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A critical point in mammalian development is when the early embryo

implants into its mother’s uterus. This event has historically been difficult to

study due to the fact that it occurs within the maternal tissue and therefore

is hidden from view. In this review, we discuss how the mouse embryo is

prepared for implantation and the molecular mechanisms involved in

directing and coordinating this crucial event. Prior to implantation, the

cells of the embryo are specified as precursors of future embryonic and

extra-embryonic lineages. These preimplantation cell fate decisions rely on a

combination of factors including cell polarity, position and cell–cell signalling

and are influenced by the heterogeneity between early embryo cells. At the

point of implantation, signalling events between the embryo and mother,

and between the embryonic and extraembryonic compartments of the

embryo itself, orchestrate a total reorganization of the embryo, coupled with

a burst of cell proliferation. New developments in embryo culture and imaging

techniques have recently revealed the growth and morphogenesis of the

embryo at the time of implantation, leading to a new model for the blastocyst

to egg cylinder transition. In this model, pluripotent cells that will give rise to

the fetus self-organize into a polarized three-dimensional rosette-like structure

that initiates egg cylinder formation.
1. Heterogeneity guides preimplantation cell fate decisions
(a) Regulative development of the preimplantation embryo
Mouse preimplantation development involves the sequential division of the fer-

tilized egg into progressively smaller cells, or blastomeres, over the first four

and a half days of life. This process results in the formation of a hollow ball

of cells, the blastocyst, which is capable of implanting into the maternal uterine

wall and comprises the necessary cell types to give rise to both embryonic

and extraembryonic tissues in later development (figure 1). The blastocyst is

organized into three distinct cell lineages by the time of implantation: the extra-

embryonic trophectoderm (TE) and primitive endoderm (PE), and the

embryonic epiblast (EPI). The specification of these three cell types is achieved

through two ‘cell fate decisions’. In the first cell fate decision, two major waves

of asymmetric cell divisions at the 8- to 16- and 16- to 32-cell transitions and a

minor wave at the 32- to 64-cell transition generate outside and inside cells that

differ in their cellular properties, position within the embryo and their fate

[1–3]. Outside cells will differentiate into TE, the precursor lineage of the pla-

centa. Inside cells form the pluripotent inner cell mass (ICM) and will be further

separated in the second cell fate decision into the differentiating PE that predo-

minantly gives rise to the yolk sac, and the pluripotent EPI that is the precursor

of the future fetus. The correct specification and organization of these different

cell types is essential for development of the embryo beyond implantation, and
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Figure 1. Overview of early mouse development. Embryonic and extraembryonic cells are specified in the preimplantation embryo by two cell fate decisions. In the
first cell fate decision, waves of cell divisions create inside and outside cells. Outside cells give rise to extraembryonic trophectoderm (TE), while inside cells form the
pluripotent inner cell mass (ICM). In the second cell fate decision, cells of the ICM are segregated into the extraembryonic PE and the pluripotent epiblast (EPI) that
will later give rise to all tissues of the body. These fate decisions are influenced but not determined by heterogeneity between individual cells within the embryo
that is established by the 4-cell stage (shown by different shading of cells). At E4.5, the embryo initiates implantation and over the next 24 h invades the maternal
tissues, rapidly proliferates and transforms into an egg cylinder. This new form serves as a foundation for EPI patterning, laying down the body axis and establish-
ment of the germ layers. ExE, extraembryonic ectoderm; PE, primitive endoderm; VE, visceral endoderm.
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how they are specified from a small cluster of seemingly

identical cells is a fundamental question of mammalian

developmental biology.

Understanding how cell fate is specified in the pre-

implantation embryo has been complicated by the flexibility

of early mammalian development. Early experiments manip-

ulating the preimplantation mouse embryo demonstrated

that its development is regulative, that is it can adapt

and compensate for perturbations in the positions and num-

bers of cells. Removing blastomeres, rearranging them or

making chimaeras of more than one embryo can all result

in the formation of a blastocyst, indicating a flexibility

in cell potential until the 32-cell stage [4–7]. This ability

of cells in the embryo to modulate their fate in response to

contextual changes led to the hypothesis that early develop-

ment was driven by entirely random processes, with all

cells equally able to contribute to any lineage [8]. However,

this raises the question—if all cells are the same, how do

they know what to do? The most obvious way in which

cells can be different from each other is their position

within the embryo, with outside cells developing into TE,

surface ICM cells becoming PE and deep ICM cells becom-

ing pluripotent EPI. Position can indeed alter cell fate

[7,9–11] and this position model is attractive in its simplicity.

However, recent discoveries indicate that cell position is not

the only factor involved in controlling cell fate in the mouse

embryo. For example, it was discovered that cell fate can

be altered in the first cell fate decision by modifying the

expression of specific genes, which in turn leads to a

change in cell position [12]. The primary role of position in

the second cell fate decision has also been challenged by

the observation that the precursors of the PE and EPI are

initially mixed within the ICM, before being sorted into

their correct positions by active cell migration and selective

apoptosis [13–15]. These findings demonstrated that position

is not the only factor driving both the first and the second

cell fate decision and suggested that rather than cells becom-

ing different from each other in response to their positions,
they are already biased towards certain fates before they

reach distinct positions.

(b) When do cells first become different from
each other?

