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Catecholamines and cognition after traumatic
brain injury

Peter O. Jenkins,1 Mitul A. Mehta2 and David J. Sharp1

Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries

sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying

pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory

neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we

discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of cate-

cholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable,

a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and

cognitive functions. This individual variability means that measuring the structure and function of a person’s catecholaminergic

systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to

identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures

of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain

‘networks’ that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks,

these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated

manner.
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Introduction
In the developed world traumatic brain injury (TBI) is the

biggest cause of death and disability in the under-40 s

(Bruns and Hauser, 2003). Patients can be left with signifi-

cant disabilities, requiring lifelong care with high social and

economic costs. Cognitive problems, including impairments

of attention, memory and executive functions, are a major

cause of this ongoing disability (Whitnall et al., 2006) and

are difficult to treat effectively.

The heterogeneity of the injuries and the variability of the

resulting cognitive problems make their management
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particularly problematic. What is required are ways of

identifying common underlying pathologies that can guide

the use of treatment that enhances cognition. A promising

approach is to consider the effects of TBI on neuromodu-

latory transmitter systems. Dysfunction of these systems is

common after TBI and many potential therapeutic strate-

gies are available. Dopamine (Bales et al., 2009), noradren-

aline (Kobori et al., 2006), acetylcholine (Salmond et al.,

2005), and serotonin (Rosenthal et al., 1998) are impli-

cated in the pathogenesis of cognitive and neuropsychiatric

symptoms following TBI. In this review we focus on the

catecholamines (dopamine and noradrenaline).

The evidence implicating disruption to the catecholami-

nergic systems is mainly 3-fold: (i) they modulate the cog-

nitive functions commonly impaired following TBI; (ii)

disruption to these systems are seen following TBI; and

(iii) catecholaminergic drugs treat some cognitive deficits

seen after TBI. Despite a clear rationale for treatment, the

effects of catecholaminergic medications are inconsistent

(Forsyth et al., 2006). This inconsistency is probably due

to the heterogeneity of traumatic injuries as well as the

non-linearity of the relationship between catecholaminergic

levels and cognitive function (Cools and D’Esposito, 2011).

This individual variability motivates a need to define the

state of a person’s catecholaminergic systems prior to

choosing treatment.

A number of neuroimaging approaches that quantify

catecholaminergic state and the response to treatment are

available. Molecular imaging techniques such as single

photon emission computed tomography (SPECT) and PET

directly measure the catecholamine systems (Egerton et al.,

2009; Lehto et al., 2015). Structural MRI can measure

damage to catecholaminergic nuclei, their efferent projec-

tions or the areas they project to. Functional MRI can

assess brain network dysfunction and response to treatment

(Husain and Mehta, 2011; Sharp et al., 2014). Here we

give a brief review of catecholaminergic anatomy, high-

lighting how it might be susceptible to damage following

TBI. We then review evidence that the catecholaminergic

systems are disrupted after TBI, discuss the cognitive def-

icits commonly seen after TBI and how the catecholamines

modulate them. We then highlight evidence for the use of

catecholaminergic treatments and finally discuss how

advanced neuroimaging techniques may be employed to

direct and monitor catecholaminergic treatments effectively.

Catecholaminergic anatomy
and physiology in the context
of traumatic brain injury
Dopamine and noradrenaline modulate brain function via

widespread ascending projections from their small brain-

stem nuclei (Fig. 1) (for detailed reviews see Beaulieu and

Gainetdinov, 2011; Haber, 2014; Chandler, 2015). These

nuclei, their ascending efferent pathways and their regula-

tory inputs are vulnerable to traumatic injury (Fig. 2).

Dopaminergic projections originate from a cluster of mid-

brain nuclei, predominantly the substantia nigra pars com-

pacta and the ventral tegmental area (Bjorklund and

Dunnett, 2007). Noradrenergic projections to the cerebral

cortex originate from the locus coeruleus in the pons

(Dahlstrom and Fuxe, 1964). The catecholaminergic nuclei

are therefore susceptible to brainstem injuries, which are

common following TBI, particularly in patients with poor

outcome (Adams et al., 1989) (Fig. 2A). This susceptibility

to injury may have a biomechanical explanation with com-

putational models of TBI predicting high strain across the

midbrain as a result of the brain pivoting in this region

(Zhang et al., 2001).

Catecholaminergic neurons may also be more susceptible

to disruption due to their physiological characteristics.

Dopaminergic neurons have a high baseline activity causing

elevated mitochondrial stress and increased vulnerability to

toxins (Lotharius et al., 1999; Surmeier et al., 2010a, b).

This maybe important early after injury when the brain is

under acute stress and may also make the cells vulnerable

to persistent effects seen after TBI, such as increased neu-

roinflammation (Fig. 2C) (Ramlackhansingh et al., 2011).

The catecholaminergic neurons project via ascending

pathways to subcortical and cortical target areas. In ex-

treme cases these axons may be severed (primary axotomy).

More commonly injury is produced through a biochemical

cascade leading to delayed cell death occurring over the

following hours to months (secondary axotomy)

(Maxwell et al., 1997). Catecholaminergic axons may be

particularly vulnerable to axonal injury. First, the length of

their fibres and diffuse projection patterns expose them to

the differential shearing stresses (Fig. 2B). Second, the huge

size of their axonal arbour is associated with a high energy

cost for neural transmission, making them vulnerable to

metabolic stress (Pissadaki and Bolam, 2013) (Fig. 2D).

