the effect of lambda selection on quality of power
and coherence detection across all simulated conditions and
configurations (measured as mean AUC). Importantly, we
found that the best mean value of lambda for power (10𝑒 − 7)

differs from the best mean lambda for coherence, which was
two orders of magnitude smaller (10𝑒 − 9). In comparison
to the optimal value for power, the lower optimal value for
coherence implies that a smaller residual should be allowed to
have an optimal coherence reconstruction. The observations
in Figure 1(a) also indicate that coherence reconstructions are
more sensitive to the selection of an appropriate lambda value
than power reconstructions (as AUC for coherence peaks at
1𝑒−09 and drops again, while AUC for power displays a flatter
distribution for values neighboring 1𝑒 − 07).

Interestingly, Figure 1(b) shows a significant difference
(𝑝 < 0.001, 𝑡-test) between the power reconstruction
performances achieved using the optimal lambda for power
compared to using the lambda determined to be optimal
for coherence. Similarly, coherence reconstructions were also
significantly better when using the coherence optimal ambda
compared to the power optimal lambda. Simply put, our
simulations demonstrate that, on average across 21,600 simu-
lated pairs of sources, tuning lambda selection differently for
coherence and for power analyses significantly impacts the
results. In the next section, we examine how SNR, coupling
strength, and source size individually affect these results.

3.2. Effect of SNR, Source Size, and Coupling Strength.
Figure 2 depicts the effect of (a) SNR, (b) source size, and
(c) coupling strength on optimal lambda. In each panel, the
results are shown independently for power (upper row) and
coherence (lower row).

Figure 2(a) shows that a decrease in SNR leads, as
expected, to an overall decrease in the performance of MNE
as measured by mean AUC. For power reconstructions, a
peak (i.e., easily identifiable optimal lambda) seems to be lim-
ited to the higher SNR. As for coherence reconstructions, the
lower rowof Figure 2(a) indicates that stronger regularization
is needed as SNR drops. Next, Figure 2(b) suggests that
for both power and coherence detection, point-like sources
require more (an order of magnitude higher) regularization
than cortical patches. Furthermore, Figure 2(c) shows that
stronger coupling leads to better detection performances
(higher mean AUC). However, it also suggests that the
optimal lambda values (1𝑒 − 07 for power and 1𝑒 − 09
for coherence) do not vary with source coupling strength
(Figure 2(c)).

3.3. Comparison with the L-Curve Method. A common and
rather well-established heuristic to optimize 𝜆 in a data-
driven manner is the L-curve. The L-curve is a plot of the
norm of the regularization term versus the norm of the
residuals, representing the trade-off between these two terms.
The lambda with the best compromise between minimizing
the norm of the current and that of the residual is chosen
as the optimal lambda [51]. As it is a fast and widely used
method, we decided to compare the optimal lambda given
by the L-curve approach with the two average lambda values
which we found to optimize either power or coherence.

The mean optimal lambda obtained with the L-curve
was 1𝑒 − 10. Application of this Tikhonov coefficient led to
suboptimal reconstructions of both power and coherence.
For both cases, the mean AUC obtained was significantly
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Figure 1:The averaged optimal regularization for power reconstruction is different from the one obtained for coherence detection. (a) Mean
AUC for power and coherence reconstructions. (b) Mean AUC achieved with best lambda for power (1𝑒 − 07) or best lambda for coherence
(1𝑒 − 09) when applied in each case both for power and for coherence. ∗ indicates statistically significant differences at 𝑝 < 0.001, 𝑡-test.