Recent advances in technologies that allow the tracking of

individual cells throughout preimplantation development

have provided insights into when these early differences

arise. The first experiments that involved tracking cells

labelled with in vivo markers suggested that blastomeres

are different from each other already at the 2-cell stage. By

non-invasively labelling blastomeres or marking the zona

pellucida after the first cleavage division, it was demon-

strated that both 2-cell stage blastomeres contribute to all

blastocyst lineages, but they are biased towards contributing

more to either an extraembryonic or an embryonic part of the

embryo [16–18]. This view was challenged by reports that

concluded the embryonic/extraembryonic axis of the blasto-

cyst was determined by physical constraints of the embryo

within the zona pellucida rather than any inherent differ-

ences between blastomeres [19,20]. More information on

this subject was provided by the discovery that 4-cell stage

blastomeres differ in their developmental potential depend-

ing both on whether they are daughters of the first or

second-dividing 2-cell blastomere and on their division

orientation with respect to the animal–vegetal axis of the

egg. It was demonstrated that one blastomere that contains

the most vegetal portion of the embryo is biased to give

rise to extraembryonic lineages rather than embryonic ones

[21,22]. The reduced developmental potential of this cell

was found to relate to lower levels of histone H3 methylation

on specific arginine residues, demonstrating for the first time

that 4-cell stage blastomeres differ at an epigenetic level [23].

These results were disputed [19,24] but a recent genetic

lineage tracing study using Rainbow mice confirms a signifi-

cant lineage bias being initiated at the 4-cell stage [25].

In addition, several studies have identified heterogeneous
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expression or activity of specific genes in 4-cell stage blasto-

meres [26,27], providing further evidence that individual

cells are different from each other already at this early devel-

opmental stage. Studies tracking the fate of individual cells

have begun to uncover how these early differences might

influence cell fate decisions.
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(c) Heterogeneity and cell fate
The first molecular difference to be identified between cells at

the 4-cell stage was differences in the levels of arginine

methylation of histone H3, specifically R26 and 17. This

methylation was found to be highest in cells destined to con-

tribute to the ICM and lowest in the cells that will give rise to

the TE. In agreement with this, high H3 methylation levels

correlates with increased expression of Nanog and Sox2

[23]. The cells biased towards contributing to extraembryonic

lineages preferentially divide symmetrically and thereby

avoid contributing to the ICM [28]. A clue to how division

orientation could be influenced by the developmental history

of cells came from the observation that at the 8-cell stage

some cells express higher levels of the TE-specific transcrip-

tion factor Cdx2 [29–31]. Tracing the history of these cells

revealed that they are derived from the vegetal 4-cell blasto-

mere known to be biased towards an extraembryonic fate

[31]. Consistently, up- or downregulating Cdx2 expression

level affects division orientation, most likely by influencing

the apical–basal polarity of the cell [31]. In this way, the het-

erogeneity of cells in the embryo provides a mechanism by

which blastomeres can be influenced when undertaking the

first cell fate decision.

Heterogeneity between cells also influences the second

cell fate decision. In the early embryonic day (E) 3.5 blasto-

cyst, ICM cells express markers of the PE (Gata6) and EPI

(Nanog) in a mosaic ‘salt and pepper’-like distribution,

with this early gene expression pattern identifying the pre-

cursors of each lineage [13,15,29]. Without this coordinated

expression of Gata6 and Nanog in the ICM, correct speci-

fication of the PE and EPI fails [13,32]. Whether this

heterogeneity results from stochastic fluctuations in gene

expression or whether ICM cells are different from each

other due to their developmental history has only recently

been possible to address. Several independent studies

demonstrated that the fate of ICM cells is biased by the

timing of cell internalization, with inside cells generated ear-

lier more likely to contribute to EPI and those arriving inside

later biased to form PE [2,33,34]. By generating the ICM in

sequential waves of asymmetric divisions, the embryo has

an in-built mechanism for creating a heterogeneous ICM

cell population. This bias relates to the reciprocal expression

of fibroblast growth factor (Fgf)4 ligand and Fgf receptor

(Fgfr)2 in the precursors of the EPI and PE respectively,

with cells internalized earlier upregulating Fgf4 and those

internalized later expressing higher levels of Fgfr2 [33,35].

Single-cell RNA sequencing of isolated ICM cells confirmed

differential expression of Fgf ligands and receptors to be a

feature of the ICM prior to the ‘salt and pepper’ expression

of Gata6 and Nanog and highlighted the importance of

heterogeneity within the ICM for the establishment of two

different cell fates [8]. The importance of this internaliz-

ation-time bias depends on the ICM composition, having

the greatest influence when both waves of asymmetric div-

isions contribute equally to the ICM, most likely due to the
ratio of cells expressing Fgf4 and Fgfr2 in the embryo [33,35].

This context-dependent bias demonstrates how position, signal-

ling and inherent heterogeneities all influence cell fate decisions.

Heterogeneity therefore provides biases that guide, but do

not determine, cell fate decisions thus allowing flexibility. Strik-

ingly, without this heterogeneity, the developmental potential

of embryos can be compromised, as seen in chimaeras generated

from ‘like’ 4-cell stage blastomeres [21,36].
2. The molecular basis of preimplantation cell
fate specification

(a) Transcriptional identities of the trophectoderm
and inner cell mass

Several transcription factors identified as important for ICM

specification, such as Oct4 [37], Nanog [38] and Sox2 [39],

are initially expressed in all cells of the morula, with their

expression gradually becoming restricted to the ICM. By con-

trast, the transcription factors important for TE specification

are restricted earlier, at the 8- to 16-cell transition. These mar-

kers include Cdx2 [40,41], Eomes [42] and Gata3 [43]. The TE

and ICM identities are incompatible with each other and

indeed Cdx2 and Oct4 reciprocally inhibit each other [41].