Third, catecholaminergic projections are poorly myelinated

or unmyelinated making them more susceptible to mechan-

ical injury (Reeves et al., 2005; Staal and Vickers, 2011).

Disruption to the afferent inputs to the catecholaminergic

systems may also occur following TBI. Dopaminergic nuclei

receive afferent input from the locus coeruleus and vice

versa. In addition, cortical regions such as the prefrontal

cortex (PFC) project into these nuclei (Arnsten and

Goldman-Rakic, 1984; Sara, 2009; El Mansari et al.,

2010). Hence, multifocal damage either within the brain-

stem or in widespread cortical or subcortical locations can

have a complex effect on the regulatory inputs of these

neuromodulatory systems.

The catecholaminergic systems have complex cellular

signalling mechanisms that can be disrupted following TBI

(Fig. 3). Dopamine is synthesized via the hydroxylation and

decarboxylation of L-tyrosine. In noradrenergic neurons,

dopamine beta-hydroxylase then catalyses the synthesis of

noradrenaline from dopamine (Grzanna and Molliver,

1980). Both are stored in vesicles for release at the
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presynaptic membrane. Once released, dopamine is inacti-

vated either via reuptake through the dopamine transporter

(DAT, encoded by SLC6A3) on dopaminergic neurons or

via uptake by glial cells (Meiser et al., 2013). It is then

either repackaged into vesicles for reuse or enzymatically

broken down by catechol-O-methyl transferase (COMT) or

monoamine oxidase. DAT is expressed exclusively on dopa-

minergic neurons. It is most highly concentrated in the sub-

stantia nigra, ventral tegmental area, striatum and nucleus

accumbens, and more sparsely in cortical regions (Ciliax

et al., 1999). Dopamine reuptake via DAT is the primary

mechanism controlling the lifetime of extracellular dopamine

Figure 1 Anatomy and firing patterns of the catecholaminergic systems. (A) Catecholaminergic efferent pathways and brainstem

nuclei. The dopaminergic system has three main efferent projections; the meso-striatal (green), meso-limbic and meso-cortical (both in red). The

meso-striatal projection supplies the striatum, the meso-limbic the limbic system including the nucleus accumbens and the meso-cortical pro-

jection supplies the majority of the cortex. The dopaminergic nuclei (the substantia nigra and ventral tegmental area) reside in the upper midbrain.

The main nucleus of the noradrenergic system is the locus coeruleus and is housed in the posterior pons. The locus coeruleus provides the sole

noradrenergic supply to most cortical regions. (B) Dopamine: (I) Tonic single spike activity in an inhibited dopaminergic neuron. (II) Bursting

activity in a dopaminergic neuron in response to a stimulus (electric foot shocks in an anaesthetized rat). Adapted with permission from Brischoux

et al. (2009). Noradrenaline: (I) Noradrenergic neurons in the locus coeruleus (LC) show increased firing rate depending on arousal level. Adapted

from Bouret and Sara (2010). (II) Sensory evoked field potentials in the locus coeruleus vary according to the arousal state (as measured via

electroencephalogram). Largest locus coeruleus field potential responses occur for stimuli experienced whilst the animal is awake as opposed to

during sleep. Adapted with permission from Aston-Jones and Bloom (1981b).
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in areas of high DAT expression (Gainetdinov et al., 1998).

In addition, DAT levels are regulated by dopamine itself via

interaction with the transporter and presynaptic autorecep-

tors (Williams and Galli, 2006). The noradrenaline trans-

porter primarily controls the reuptake of noradrenaline.

However, it also displays a high affinity for dopamine.

Therefore, in areas of low DAT, such as the PFC, noradren-

aline transporter plays a prominent role in dopamine clear-

ance (Husain and Mehta, 2011). To support this,

noradrenaline transporter inhibitors increase both

noradrenaline and dopamine levels in the PFC without

affecting striatal dopamine levels (Carboni et al., 1990;

Bymaster et al., 2002). In addition to noradrenaline trans-

porter, COMT also plays a role in dopamine clearance

in the PFC. A common genetic variation in COMT,

which alters dopamine clearance rates, results in

differing levels of dopamine in the PFC (Tunbridge et al.,

2006).

The catecholaminergic systems have multiple receptors

with differing functions. Dopamine interacts with two

pharmacologically and physiologically distinct receptor

families, the D1-like (D1 and D5) and D2-like (D2, D3,

D4). See Table 1 for a summary and Beaulieu and

Gainetdinov (2011) for a detailed review. For noradren-

aline, three basic receptor subtypes have been classified,

�-1, �-2 and b receptors. These subtypes differ in terms

of binding affinity, second messenger coupling and localiza-

tion (Table 1).

Both catecholaminergic neurons display tonic and phasic

discharge patterns, with distinct proposed roles (Fig. 1).