smaller (𝑝 < 0.001, 𝑡-test) than the mean AUC observed
with the optimal lambda values derived from the data
(Figure 3(a)). In fact, the L-curve based estimation of
optimal lambda turned out to be one and three orders of
magnitude smaller than the optimal values we had found for
coherence and power, respectively. Figures 3(b)–3(d) show
an example of a simulated pair of sources (Figure 3(a)) and
its reconstructions using the optimal lambdas found with
the data-driven AUC-based optimization (1𝑒 − 7 for power
and 1𝑒 − 9 for coherence) and with the L-curve optimization
(1𝑒−10).This configuration illustrates a typical casewhere the
regularization coefficient derived from the L-curve approach
fails. It also illustrates how the application of regularization
that is suitable for power detection (1𝑒 − 07) can lead to
very poor detection in the case of coherence, where less
regularization (1𝑒 − 09) provides acceptable detection. Note
that the case shown here is based on an arbitrary selection of
a source configuration from among 21600 simulations. Both
poorer and nicer single examples can be found of course, but
we chose to represent a realistic intermediate case that serves
to illustrate the point made by our study.

4. Discussion

Overall, we have shown using extensive simulations of cou-
pled pairs of sources that on average when using MNE, the
best results are achieved by selecting separate regularization

coefficients for power and for coupling estimations in source
space. In particular, we found on average that the Tikhonov
regularization coefficient that yields best coherence detection
is substantially smaller than the optimal regularization coef-
ficient for the detection of oscillatory power. This is largely
due to the fact that increased smoothing (which arises from
increased regularization) blows up the rate of false positives,
a problem that appears to be amplified for corticocortical
coupling.

Most MEG studies that apply MNE to estimate the
source-level spatiotemporal dynamics do not fine-tune the
regularization as a function of the proposed subsequent spec-
tral analyses. Our simulations suggest that a regularization
parameter that maximizes the detection of oscillatory source
power may impair our ability to reliably reconstruct spectral
connectivity. As a rule of thumb,we suggest using 1 to 2 orders
of magnitude lower Tikhonov coefficient when searching for
source coupling. Obviously, this suggestion stems from the
simulations performed in this study and might not neces-
sarily be the best choice if other minimum norm methods
are used or if different source coupling configurations are
present.

The variables that appear to have the strongest effect
on the optimal lambda, according to our simulations, are
the SNR and the spatial extent of the sources. In contrast,
the strength of source coupling only minimally impacted
the optimal choice for lambda. It is also noteworthy that,
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Figure 2: Power and coherence detection with MNE as a function of three simulation parameters: best lambda for power and coherence
detection as a function of (a) SNR (0 dB, −20 dB, and −40 dB), (b) size of the sources (point-like, 2, 4, and 8 cm2), and (c) coupling strength
(0.1, 0.2, and 0.4). Power and coherence performances are depicted in the upper and lower rows of each panel, respectively.

in general, hitting the right lambda seems to be even more
critical for coherence than for power: while the performances
for power appeared to stabilize when sufficient regularization
is applied, coherence detection appeared to drop again when
regularization becomes too excessive (see Figure 1(a)).

For comparison, we also used a standard procedure
known as the L-curve approach to identify an optimal
Tikhonov regularization from our simulated data. This
resulted in a lambda value that was three orders of magnitude
smaller than the best choice for power analyses and one
order ofmagnitude smaller than the best choice for coherence
analysis. The fact that the L-curve does not yield the best
results is not amajor problem.The L-curve approach remains
a useful approach in real data analysis with MNE where the
ground truth is not known. Here, because we simulated the