One of the important functions of the TE is the formation

of the blastocyst cavity, the location of which determines the

embryonic–abembryonic axis of the embryo. As the TE

matures, it forms a polarized epithelium with intercellular

junctions creating a permeability seal between the cells that

allows for cavity expansion [44–47]. The initiation of cavity

formation does not depend upon cell number but rather the

formation of these junctions [48,49], and the cavity typically

forms in regions where the outside cells are daughters of

symmetric 16- to 32-cell divisions [28]. Cavitation is initiated

around the 32-cell stage by diffusion of water across osmotic

gradients and the transport of water through aquaporins on

the apical and basolateral sides of TE cells [50,51]. The

exact regulation of this process still remains unknown.

To understand cell fate specification, it is critical to deter-

mine how the reciprocity in the expression pattern between

TE and ICM markers is first established. Activation of the

TE fate programme in outside cells is regulated by the tran-

scription factor Tead4, depletion of which leads to the

earliest thus far reported embryonic lethal TE phenotype

[52,53]. Although elimination of Tead4 does not affect

either cell adhesion or polarization, expression of the TE

transcription network is compromised and expression of

Oct4 in outside cells is maintained [52,53]. Highly homolo-

gous family members Tead1 and Tead2 (but not Tead3) are

also expressed during preimplantation stages, but do not

appear to have a role before implantation [54,55], indicating

that Tead4 is a non-redundant master regulator of the TE

fate. This importance of Tead4 led to an expectation that its

expression would be restricted to TE progenitors, however

it was found to be expressed constitutively in not only outside

but also inside cells of the blastocyst [53]. A further layer of

regulation must therefore activate Tead4 selectively in TE pro-

genitors. In the preimplantation embryo, Tead4 activity

requires the two homologous transcriptional co-activators

Yap and Taz, which are regulated by the core Hippo signall-

ing pathway kinase Lats1/2 [56]. An active Hippo pathway

prevents Yap and Taz from reaching the nucleus and,
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consequently, Tead4 activity is switched off and its target genes

silenced. Yap and Taz are also expressed uniformly in the

embryo but have distinct intracellular distribution: they are

nuclear in outside cells, where Tead4 is active and the TE pro-

gramme is activated, and cytoplasmic in inside cells, where

Tead4 is inactive resulting in an ICM programme. Neither

Yap nor Taz alone are essential for preimplantation develop-

ment [57–59], but Yap2/2; Taz2/2 double mutants die

before the 16- to 32-cell stage [56], resembling the Tead42/2

phenotype. As expected Lats12/2; Lats22/2 double mutant

embryos have increased nuclear Yap and express Cdx2 in

inside cells [56]. The differential localization of Yap and Taz

in inside and outside cells is therefore critical for the activation

of specific transcriptional programmes in the first cell fate

decision. The activation of the TE fate programme in outside

cells is reinforced by a positive feedback loop in which the

expression of Cdx2 inhibits the expression of pluripotency

genes and positively regulates its own expression [41]. Inside

cells are at least partially protected from the activation of this

programme by the exclusion of Cdx2 mRNA from inside

daughter cells of asymmetric cell divisions [60]. This asym-

metric inheritance of Cdx2 transcripts has been shown to be

dependent upon the apical localization of Cdx2 mRNA as

the 8-cell stage blastomeres develop apical–basal polarity. Dis-

ruption of this mRNA localization leads to expression of Cdx2

in inside cells and a reduction in the number of pluripotent EPI

cells [60], which compromises developmental potential [36].

Together, these findings highlight the importance of creating

cells with different positional identities for the generation of

separate embryonic and extraembryonic lineages. A key ques-

tion remaining, however, is how positional information is

connected to the differential localization of Hippo pathway

components in inside and outside cells.

(b) Polarity translates positional cues into molecular
differences

An intrinsic difference between inside and outside cells is

cell–cell contact. At the 8-cell stage, all cells are positionally

equivalent. The embryo then undergoes compaction, in

which the blastomeres adhere tightly to each other, and the

cells become polarized along their apical–basal axis. When

inside cells are generated, they lose polarization and encoun-

ter uniform cell–cell contacts. By contrast, outside cells

remain polarized and have asymmetric cell–cell contacts,

with an apical domain forming at the bare patch of mem-

brane that is not in contact with neighbouring cells. Apical

polarity factors such as Par3 and atypical protein kinase C

(aPKC) accumulate at this apical domain and interference

with components of the Par complex has been shown to

affect both cell position and cell fate [12,61]. This discovery,

combined with the observation that polarity and cell adhesion

are not affected in Tead42/2 embryos [53], indicates that the

apical polarity complex is upstream of the TE fate programme.

The basolateral domain, where cells are in direct contact with

each other, contains adherens junctions (AJs) that mediate cell

adhesion via E-cadherin. In E-cadherin mutants, cell adhesion

is compromised and the apical domain extends over the

entire cell [62]. Embryos lacking both maternal and zygotic E-

cadherin have more Cdx2-positive cells, suggesting that when

all cells of the embryo are polarized, the majority will take on

a TE fate. Indeed, in these E-cadherin maternal/zygotic

mutant embryos, cells with membrane-enriched aPKC show
nuclear localization of Yap and express Cdx2, independent of

their position within the embryo [62]. This implies that the

establishment of apical polarity is dominant over cell position in

cell fate. Similarly, the asymmetric cell–cell contact of isolated

ICMs leads to polarization [62] and TE cells are regenerated

[11,63], demonstrating that ICM cells retain plasticity and can

change their fate in response to new positional information.

Cell–cell contact can therefore be viewed as an inhibitor of

apical domain formation and the internalization of cells by

asymmetric divisions as a mechanism by which embryonic

cells can be protected from differentiation cues. If part of the

membrane loses cell–cell contact, as is the case in outside

cells, an apical domain is established, leading to the activation

of a dominant TE fate programme.