This is an important issue when considering treatment, as

systemic drug administration can modulate tonic levels but

cannot reproduce the phasic neuromodulation. In dopamin-

ergic neurons, phasic activity consists of a burst of neur-

onal discharges causing a rapid rise in intra-synaptic

dopamine levels. An efficient reuptake system in the syn-

apse means that this increase is transient and does not raise

extracellular dopamine levels (Floresco et al., 2003). This

phasic activity has been extensively investigated and ap-

pears to code for motivational value and salience as well

as acting as an alerting signal to sensory cues (Bromberg-

Martin et al., 2010; Chang et al., 2016). In contrast, tonic

activity is characterized by regular, slow, continuous dis-

charges. The number of dopaminergic neurons firing in this

pattern correlates closely with the concentration of extra-

synaptic dopamine levels and has been proposed to play a

more general role in preparing an organism to respond to

environmental cues (Grace, 1991; Floresco et al., 2003).

In noradrenergic neurons, tonic activity is related to the

animal’s behavioural state. During sleep and low arousal

states tonic activity is low. When the animal is awake and

alert there is moderate tonic firing, rising to higher rates

during unregulated stress (Foote et al., 1980; Aston-Jones

et al., 1999). Extracellular levels of noradrenaline are lin-

early related to the tonic discharge rates of noradrenergic

neurons (Berridge and Abercrombie, 1999). Phasic activity

comprises a brief burst of two to three action potentials

followed by a prolonged period of suppression. It occurs

in response to behaviourally relevant stimuli and is most

strongly generated during moderate tonic activity, i.e. when

the animal is in an optimal state for task-focussed behav-

iour (Foote et al., 1980; Aston-Jones and Bloom, 1981b).

However, during stress or fatigue, phasic firing becomes

less discriminatory and occurs in response to distractors

in addition to task-relevant stimuli (Aston-Jones et al.,

1999). Repeated stimulus presentation attenuates the

phasic firing response with a resultant attenuation in the

behavioural response. In animals, this phasic response has

been closely associated with sustained attention in tests of

vigilance (Aston-Jones et al., 1994).

Figure 2 Potential mechanisms for catecholaminergic

disruption following TBI. (A) Haemorrhagic contusions in the

brainstem following TBI. The high shearing stresses present in this

region during trauma mean the catecholaminergic nuclei that reside

in the midbrain are susceptible to damage. (B) The long, tortuous

pathway of the efferent catecholaminergic axons throughout the

cerebrum exposes them to shearing forces at the time of injury. (C)

A 11C-(R)PK11195 (PK) PET image showing persistent microglial

activation following TBI (Ramlackhansingh et al., 2011), which may

causing persisting neuronal injury. (D) Reconstruction of a single

nigrostriatal dopaminergic axon showing the extensive arborization

of these neurons, which may make them vulnerable to metabolic

disturbances. Adapted with permission from Matsuda et al. (2009).

(E) Damage to the PFC following TBI may disrupt the ‘top-down’

control that PFC neurons exert over the dopaminergic and nora-

drenergic cells bodies in the brainstem.
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Evidence of catecholaminer-
gic disruption in traumatic
brain injury

Dopamine

TBI disrupts the dopamine system in animal models. Cell

loss occurs in the substantia nigra following cortical injury,

with a 25% reduction in dopaminergic neurons in the sub-

stantia nigra observed after 28 days in one model (van

Bregt et al., 2012). The loss is progressive, rising from

15% ipsilateral to injury at 11 days to 30% bilaterally at

26 weeks (Hutson et al., 2011), and is associated with

blood–brain barrier breakdown and microglial activation,

demonstrating an accompanying inflammatory process.

Dopamine levels have been shown to rise after TBI in

numerous regions throughout the brain including the brain-

stem, striatum, hypothalamus and medial prefrontal cortex

(Huger and Patrick, 1979; McIntosh et al., 1994; Massucci

et al., 2004; Kobori et al., 2006). However, these increases

are short-lived and followed by a hypodopaminergic func-

tional state (Wagner et al., 2005b). For example, dopamine

release, clearance and evoked overflow levels of dopamine

in the striatum are reduced 2 weeks after injury (Wagner

et al., 2005b). The reduced clearance in the context of

reduced dopamine release is likely to be a compensatory

mechanism aimed at maintaining extracellular dopamine

levels. In addition, tyrosine hydroxylase levels are normal

or raised following TBI (Wagner et al., 2005b; Yan et al.,

2007), providing a further potential compensatory mechan-

ism. The reduction in dopamine release in the context of

normal or increased synthesizing capacity implies a deficit

in vesicular trafficking, a reduction in the amount of dopa-

mine per vesicle, and/or an alteration of the usual auto

feedback control of dopamine release.

D1 and D2 receptor levels do not appear to be altered

chronically in animal models of TBI (Henry et al., 1997;

Wagner et al., 2005b, 2009a). In contrast, DAT expression

is reduced (Yan et al., 2002; Wagner et al., 2005a, b,

2009a; Wilson et al., 2005b; Shimada et al., 2014).

Striatal DAT expression is rapidly affected by dopamine

levels, neural activity and DAT inhibitors (Daws et al.,

Figure 3 Components of the catecholaminergic synapses. (A) Dopamine: The hexagons outline potential SPECT/PET ligand targets.