MEG data, we were in a position to compare the performance
of the regularization coefficient lambda calculated using
the L-curve approach to the results achieved by a wide
range of lambda values. Previous reports have also indicated
suboptimal results when applying L-curve to simulated data
(e.g., [53]). Other methods for a data-driven selection of
lambda (e.g., [44, 47]) and other regularization methods
(such as SVD truncation) have been proposed. For instance,
lambda selection can be derived from SNR as lambda =
trace(LRL𝑇)/[trace(𝑄)×SNR2] [47] whichwith prewhitening
and appropriate selection of source covariancematrix𝑅 (such
that trace(LRL𝑇)/trace(𝑄) = 1) yields lambda∼1/SNR, where
SNR is (amplitude) signal-to-noise ratio. Approaches used to
determine SNR values vary substantially. Exploring specific
links between these formulations and the analyses performed
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and coherence (lower row) (∗ indicates statistically significant differences at 𝑝 < 0.001, 𝑡-test). (b) Illustrative example of a simulated pair
of coupled sources (alpha-band coherence = 0.4, patch size = 4 cm2, and SNR = 0 dB). ((c) and (d)) Power and coherence reconstructions
based on simulated data shown in panel (b) using three options for the definition of an optimal lambda value: 𝜆 = 1𝑒 − 10 (obtained with the
L-curve), 𝜆 = 1𝑒− 09 (mean optimal value for coherence detection), and 𝜆 = 1𝑒− 07 (mean optimal value for power detection). Note that the
power and coherence maps are normalized with respect to the maximum on each map and subsequently thresholded at 20% of maximum
amplitude.

here is of high interest, but it goes beyond the scope of the
specific question we address, which focuses on differences in
optimal lambda selectionwhen switching between power and
connectivity analysis.

Note that we focused here on MNE because it is a widely
applied source estimation technique that is implemented in
a number of toolboxes [49, 50, 54]. Besides, the classical
minimum norm solution has been shown to be a valuable
method whenever no reliable a priori information about
source generators is available [30]. However, many other
approaches exist (e.g., spatial filters) and the increased suit-
ability of one method over another generally depends on the
availability of a priori information and the validity, for the
data at hand, of the theoretical assumptions that go into each
method.

A prominent observation in the current study is that
increases in the degree of regularization have a stronger
impact on coherence than on power detection. While local
power peaks remain fairly stable even with a high degree of
smoothing, higher lambda values yield a drop in sensitivity
in coherence analysis driven by an increase in false positive
detections (spurious coupling). Since the smoothing effect is
largely specific to MNE assumptions, one may ask whether
coherence would be better estimated by using a different
inverse approach based on different assumptions (e.g., spatial
filters). While this could theoretically be the case, one should
keep inmind that each inversemethod comeswith its own set
of assumptions that are more or less suitable for the detection
of coupled sources. For instance, from a theoretical point of
view, the beamformer approach assumes that the sources are
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not correlated. In practice, beamformers are able to detect
interacting sources if the extent of coupling is sufficiently
weak. To fully tackle the question in the context of our
data, we would need to perform the same simulation study
using other inverse solutions alongside MNE in order to
directly compare performances of the methods using the
same detection metrics. This is part of an ongoing study and
goes beyond the specific scope of the current paperwhich is to
compare the effect of regularization on power and coherence
detections using MNE.

It is noteworthy that our evaluation of coherence detec-
tion was characterized by how accurately the second source
is detected when using the first as a seed point in a brain-wide
coherence analysis. In other words, we do not use the result of
a source localization procedure to identify the seed. Although
this comeswith certain limitations, it also allows us to address
the two questions separately. In addition, corticocortical
coupling is not exclusively performed on sources that show
significant activations in the source localization step. A
selection of a source or a region of interest (ROI) based
on the literature (or on a specific hypothesis) is also used
as a preliminary step to seed-based source-space coupling
analyses. Our results directly apply to such approaches.

Although we explored many source configurations, vary-
ing spatial location, source coupling strength, SNR, and
source size (21,600 simulations in total), our simulations are
of course not exhaustive. For example, it could be of interest
to extend this framework to EEG data, or a combination
of EEG and MEG simulations (here we focused on MEG
since it is more commonly used for source-level connectivity
analysis). In addition, exploring more realistic noise signals
and head models could be beneficial. Furthermore, it could
be of interest to examine the effect of the presence of a third
noninteracting source on our findings. Also, whether the
results would significantly change if other forms ofmin-norm
estimators are used is an open question, although previous
findings suggest that this is quite unlikely [31].