But what is the connection between the Hippo pathway and

polarity? Recent studies have identified angiomotin (Amot) as a

missing link. Amot and angiomotin-like 2 (Amotl2) are homo-

logous membrane-associated Hippo pathway components

that are differentially localized in inside and outside cells: in

inside cells Amot is present throughout the membrane, whereas

in outside cells its localization is apical [61,64]. It has been dis-

covered that loss of Amot leads to nuclear localization of Yap

and, consequently, expression of TE markers in the ICM [64].

This reduces embryo viability during peri-implantation devel-

opment, particularly when both Amot and Amotl2 are

depleted together, indicating that Amot, like Lats1/2, is

required to suppress the TE programme in the ICM. Amot is

an activator of Lats2 [65] and consequently can activate the

Hippo pathway in the embryo [61]. However, Amot has also

been shown to be able to sequester a Hippo pathway-insensitive

Taz mutant, indicating that Amot can also inhibit Yap/Taz

activity by physical tethering [66]. In agreement with this possi-

bility, overexpression of Amot can compensate for the loss

of Lats1/2 in the embryo [64]. Because endogenous levels of

Amot do not seem able to suppress the TE programme

in Lats12/2; Lats22/2 mutants [49], this Hippo-independent

action of Amot is unlikely to be dominant. Interestingly, Amot

itself can be phosphorylated by Lats2, which is required for

the activation of the Hippo pathway [61] and could represent

a positive feedback loop between Amot and Lats. As Amot

has a polarized distribution in outside cells, it was hypothesized

that apical polarity determinants may inhibit Amot, allowing

for the TE cell fate. Indeed, PKCl and Par6 are required to

anchor Amot to the apical domain in outside cells [61], and in

their absence Amot distributes uniformly across the membrane

and Yap becomes phosphorylated. Amot is likely to be tethered

to AJs via interaction with Nf2, a Hippo pathway component

[67,68]. Although localization of Nf2 is not polarized in outside

cells, loss of Nf2 phenocopies Amot2/2 and Lats2/2 with

accumulation of Yap in the nucleus of ICM cells and expression

of TE markers [69]. As exogenous Lats2 can rescue the loss of

Nf2 phenotype, Nf2 seemsto be upstream of Lats [69]. However,

overexpression of either Nf2 or Amot does not suppress the TE

programme in outside cells, unlike overexpression of Lats2

[64,69]. This indicates that high levels of Nf2 or Amot cannot

overcome the inhibition posed by apical polarity factors and

that this does not apply to Lats. Moreover, outside cells actively

degrade Amot, which does not occur in inside cells [64]. Thus,

multiple regulatory factors in outside cells are involved in regu-

lating Cdx2 expression to establish the TE fate programme in the

mouse embryo.

These findings lead us to propose a model of how the TE

and ICM are specified in a compact embryo containing outside
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and inside cells (figure 2). On the surface of the embryo, asym-

metric cell–cell contact leads to the establishment of an apical

domain, characterized by the Par3/Par6/aPKC complex. In the

presence of apical polarity, the TE fate suppressors Amot and

Lats are anchored to the apical domain and their activities

are inhibited. Yap and Taz are allowed to enter the nucleus

to activate Tead4 target genes, such as Cdx2, and consequently

the TE fate programme is switched on. In the centre of the

embryo, uniform cell–cell contact prevents the establishment

of an apical domain in inside cells. This allows Amot and Lats

to interact with AJs, probably through Nf2, and become acti-

vated. Yap and Taz are retained in the cytoplasm and Tead4

remains switched off. In the absence of Tead4 activity, the

cells continue to express ICM markers and take on an ICM

fate. In this way, the separation of two distinct cell populations

that differ in both position and polarity allows for differential

gene regulation and the specification of two different cell fates.

(c) Segregation of the inner cell mass into embryonic
epiblast and primitive endoderm

Traditionally, the segregation of the TE versus the ICM and

the PE versus the EPI have been regarded as two separate
cell fate decisions, however it is becoming clear that they

are not independent. Precursors of the PE and EPI can be

identified in the ICM by E3.5 when they start to activate

unique transcriptional programmes [13,70]. EPI cells express

pluripotency genes such as Nanog [38,71] and Sox2 [39],

while PE cells activate an endodermal transcriptional net-

work characterized by the expression of Gata6 [72], Gata4

[72], platelet-derived growth factor receptor alpha [15],

Sox17 [73] and Sox7 [74]. The precursor cells are then

sorted into the correct position for each lineage by a combi-

nation of active cell migration, positional induction and

programmed cell death of incorrectly positioned cells

[14,15]. By E4.5, the EPI occupies the deeper ICM compart-

ment and PE cells line the surface of the ICM next to the

blastocyst cavity. Nanog is the first gene to be specifically

expressed in EPI cells and without its expression, the EPI

fails to develop [75]. These Nanog2/2 embryos were also

found to lack PE, suggesting that a signal provided by EPI pre-

cursor cells is critical to promote PE development. Fgf

signalling has been uncovered as essential for PE fate specifica-

tion [32,34]. EPI precursor cells in the early ICM upregulate

expression of Fgf4, which is important for maintaining

the PE fate programme in PE precursor cells, most likely by



wave 1 asymmetric divisions

wave 1
inner cell

wave 2
inner cell

Fgf4

Fgf4

Fgfr2

MAPK

GATA6NANOG

PE progenitorEPI progenitor

GATA6NANOG

NANOG

cell division cell movement apoptosis

GATA6

EPI PE

Fgfr2

wave 2 asymmetric divisions

8–16-cell
stage

16–32-cell
stage

32–64-cell
stage

100–120-cell
stage

Figure 3. Specification of the EPI and PE. ICM cells internalized in the first
wave of asymmetric cell divisions upregulate Fgf4, while cells internalized in
the second wave express higher levels of Fgfr2, possibly by inheriting this
transcription factor from their outside 16-cell stage mother cells. Fgf signal-

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130538

6
inhibiting the repression of Gata6 expression by Nanog [32,76].