Example ligands are (1) 18F-fluoro-m-tyrosine or 11C-methyl-m-tyrosine; (2) 18F-DOPA or 11C-DOPA; (3) 11C-DTBZ; (4) 123I-Beta-CIT, 123I-FP-

CIT, 11C-cocaine; (5) 11C-SCH 23390, 11C-NNC 112; (6) 11C-PHNO, 11C-raclopride. (B) Noradrenaline: (1) 11C-MRB; (2) 11C-ORM-13070.

DOPA = L-3,4-dihydroxyphenylalanine; DA = dopamine; nvDA = non-vesicular dopamine; VMAT2 = vesicular monoamine transporter 2;

Gs = stimulative regulative G protein (stimulates adenylyl cyclase); Gi = inhibitory regulative G protein (inhibits adenylyl cyclase);

MAOB = monoamine oxidase B; TH = tyrosine hydroxylase; L-AAD = L-amino acid decarboxylase; DBH = dopamine beta-hydroxylase;

NET = noradrenaline transporter; Gq = G protein acting via phosphoinositol second messenger system; NorAd = noradrenaline;

nvNorAd = non-vesicular noradrenaline.
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2002; Gulley and Zahniser, 2003), making the changes

likely to be secondary to a loss of dopaminergic cells or

a compensatory downregulation of DAT due to reduced

dopamine levels. Evidence suggests the latter, as vesicular

monoamine transporter (VMAT), a measure of dopamine

cell density, is maintained. This is in contrast to dopamine

release and clearance, which is reduced (Vander Borght

et al., 1995; Kilbourn et al., 1996; Wagner et al., 2005b).

Surprisingly, there is relatively little work describing the

effects of TBI on the dopamine system in humans.

Neuropathological studies of subjects who suffered repeti-

tive head injuries show gross and microscopic changes to

the substantia nigra (see Smith et al., 2013 for a compre-

hensive review of the pathology). Although there are no

pathological studies identifying changes to this structure

following a single head injury, it seems plausible that they

are subject to similar pathological processes.

Two imaging studies in humans have demonstrated

altered DAT and D2 receptor binding in the striatum

through SPECT and PET imaging (Donnemiller et al.,

2000; Wagner et al., 2014). Donnemiller et al. (2000)

showed a reduction in DAT binding within the striatum

of over 50% via SPECT imaging using 123I-b-CIT in 10

patients who had suffered a severe TBI and were in a

persistent vegetative state or had persisting akinetic-rigid

features. Wagner et al. (2014) also demonstrated reduced

DAT levels in the striatum using the PET ligand 11C-b-

CFT; however, they found a smaller effect size of 20–30%

reduction in binding, variable injury severities were

thought likely to account for this discrepancy (Wagner

et al., 2014).

Donnemiller et al. (2000) also showed reduced D2 re-

ceptor binding using the SPECT tracer 123I-IBZM,

whereas Wagner et al. (2014) demonstrated higher D2

receptor binding within the ventral striatum using 11C-

raclopride. Wagner et al. (2014) argued that reduced

dopamine after TBI may lead to an increase in D2 recep-

tor binding due to reduced competitive binding with en-

dogenous dopamine and/or a compensatory upregulation

of D2 receptors. In the subregion where D2 receptor bind-

ing was increased (the ventral striatum), DAT levels were

not reduced. Therefore, there may be regional variation in

the compensatory downregulation of DAT to maintain

dopamine levels, hence causing variable dopamine levels

throughout the striatum. The increased injury severity of

the patients reported by Donnemiller et al. (2000) may

also have caused greater dopaminergic cell loss leading

to their findings of a reduction in both D2 receptors

and DAT.

Noradrenaline

There are fewer studies with less consistent findings for

the effects of TBI on the noradrenergic system. Animal

studies show inconsistent alterations in noradrenraline

levels after experimental TBI (McIntosh et al., 1994;

Prasad et al., 1994; Kobori et al., 2006). Studies ofT
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noradrenergic turnover provide the most consistent results,

with an acute increase over the first 30 min observed

around the site of injury (Levin et al., 1995; Dunn-

Meynell et al., 1998) followed by a reduction throughout

the brain over a subacute to chronic time scale (6 h to 8

weeks) (Dunn-Meynell et al., 1994, 1998; Fujinaka et al.,

2003). As adrenergic agents have been shown to improve

recovery and �-1 receptor blockade to impede it in animal

models, this reduction in noradrenergic turnover in the

chronic phase may impair recovery (Boyeson and Feeney,

1990; Sutton and Feeney, 1992; Dunn-Meynell et al.,

1997).

Noradrenergic receptors have been less extensively stu-

died. Early work identified an acute reduction in binding

to �-1 adrenoreceptors at the site of injury, progressing to a

more widespread reduction in �-1 adrenoreceptor binding

from 24 h to 30 days throughout the brain (Prasad et al.,

1992; Levin et al., 1994). More recently, however,

increased levels of �-1 adrenoreceptor (ADRA1A) mRNA

have been detected in the medial PFC 14 days post-experi-

mental traumatic brain injury, suggesting a possible upre-

gulation (Kobori et al., 2011).

There is minimal work investigating alterations to the

noradrenergic system in humans. The locus coeruleus

shows neuronal cell loss following repetitive head injury

but, as with the substantia nigra, there are no pathological

studies examining the noradrenergic system following a

single injury (Smith et al., 2013). There have been no mo-

lecular imaging studies in humans.