Standard and modified ROC analyses and the associated
AUC metrics have often been used to assess and compare
the performance of different inverse methods to reconstruct
EEG/MEG with simulated neural sources [47, 53, 55–58]. An
alternative approach to comparing detection performance is
the use of precision-recall (PR) curve [59]. This approach, as
well as some of the modified ROC/AUC metrics mentioned
above, can be particularly useful in the case of a heavily imbal-
anced ratio of true positives and true negatives (e.g., [60–
62]). It has been shown that when comparing performances, a
curve that dominates in ROC space will also dominate in PR
space. However, a method that optimizes the area under the
ROC curve is not guaranteed to optimize the area under the
PR curve [63]. In the future, it could therefore be of interest to
extend the current framework to include other performance
metrics such as the PR curve.

Moreover, we restricted our coupling simulations to gen-
erating magnitude squared coherence between two distant
time series. Coherence estimation has known limitations,
such as its sensitivity to field spread effects inMEG [2]. Other
coupling measures can be implemented in our framework
in future studies, but it is important to keep in mind that

we actually generated true magnitude squared coherence
between the sources, and we evaluate the effect of reg-
ularization on our ability to recover this specific type of
coupling from sensor recordings (in comparison to local
spectral power). Likewise, an interesting question for future
research is to evaluate to which extent these results hold in
the presence of more than two coupled sources. In addition,
all the results reported here pertain to the robustness of
detecting absolute coherence and absolute power. It could be
of interest to explicitly test the implications for condition-
based (e.g., task A versus task B) or baseline-based (e.g., task
A versus prestimulus period) comparisons. This being said,
our results readily apply to analysis of ongoing MEG signals,
such as MEG resting-state studies.

5. Conclusions

In this study, we address a simple question that has generally
been overlooked in the field of MEG source reconstruction
using MNE: should one use a different amount of regular-
ization depending on whether one is interested in estimating
local activity or in detecting interareal connectivity? Our
results based on Monte-Carlo simulations (21,600 source
configurations) suggest that optimal results are obtained
when setting separate regularization coefficient, to estimate
the source time series with MNE, for the analysis of power
and coherence. In particular, coherence estimation in source-
space is enhanced by using less regularization than what is
used for spectral power analysis. Furthermore, we found that
SNR and the spatial extent of the source generally have a
stronger impact on lambda selection than coupling strength.
These results provide some practical guidelines for MNE
users and suggest, in particular, that one should regularize
one to two orders of magnitude less when performing
connectivity analysis, compared to local spectral power esti-
mations. Ideally, if one plans to run both power and coupling
analysis based onMNE source estimates, two distinct inverse
operators should be implemented.Whether the phenomenon
observed here may have similar implications or concerns in
the context of other inverse solutions is an interesting topic
for future research.
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Öflund Foundation for financial support. Diego Cosmelli
acknowledges support by FONDECYT Grant no. 1130758.



Computational Intelligence and Neuroscience 9

This research was also undertaken thanks to funding from
the Canada Research Chairs program and a Discovery Grant
(RGPIN-2015-04854) awarded by the Natural Sciences and
Engineering Research Council of Canada to Karim Jerbi.The
authors are also thankful to the computing center of the
National Institute for Nuclear Physics and Particle Physics
(CC-IN2P3-CNRS, Lyon).

References

[1] K. Friston, R. Moran, and A. K. Seth, “Analysing connectivity
with Granger causality and dynamic causal modelling,” Current
Opinion in Neurobiology, vol. 23, no. 2, pp. 172–178, 2013.

[2] J.-M. Schoffelen and J. Gross, “Source connectivity analysis with
MEG and EEG,”Human BrainMapping, vol. 30, no. 6, pp. 1857–
1865, 2009.

[3] J. Gross, S. Baillet, G. R. Barnes et al., “Good practice for
conducting and reporting MEG research,” NeuroImage, vol. 65,
pp. 349–363, 2013.

[4] S. Baillet, J. C.Mosher, and R.M. Leahy, “Electromagnetic brain
mapping,” IEEE Signal Processing Magazine, vol. 18, no. 6, pp.
14–30, 2001.
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