As well as Nanog, Oct4, expressed throughout the ICM, is

required for the expression of Fgf4 in EPI precursor cells and

also for a newly discovered cell-autonomous role in the acti-

vation of PE gene expression [77]. The levels of Fgf signalling

within the ICM are therefore critical for creating the correct

balance of EPI and PE precursor cells (figure 3).

The generation of a mature ICM containing the appropri-

ate number of EPI and PE cells is crucial for subsequent

development. It has been recently demonstrated that despite

the regulative ability of the preimplantation embryo, a mini-

mum of four EPI cells has to be established by E4.5 for

development to successfully progress beyond implantation

[36]. Thus, the plasticity of ICM cells provides back-up mech-

anisms for maintaining this critical balance of ICM cell fate

specification. The number of inside cells generated by each

wave of asymmetric cell divisions is regulated such that

each embryo will end up with roughly the same number of

ICM cells: those with few cells internalized in the first wave

will have more internalized in the second wave, and vice

versa [2]. As cells internalized early switch on Fgf4, while

those internalized later inherit higher levels of Fgfr2 from

their outside parents [33,35], the amounts of Fgf ligand and

receptor in the ICM is therefore modulated by the specific

number of ICM cells generated in each wave. In embryos

with few wave-one-derived inside cells, the levels of Fgf sig-

nalling are low resulting in only those wave-two-generated

cells expressing high Fgfr2 forming PE. In embryos with

many wave-one-derived inside cells, there is a high level of

Fgf4 in the ICM which promotes the PE development of

some wave-one-derived cells with lower levels of Fgfr2. In

this way, the balance of EPI and PE remains the same regard-

less of the initial ICM composition. Interestingly, EPI

precursors seem to have a more restricted cell fate potential

than PE precursors [78]. It has been suggested that ICM

cells internalized later in development inherit a greater flexi-

bility and an increased ability to respond to differentiation

cues than those internalized earlier due to exposure to the

TE fate programme in outside cells [35]. In agreement with

this flexibility, PE cells have been shown to not only contrib-

ute to extraembryonic lineages but also to some embryonic

tissues after implantation [79]. These findings demonstrate

the close relationship between the first two cell fate decisions

and how the embryo is prepared for implantation through

the concerted effects of gene expression, cell position, cell

polarity and signalling on a highly flexible cell population.

ling in wave two cells inhibits the repression of Gata6 expression by Nanog,
biasing these cells towards the PE lineage.
3. Pre- to postimplantation transition: from
blastocyst to egg cylinder

(a) Blastocyst implantation
When all three preimplantation cell lineages have been

segregated, the blastocyst enters the uterus and hatches out

of the zona pellucida. This process is a natural selection

checkpoint as it permits the developmental progress only of

embryos that are able to hatch. Within the next hours, the

hatched blastocyst invades the maternal tissues and implants.

Ovarian oestrogen and progesterone synchronize the timing

of uterine receptivity with embryo development to ensure

successful implantation and the level of oestrogen deter-

mines the duration of the implantation window within
which the implantation process can occur [80]. The process

of implantation can be divided into three phases: apposition,

attachment and penetration. During the apposition phase, the

diameter of the uterine lumen becomes reduced to position

the floating embryo close to the luminal epithelium (LE).

The first contact between the embryo and the mother is

mediated by interdigitation of TE and LE microvilli, but

this is insufficient for stable attachment. An anti-adhesive

glycoprotein layer of mucins covers the uterine surface and

serves as a barrier against pathogens. At the time of uterine

receptivity, this layer is removed under the control of

maternal hormones and actively by the embryo [81,82].

Only then does the combined effect of a variety of adhesion
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Figure 4. Implantation and signalling during egg cylinder formation. (a) After hatching, blastocyst adheres to the LE and invades the stroma at the antimesometrial
site of the uterus. In response, the stromal cells differentiate into decidual cells that regulate trophoblast invasion, enable nutrients and gas exchange and ensure
fetomaternal immune tolerance. In the next 24 h, the decidua rapidly proliferates to support embryo development into the egg cylinder and beyond. (b) The EPI
cells secrete Fgf4 ligand that binds to Fgfr2 in the ExE in a paracrine manner. Active Fgfr2 signalling promotes Cdx2 and Eomes expression and inhibits genes
associated with TS cell differentiation such as Mash2. Nodal produced in the EPI promotes ExE maintenance directly by activating core TS cell genes and indirectly
by sustaining Fgf4 expression. In turn, ExE potentiates Nodal activity by secreting furin and PACE4 proteases that cleave out the Nodal propeptide to generate a
mature ligand with higher activity.
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systems such as integrins and cadherins at the interface

between the TE and LE mediate stable attachment of the

embryo [83,84]. This direct contact induces apoptosis of LE

at the site of attachment, allowing penetration of the TE

into the endometrial stroma [85,86]. The embryo inva-

des the antimesometrial site of the uterus with the ICM

oriented towards the mesometrial pole (figure 4a). The sur-

rounding stromal cells proliferate and differentiate into

polyploid decidual cells [87] and the decidua supports the

development of the embryo by enabling nutrients and gas

exchange, ensuring fetomaternal immune tolerance by restrict-

ing the entry of cells of the immune system and regulating TE

invasion [88,89].