The role of the catechola-
mines in cognitive functions
commonly affected by trau-
matic brain injury
Patients are often left with persistent cognitive impairments

after TBI that limit their recovery. Next we briefly describe

the relationship between the catecholamines and these im-

pairments. We take this approach because it reflects current

clinical and neuropsychological practice. However, we ac-

knowledge that dividing cognitive deficits into somewhat

arbitrary domains such as memory and attention can be

problematic and that patients often show complex patterns

of cognitive impairment that are not easily subdivided in

this way. Therefore, in the final part of this section we

provide an example of how assessing disruption at a sys-

tem’s level, by measuring network function, may offer a

greater mechanistic insight. TBI produces disruption to

the neural networks associated with cognition and the cat-

echolamines have also been shown to modulate these net-

works. Therefore, this offers a potential tool by which

treatment can be targeted and response monitored.

The cognitive domains commonly affected are informa-

tion processing speed, attention, memory, learning and

executive functions (Levin and Kraus, 1994; Scheid et al.,

2006; Draper and Ponsford, 2008). A wide range of studies

show that catecholamines modulate these cognitive func-

tions, suggesting that drug treatments could be effective

after TBI. However, the relationship between catechol-

amine levels and specific cognitive functions is complicated.

Non-linear effects are seen and different neurotransmitter

systems interact with each other, producing a complex

mapping between neurotransmitter levels and cognitive

function (Cools and D’Esposito, 2011; Husain and

Mehta, 2011). While some discrimination between pro-

cesses modulated by neurotransmitter systems is possible

(e.g. dopamine and reinforcement learning), interactions be-

tween systems limit the degree to which selective agents for

dopamine and noradrenaline can be reliably aligned to spe-

cific deficits (Husain and Mehta, 2011).

Information processing speed

Impairment of information processing speed is common

after TBI (Draper and Ponsford, 2008).

Catecholaminergic drugs can modulate processing speed

and conditions that reduce these neurotransmitters, such

as Parkinson’s disease, also affect processing speed. For

example, stimulant drugs that increase catecholamine

levels, including methylphenidate and D-amphetamine,

can improve speed of information processing (Halliday

et al., 1986, 1990). In addition, age differences in process-

ing speeds correlate with decreases in D2 receptor density

(Backman et al., 2000), and reaction times are speeded with

dopaminergic medications in patients with reductions in

dopamine secondary to Parkinson’s disease (Pullman

et al., 1988). Noradrenaline has also been shown to influ-

ence processing speed. For example, clonidine, an �-2 ad-

renergic agonist that reduces noradrenaline levels when

acting presynaptically, slows reaction times. In contrast,

yohimbine, an �-2 adrenergic antagonist that increases nor-

adrenaline levels, improves reaction times (Halliday et al.,

1989).

Attention

Attention is often impaired after TBI. Deficits include ori-

enting (Cremona-Meteyard et al., 1992), focusing (Chan,

2000; Bate et al., 2001), sustaining (Ponsford and

Kinsella, 1992) and dividing attention (Park et al., 1999).

Dopamine modulates attentional processes in a region-spe-

cific manner. In rats, reduced striatal dopamine impairs

response speed (Baunez and Robbins, 1999) and reduces

distractibility (Collins et al., 1998; Crofts et al., 2001).

Conversely, reduced PFC dopamine increases distractibility

and impairs sustained attention (Crofts et al., 2001).

Hence, these two brain systems appear to work synergis-

tically, with increases in PFC dopamine accompanied by

reciprocal decreases in the striatum and vice versa

(Pycock et al., 1980; Roberts et al., 1994; Kolachana

et al., 1995; Meyer-Lindenberg et al., 2005). One
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interpretation is that increased PFC dopamine stabilizes

neural activity relevant to current tasks and so reduces

distractibility, while increased striatal dopamine promotes

shifts in attention (Cools and D’Esposito, 2011). Taken to

the extreme, hypodopaminergia in the striatum would lead

to perseveration whereas a similar reduction in the PFC

would produce distractibility. Dopaminergic neurons are

also important in signalling salient sensory cues and

thereby orienting attention. Phasic release of dopamine

can signal both rewarded (Schultz, 1998; Chang et al.,

2016) and non-rewarding experiences (Bromberg-Martin

et al., 2010). These dopaminergic neurons project to the

dorso-lateral prefrontal cortex and dorsal striatum, and

may provide an alerting signal to help orient attention to

novel or important stimuli. Both increased distractibility

and perseveration are seen following TBI (Mathias and

Wheaton, 2007), which might reflect distinct dopaminergic

abnormalities in different patients.

Noradrenaline also modulates attention, with distinct

roles for tonic and phasic discharge patterns (Carli et al.,

1983; Cole and Robbins, 1992; Aston-Jones et al., 1999).

Tonic activity is related to arousal state (Foote et al., 1980).