In mouse, the mural TE (that surrounds the blastocyst

cavity) makes the first contact with maternal tissues and sub-

sequently differentiates into primary TE giant cells (TGCs).

This is the first terminally differentiated cell type generated

during prenatal development. Leading implantation, TGCs

invade the uterine stroma and secrete factors such as pro-

gesterone and type I interferon that promote decidual cell

differentiation [90,91]. Local vasculature remodelling and
angiogenesis are induced at the implantation site by TGC

subtypes to mediate nutrient, waste and gas exchange

between the growing embryo and the mother [92]. In contrast

to the terminal differentiation fate of the mural TE cells, the

polar TE, which surrounds the outer surface of the ICM, is

the source of multipotent progenitors—the TE stem (TS)

cells. Following implantation, the polar TE proliferates and

differentiates into the extraembryonic ectoderm (ExE) and

ectoplacental cone (EPC) that build the proximal half of

the egg cylinder, and later the placenta. TE differentiation

depends on the T-box transcription factor Eomes, which

functions downstream of Cdx2 in the TE fate programme.

Accordingly, Eomes inactivation results in failure of the TE

differentiation programme and developmental arrest at E4.5

[40,42]. After implantation, a self-renewing TS cell population

is maintained in the ExE compartment that provides progeni-

tors to the EPC. The maintenance of this stem cell pool in the

ExE depends on expression of Elf5 that is in a positive feedback

loop with Cdx2 and Eomes. In the absence of Elf5, Cdx2 and

Eomes are shut down, leading to rapid depletion of the multi-

potent TE cells and loss of ExE by E5.5 [93,94]. Ets2 promotes
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the Elf5/Cdx2/Eomes expression circuit within the ExE.

Accordingly, Ets2 knockout embryos implant but show

severely reduced development of the TE lineages [95,96].
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(b) Initiation of proliferation following implantation
While during preimplantation development cleavage div-

isions generate progressively smaller blastomeres with

constant total volume, following implantation a burst of cell

proliferation initiates growth. This growth results in the

expansion of embryonic and extraembryonic lineages into

the blastocyst cavity around E5.0. At the same time, motile

parietal endoderm cells come to line the internal surface of

the mural TE, sandwiching a basement membrane layer

(Reichert’s membrane). Visceral endoderm cells derived

from the PE cover both the EPI and ExE compartments of

the elongating egg cylinder. As a result of this growth and

reorganization, the embryo adopts a new shape within just

24 h following the initiation of implantation. Several signal-

ling pathways have been uncovered as essential for the

growth and survival of the embryo following implantation.

The mammalian target of rapamycin (mTOR) regulates cell

growth by integrating upstream signals of growth factors

and amino acids. Cell proliferation is severely affected in all

lineages of mTOR knockout embryos and they fail to pro-

gress beyond E5.5 [97,98]. Growth factors such as Igf and

insulin promote cell growth by activating mTOR, through

the PI3K/Akt pathway [99]. Genetic ablation of the p110b

regulatory subunit, essential for the activity of the class IA

PI3K, results in lethality during late pre- and early post-

implantation stages [100]. Severe growth retardation and

substantially reduced mTOR activity are observed in class 3

PI3K (PI3KC3) knockout embryos that die shortly after

implantation [101]. In vitro, embryonic stem (ES) cell-specific

Ras-like protein ERas activates PI3K to sustain ES cell pro-

liferation. Upon xenotransplantation, ERas functions as an

oncogene essential for the tumourigenic potential of ES

cells [102]. Targeted disruptions of an array of genes associ-

ated with cancer in adult tissues result in early embryonic

lethality, indicating an importance of genome integrity and

cell survival during early embryogenesis. For example, loss

of Brca1 and Brca2, associated with breast and ovarian can-

cers, leads to death at early postimplantation stages due to

inhibited cell proliferation [103–107].

Egg cylinder growth, organization and primitive streak

formation to initiate gastrulation require ActRIB (activin

type I), ActRIIA and ActRIIB (activin type II) receptor sig-

nalling [108,109]. Several TGFb family ligands, such as

Activin, Nodal and the mammalian Vg1 homologues

GDF1 and 3, can bind these receptors. The activated recep-

tors phosphorylate Smad2/3 that complex with Smad4

and translocate into the nucleus to activate target gene

expression [110,111]. Smad2/3 and 4 are ubiquitously

expressed and function as tumour suppressors in adult tis-

sues [112]. The disruption of Smad2 or Smad4 causes

defects in egg cylinder elongation and mesoderm induction

[113,114]. Bone morphogenetic protein (BMP) ligands, such

as BMP4, activate another branch of TGFb signalling through

the Smad1/5/8 pathway. BMP4 signalling is critical for EPI

proliferation, mesoderm formation and induction of primor-

dial germ cell fate [115,116]. The rapid proliferation and

organization of embryonic and extraembryonic tissues follow-

ing implantation is therefore regulated by the coordinated
activity of multiple signalling pathways and extensive crosstalk

between different cell types.
(c) Development of the trophoblast
TS cells can be derived in culture from polar TE or ExE

explants up to E8.5 [117,118]. TS cell proliferation and self-

renewal in vitro requires the presence of Fgf4 and embryonic

fibroblast conditioned medium [117]. Activin or TGFb can

replace the conditioned medium, although these factors are

dispensable for the maintenance of the TS cell population

in the embryo [119]. In vivo Fgf4 and Nodal signalling cross-

talk between the ExE and the EPI enables the synchronous

development of the egg cylinder (figure 4b). EPI cells produce

Fgf4 that binds to Fgfr2 on the surface of the TE cells; loss

of key components of the Fgf signalling pathway results in

peri-implantation lethality due to failures not only in PE spe-

cification but also in TE maintenance [13,120–123]. Fgfr2

signalling controls TE cell survival through the downstream

Shp2 phosphatase that triggers the Sfk/Ras/Erk signalling

cascade. Erk1/2 kinases phosphorylate and target for degra-

dation the pro-apoptotic protein Bim and a failure to activate

Erk in Shp2 knockout embryos results in peri-implantation

lethality and TS cell death in vitro even in the presence of

Fgf4 [124]. Expression of genes essential for the maintenance

of multipotent TE progenitors is also dependent on Fgf sig-

nalling. For example, the membrane-linked docking protein

Frs2a is phosphorylated in response to Fgf4 stimulation of

Fgfr2 that activates the downstream Erk cascade and promo-

tes Cdx2 expression. Cdx2 in turn binds to the responsive

enhancer element of the Bmp4 promoter and upregulates

Bmp4 expression [125,126]. Bmp4 produced in the ExE has

been reported to act as a paracrine factor essential for

proper EPI development after implantation [116]. Thus,

Fgf4 signals transmitted between the distal and proximal

parts of the egg cylinder cross-regulate directly and indirectly

the maintenance and differentiation of the embryonic and

extraembryonic lineages.

Fgf4 expression in the EPI is maintained by Nodal, a

member of the TGFb ligand superfamily that binds to type

I and type II receptor dimers that, in turn, activate the down-

stream Smad2/Smad3 signalling cascade [111]. Nodal is

secreted from EPI cells as a propeptide that is proteolytically

processed extracellularly by proteases secreted by the ExE:

furin (SPC1) and PACE4 (SPC4) [127]. Thus, while matu-

ration of Nodal is under ExE control, Nodal signalling

promotes ExE maintenance indirectly by sustaining Fgf4

expression in the EPI that, in turn, activates Fgfr2 signalling

in the ExE. This results in the sustained expression of TS

cell markers such as Cdx2, Eomes and Err2 and suppression

of differentiation markers such as the paternally imprinted

gene Mash2. Nodal also acts directly on the ExE in a paracrine

manner, alongside Fgf4, to maintain the self-renewing popu-

lation of TS cells. Accordingly, loss of Nodal or its

convertases furin and PACE4 drives differentiation of the

ExE towards an EPC fate [128].

The stem cell pool of the ExE contributes to the EPC that

later gives rise to the spongiotrophoblast and secondary

TGCs [129,130]. The basic helix-loop-helix (bHLH) transcrip-

tion factor Mash2 regulates TGC differentiation in the EPC

[131–133]. In TS cells, Mash2 is upregulated by nuclear Sp1

that binds a consensus Sp1 binding motif in the Mash2 pro-

moter. Activation of the PI3K/Akt pathway by TSSC3 leads
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to Sp1 nuclear translocation and Mash2 upregulation [134].

TGC differentiation requires Mash2 silencing by the poly-

comb group protein Eed and therefore ablation of Eed leads

to permanent expression of Mash2 in the EPC and, conse-

quently, reduced differentiation into secondary TGCs [135].

Low numbers of TGCs are also found in embryos deficient

for the bHLH repressor I-mfa, proposed to inhibit Mash2

by preventing nuclear import and DNA binding [136].

Other bHLH transcription factors, such as Hand1 and

Stra13, can override the inhibitory effects of Fgf4 signalling

in TS cells and directly promote TGC differentiation [137].
Phil.Trans.R.Soc.B
369:20130538
(d) Epiblast morphogenesis
A global reorganization of the EPI during the peri-implan-

tation stages reshapes it from a compact ball of non-

polarized cells into a cup-shaped polarized epithelium sur-

rounding the pro-amniotic cavity. The emergence of this

new organization of the pluripotent EPI provides the foun-

dation for patterning and specification of the germ lineages

that build the embryo proper. There are two major paths

that can be followed to establish luminal space: hollowing

and cavitation. In the process of cavitation, programmed

cell death eliminates the inner cells of a solid cohort, generat-

ing an empty space. Hollowing, in contrast, does not require

apoptosis but organized radial polarization and separation of

apical membranes to form a central lumen [138,139]. Embry-

oid bodies (EBs) have been commonly used as an accessible

in vitro model that recapitulates many aspects of embryonic

development. Studies of aggregates of ES cells or embryo-

nic carcinoma cells grown in suspension indicated that

apoptosis of the cells in the core of EBs is required for

cavity formation [140] with BMP and Rac1 signalling pro-

posed to promote the elimination of inside cells and the

survival of cells contacting the basement membrane, respect-

ively [141,142]. Although EBs are a valuable in vitro model,

they lack proper embryonic organization and therefore may

not be able to recapitulate the physiological processes that

occur in vivo. For example, EBs and embryos differ in their

initial cell number. While EBs contain a few hundreds

of cells on the first day of culture, the EPI of the implanting

blastocyst consists of only 8–16 cells [36,143]. The second

difference is timing. While cavitation and the establishment

of polarized epithelium in EBs is a slow process that takes

several days, the blastocyst to egg cylinder transition occurs

in vivo within a 24 h period beginning at E4.5 [144]. Thus,

the large number of slowly polarizing cells in the EBs

may induce apoptotic-mediated cavitation, as indeed is obser-

ved in high-density culture of MDCK cells in the absence of

strong polarization cues. By contrast, low-density MDCK cells

efficiently polarize and form lumens within 2 days through

a process of hollowing that does not require cell death. There-

fore, cells can use different mechanisms for lumen formation

depending on the polarization efficiency [145].