Low activity levels are associated with reduced arousal and

disengagement from the environment (Aston-Jones and

Bloom, 1981a), moderate levels with focused task perform-

ance and appropriate filtering of irrelevant stimuli (Usher

et al., 1999) and high levels with distractibility and

increased vigilance for irrelevant environmental events

(Valentino and Van Bockstaele, 2008). In contrast, locus

coeruleus neurons fire phasically in response to novel sali-

ent stimuli or to changes in the significance of a particular

stimulus (Sara and Segal, 1991; Aston-Jones et al., 1997;

Bouret and Sara, 2004). The close relationship between the

phasic activation of locus coeruleus neurons and stimulus-

induced attentional shifts has led to the proposal that nor-

adrenaline release from the locus coeruleus is also involved

in controlling shifts in attention (Bouret and Sara, 2005; Yu

and Dayan, 2005; Sara, 2009). In humans, pharmaco-

logical inhibition of cerebral noradrenaline release results

in impaired attention (Smith and Nutt, 1996), an effect

reversed by increased arousal, possibly mediated by

increased noradrenaline levels. Noradrenergic drugs have

also been used to enhance attentional impairment following

brain injury. For example, sustained attention can be im-

proved with the noradrenergic agonist guanfacine after

non-traumatic brain injury (Malhotra et al., 2006; Singh-

Curry et al., 2011).

Memory and learning

Memory and learning is frequently disrupted following TBI

(Draper and Ponsford, 2008). Animal studies show that

memory impairments can be produced by lesioning dopa-

minergic neurons in animal models (Gasbarri et al., 1996;

Schroder et al., 2003), an effect apparently caused by dis-

ruption to long-term potentiation in the hippocampi.

Dopamine release in the hippocampus is required to

promote protein synthesis that allows cellular consolidation

of these memories (Frey and Morris, 1997; O’Carroll et al.,

2006). In keeping with this mechanism, dopamine antag-

onists impair hippocampal-dependent memories after long

but not short delays (Bethus et al., 2010) and hippocampal

activation increases hippocampal dopamine release, thereby

facilitating memory encoding (Lisman et al., 2011). In

humans, levodopa enhances learning and memory forma-

tion in both healthy young (Knecht et al., 2004) and

healthy older subjects (Chowdhury et al., 2012). This

effect shows an inverted-U shaped dose-dependent re-

sponse, with both high and low doses proving ineffective

(Chowdhury et al., 2012). As in animal work, the effect of

dopamine is to improve delayed rather than early recollec-

tion performance.

Noradrenaline can enhance memory for emotionally

arousing events, especially in the context of stress

(Roozendaal et al., 2009). In humans, b receptor antagon-

ists block memory consolidation improvements generated

via emotional arousal (Schwabe et al., 2009).

Noradrenergic effects on the amygdala, hippocampus and

amygdala-hippocampal interactions appear to be particu-

larly important in strengthening these emotionally salient

memories (Ferry and McGaugh, 1999; Hatfield and

McGaugh, 1999; Strange and Dolan, 2004; Yang and

Liang, 2014). Lesions in the amygdala impair the encoding

of emotionally salient events (Anderson and Phelps, 2001)

and functional imaging studies show increased amygdala

activity that is attenuated by b receptor antagonists when

Figure 4 Relationship between dopamine levels and per-

formance. There is an ‘inverted U-shaped’ relationship between

dopamine levels and cognitive performance with both too little and

too much dopamine causing impairment (red line). Different cog-

nitive tasks may, however, have different optimal levels (red and blue

lines representing two distinct cognitive tasks). Therefore an in-

crease in dopamine levels (represented by blue dashed horizontal

line) may impair one task (red line) while optimizing performance in

another (blue line). See also Arnsten et al. (2012) for a molecular

basis of this inverted U.
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subjects are presented with emotional stimuli (van Stegeren

et al., 2005). In addition, the noradrenergic system has

been shown to modulate interactions between the amygdala

and hippocampus in this context (Strange and Dolan,

2004). One interesting proposal is that the noradrenergic

system may play an important role in post-traumatic stress

disorder (Ramos and Arnsten, 2007). Over stimulation of

the noradrenergic system may enhance the memories of

stressful events via �-1 and b receptor stimulation. To sup-

port this, �-1 and b receptor antagonism can improve the

symptoms of post-traumatic stress disorder (Peskind et al.,

2003; Raskind et al., 2003; Vaiva et al., 2003).

Executive functions

Executive functions, such as working memory, planning,

and inhibitory control, are commonly affected by TBI

(Dikmen et al., 1995; Stuss and Alexander, 2007; Jilka

et al., 2014). Dopamine has been extensively investigated

with regards to its effects on executive functions, in par-

ticular working memory. Selective lesioning of the dopa-

minergic input to the PFC causes working memory

deficits as profound as lesioning the entire PFC (Brozoski

et al., 1979). The D1 receptor is particularly important in

mediating these effects. Administration of D1 antagonists

causes selective impairments in working memory

(Sawaguchi and Goldman-Rakic, 1991; Arnsten et al.,

1994). An ‘inverted-U’ shaped relationship between dopa-

mine levels and working memory exists (Zahrt et al.,

1997), with either excessive inhibition or stimulation of

PFC D1 receptors causing impaired working memory

(Fig. 4). This implies the existence of an optimal level of

D1 receptor activation and has fundamental implications

for the effects of dopaminergic treatment on cognition

(Sawaguchi and Goldman-Rakic, 1991; Williams and

Goldman-Rakic, 1995; Zahrt et al., 1997).