With an aim to understand how the EPI is reorganized

during peri-implantation stages, we have established an

in vitro environment that supports development from the

preimplantation blastocyst to the postimplantation egg

cylinder stage [146]. This has allowed us to reveal the mor-

phogenetic steps taken by the embryo at its pre- to post-

implantation transition [147]. Using a cell death reporter

and genetic and pharmacological approaches to inhibit cell

death, we have found that apoptosis is not required for EPI
morphogenesis and pro-amniotic cavity generation. More-

over, there are no signs of cell death in the region where

the cavity would form in either peri-implantation embryos

cultured in vitro or recovered from mothers. To reveal any

alternative mechanism for cavity formation, we followed

the organization of EPI cells at the time of pre- to post-

implantation transition [147]. This revealed that the EPI

becomes reorganized from a ball of unpolarized cells into a

highly organized rosette-like structure at the time of implan-

tation, a process involving drastic changes in cell shape and

polarization (figure 5). This reorganization appears to be a

result of apical constriction mediated by contraction of the

actomyosin network linked to AJs. As cells acquire a polar-

ized epithelial morphology, actin filaments accumulate

apically and the Golgi apparatus and nucleus localize sub-

apically and basally, respectively. As development pro-

gresses, a single lumen emerges in the centre of the rosette

[140]. Lumen formation is likely to be a result of membrane

separation through charge repulsion as the apical domains

facing the lumen express the highly negatively charged sialo-

mucin podocalyxin (PCX) involved in lumen formation in

glomerular and MDCK cells [148,149]. Thus, formation of a

polarized rosette is the first morphogenetic step that reshapes

the EPI during implantation and serves to provide a foun-

dation for the emerging egg cylinder.

But what triggers the self-organization of EPI cells into a

highly polarized rosette? Our results indicate that this is

mediated by extracellular matrix (ECM) signalling through

integrin receptors to direct cell polarization [147]. ECM pro-

teins, such as laminin secreted by the PE and TE, assemble

a basement membrane that envelopes the EPI of the implant-

ing blastocyst. The function of this basement membrane can

be mimicked in vitro by embedding ICMs in matrigel, leading

to the formation of polarized EPI-like structures with a cen-

tral lumen. The basement membrane therefore could be

seen as creating a niche that provides polarization cues to

the maturing EPI [147]. This is consistent with laminin and

integrin functions in the early embryo as elimination of the

laminin-g1 subunit leads to a failure to assemble the base-

ment membrane, resulting in peri-implantation lethality

[150], and elimination of b1-integrin receptor leads to EPI

defect following implantation [151,152]. Strikingly, it appears

that the process of EPI morphogenesis can be mimicked in
vitro by embedding small clumps of ES cells into three-

dimensional ECM gels. The ECM proteins trigger polariz-

ation and lumenogenesis through b1-integrin receptors and,

as in the peri-implantation EPI, the cells change shape and

constrict apically within the centre of the ES cell sphere. A

single PCX-coated lumen emerges in the centre of the radially

arranged cells, resembling the morphogenesis following

implantation [147].

Overall, the discovery of the self-organizing properties of

pluripotent EPI cells leads to a new model of the morpho-

genetic steps of the blastocyst to egg cylinder transition

(figure 5). It proposes that prior to implantation (E4.5), the

extraembryonic lineages of the late blastocyst consist of polar-

ized epithelial cells that secrete ECM proteins, which

assemble a basement membrane that wraps around the EPI.

This basement membrane creates a niche where ECM com-

ponents are sensed by integrin receptors on the surface of

the EPI. The niche provides polarization cues that orient the

apical–basal axis of the EPI cells. Actomyosin constriction

and accumulation of apical determinants of the Par complex
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Figure 5. Model of peri-implantation morphogenesis. Following preimplantation lineage segregation (E3.5 – E4.5), the extraembryonic lineages start secreting ECM
proteins that assemble a basal membrane that wraps around the EPI and provides polarization cues through integrin receptors. During the peri-implantation period
(late E4.5 – E5.0), the pluripotent EPI cells establish apical – basal polarity, change shape and constrict apically while clustering to form a rosette. A central lumen
emerges in the centre of the rosette through hollowing of apical membranes by charge repulsion (E5.0 – E5.25). As the egg cylinder elongates the lumen enlarges
and incorporates intramembranous spaces of the proximal ExE to form the mature pro-amniotic cavity (E5.5 – E5.75).
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reorganize the EPI into a radially polarized rosette-like struc-

ture (E4.75–E5.0). Among other proteins, anti-adhesive

molecules such as PCX are delivered to the apical surfaces

in the centre of the rosette and, as a result, membrane repul-

sion leads to hollowing and a central lumen emerges. A

similar process of polarization and hollowing is likely to

occur in the ExE with both lumens then merging to form

the mature pro-amniotic cavity (E5.5–E5.75). The lumen

enlarges as the egg cylinder elongates and active processes

of exocytosis and pumping can also potentiate accumulation

of fluid leading to pro-amniotic cavity expansion. As the egg

cylinder enlarges, the basement membrane separating the EPI

and the ExE is no longer maintained. Thus, the basement

membrane resembles a basket, structurally linked to the EPI

cells through integrin-mediated contacts, acting as a mould

to direct the shape of the EPI, transforming it from a
symmetric hollowed sphere into a cup, building the distal

part of the mature egg cylinder.
(e) Concluding remarks
Implantation is a unique property of mammalian embryo

development and the morphogenetic processes driving the

pre- to postimplantation transition have only recently begun

to be understood. As imaging of developmental dynamics

and individual cell-tracking techniques improve, so does our

understanding of how the early embryo prepares the necessary

cell types for implantation and then transforms itself to initiate

development of the embryo proper.
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