This inverted-U shaped relationship is also evident in

humans. The response to dopaminergic stimulation is de-

pendent on baseline performance level, i.e. participants

with low baseline working memory capacity improve

with dopaminergic medications while those with high base-

line capacity are impaired (Kimberg et al., 1997; Gibbs and

D’Esposito, 2005). In addition, variations in the COMT

gene predict performance on working memory tasks. A

common functional single nucleotide polymorphism in the

COMT gene results in methionine (Met) replacing valine

(Val) and causes altered COMT activity. The Met allele

leads to reduced COMT activity and consequently

increased dopamine levels in the PFC (Cornish and

Wilding, 2010). Subjects with the Met allele perform

better on working memory tasks (Meyer-Lindenberg

et al., 2005). Furthermore, overall variation in working

memory performance fits an inverted-U shaped function

with those with lower and higher predicted dopamine

levels performing worse (Fallon et al., 2015). Low working

memory is also associated with reduced dopamine synthesis

capacity measured by FMT PET, which predicts the

cognitive response to administration of a dopamine agonist

(Cools et al., 2008, 2009).

Dopaminergic medications improve executive functions

in diseases affecting dopamine levels e.g. Parkinson’s dis-

ease (Lees and Smith, 1983). Cognitive deficits are generally

improved by treatment with levodopa or other dopamin-

ergic medication (Cooper et al., 1992) and are exacerbated

by medication withdrawal (Lange et al., 1992). However,

dopaminergic medication can impair other functions. For

example, following dopaminergic medication withdrawal

feedback-based learning improves (Fern-Pollak et al.,

2004; Cools, 2006). These differential effects of treatment

withdrawal, with impaired working memory and executive

functions, but improved feedback-based learning, involve

different striatal circuits. Working memory impairments

in the hypodopaminergic state are thought to be mediated

by fronto-striatal circuits passing through the dorsal stri-

atum (Mattay et al., 2002; Ekman et al., 2012). The ventral

portion of the striatum mediates the feedback-based learn-

ing effects (Cools et al., 2007). The ventral portion of the

striatum is vulnerable to ‘overdosing’ with dopamine medi-

cation as it is relatively spared of dopaminergic deficit in

the early stages of Parkinson’s disease, but may be similarly

vulnerable in healthy volunteers (Mehta et al., 2001).

Therefore, different inverted-U shaped functions may be

present within different brain circuits and differentially

affect different tasks mediated by these circuits (Fig. 4).

Noradrenaline modulates executive functions via its �-2A

receptor (Arnsten and Li, 2005). Like dopamine, animal

studies show impairment of working memory with deple-

tion of noradrenaline in the PFC (Arnsten and Goldman-

Rakic, 1985). Stimulation of �-2A receptors either system-

ically (Arnsten and Contant, 1992; O’Neill et al., 2000) or

locally within the PFC leads to improvements in working

memory (Arnsten and Goldman-Rakic, 1985; Cai et al.,

1993; Mao et al., 1999; Ramos et al., 2006). There is

some evidence that dopaminergic and noradrenergic sys-

tems improve working memory via complimentary but dis-

tinct mechanisms. For example, during a working memory

task �-2A stimulation increases delay period firing in the

preferred direction of the neuron i.e. it strengthens the

signal (Wang et al., 2007), whereas D1 stimulation de-

creases firing in the non-preferred direction of the neuron

i.e. it reduces noise (Vijayraghavan et al., 2007).

Noradrenaline also shows an inverted-U relationship with

working memory function. However, unlike dopamine, im-

paired performance at higher concentrations is not caused

by overstimulation of the �-2A receptor (as with the D1

receptor) but rather by stimulation of the lower affinity �-1

and b receptors (Arnsten and Jentsch, 1997; Arnsten et al.,

1999, 2012; Mao et al., 1999).

In humans, reduced noradrenaline synthesis due to a

polymorphism in the dopamine beta hydroxylase enzyme

leads to impaired executive functioning and impulse control

(Kieling et al., 2008; Hess et al., 2009) and the �-2A agon-

ist guanfacine improves working memory and planning in
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healthy young adults (Jakala et al., 1999), although this

latter finding has not been replicated (Muller et al., 2005).

Network dysfunction and catechola-
mine actions

Catecholaminergic effects on the brain and treatment re-

sponses can also be described at the level of systems neuro-

science. Cognitive functions frequently affected by TBI such

as memory and attention depend on the coordinated action

of widespread, non-adjacent brain regions (Mesulam,

1998). These distinct brain regions are connected via the

white matter tracts into large-scale networks, so-called in-

trinsic connectivity networks (ICNs) (Seeley et al., 2007).

TBI commonly produces white matter damage (Strich,

1956), thereby impairing the structural connectivity be-

tween brain regions, which in turn impairs the functional

interaction between network nodes and hence disrupts ICN

function (Sharp et al., 2014). Disruption to ICN function

following TBI has been frequently demonstrated, with the

degree of disruption predicting the level of cognitive im-

pairment (Bonnelle et al., 2011, 2012; Hillary et al.,

2011; Stevens et al., 2012; Zhou et al., 2012). In addition,

the impact of drug treatment in other contexts on the func-

tioning of these large-scale neural networks that underpin

higher-level cognitive processes can also be informative

(Husain and Mehta, 2011). Neuropsychological constructs

often do not map neatly onto the functioning of these ICNs

(Hampshire and Sharp, 2015). Therefore, it is likely to be

informative to consider both network dysfunction after TBI

and catecholaminergic treatment effects at the level of

large-scale network function.

This network approach can be illustrated by considering

abnormalities within specific ICNs, e.g. the default mode

network (DMN) and salience/cingulo-opercular network

(SN/CoN). TBI patients often show a failure to control

DMN activity, with high levels of activity in the central

node of the DMN (the posterior cingulate cortex) asso-

ciated with slower information processing (Sharp et al.,

2011) and abnormalities in functional connectivity within

the network associated with impaired sustained attention

(Bonnelle et al., 2011). These functional abnormalities are

related to abnormal structural connections within the

DMN (Bonnelle et al., 2011) and altered interactions be-

tween the SN/CoN and the DMN (Leech and Sharp, 2014).

Anti-correlated neural activity is normally observed be-

tween the DMN and a large fronto-parietal network

involved in supporting task performance when attention

is directed externally, the fronto-parietal control network

(Kelly et al., 2008). If attention is externally focused then

activity within the fronto-parietal control network increases

and a load-dependent decrease in DMN activity is observed

(Singh and Fawcett, 2008). A loss of this tightly controlled

anti-correlation is seen in a number of disease states (Leech

and Sharp, 2014). After TBI this abnormal network inter-

action reflects abnormalities in the connections of the SN/

CoN, which appear to disrupt this network’s role in switch-

ing the focus of attention in reponse to salient environmen-

tal events (Bonnelle et al., 2012; Jilka et al., 2014; Uddin,

2015).

The functioning of these networks is influenced by the

catecholamines, which appear to play an important role

in regulating their activity levels and interactions.

Therefore, specific network abnormalities might be targeted

for treatment with particular catecholaminergic drugs. The

level of dopamine synthesis capacity, measured via PET

imaging with the tracer 6-18F-fluoro-L-m-tyrosine, correl-

ates positively with enhanced coupling between nodes of

the SN/CoN and the DMN and reduced coupling between

the SN/CoN and fronto-parietal control network at rest

(Dang et al., 2012). This modulation of internetwork cou-

pling supports a role for dopamine in tuning cognitive con-

trol by regulating the interaction of these ICNs, which, as

detailed above, can be impaired after TBI (Jilka et al.,

2014).

Pharmacological manipulation of these network inter-

actions has also been shown with catecholaminergic medi-

cations. For example, dopamine release, induced with

dextroamphetamine and measured with 123I-IBZM

SPECT, reduces connectivity within the DMN and SN/

CoN and is positively associated with connectivity changes

within a predefined cortico-striatal-thalamic network

(Schrantee et al., 2015). Also, levodopa administration

has been shown to alter the connectivity between subcor-

tical and cortical regions in healthy adults (Cole et al.,

2013b). In addition, both linear and non-linear (i.e. in-

verted ‘U’) dopaminergic effects of pharmacological ma-

nipulation on connectivity patterns have been observed

with levodopa and haloperidol (Cole et al., 2013a), sug-

gesting that network responses reflect the complex relation-

ship of catecholamines to behaviour. The cognitive

enhancement produced by methylphenidate is accompanied

by changes in DMN activity (Marquand et al., 2011;

Tomasi et al., 2011). Changes in striatal dopamine have

been proposed to have a key regulatory role on the func-

tioning of the posterior cingulate cortex (Kelly et al., 2009;

Sambataro et al., 2013) and cognitive enhancement pro-

duced by methylphenidate is accompanied by decreased ac-

tivation within the posterior cingulate cortex/DMN activity

(Marquand et al., 2011; Tomasi et al., 2011). Given the

relationship between post-TBI cognitive difficulties and

increased activation within the posterior cingulate cortex,

this last finding provides a systems level explanation of

how methylphenidate may act as a cognitive enhancer

after TBI and may provide a method for predicting and

measuring response to treatment.

For noradrenaline, upregulation of the noradrenergic

system using clonidine (an �-2 adrenoreceptor agonist) in

healthy human subjects performing an attentional task

causes an increase in the functional connectivity on PET

imaging within the fronto-parietal control network and

also between the locus coeruleus and nodes of the fronto-

parietal control network (Coull et al., 1999). Conversely,
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the administration of a noradrenergic antagonist reduces

the connectivity within the SN/CoN (Hermans et al.,

2011). These findings imply a role for noradrenaline in

modulating the neural networks involved in attentional

processes and more specifically demonstrate its effects on

the SN/CoN, disruption of which is associated with atten-

tional difficulties following TBI (Bonnelle et al., 2012).

Catecholaminergic therapies
Several catecholaminergic medications have been used to

treat cognitive problems following TBI with varying de-

grees of success. Methylphenidate and amantadine have

the most evidence for efficacy (Tables 2 and 3), with less

available for dextroamphetamine, bromocriptine, atomox-

etine, guanfacine and levodopa (Supplementary Tables

1–5). The majority of trials have focused on using these

medications as short-term cognitive enhancers, with assess-

ment after a single dose or a short course of treatment.

However, catecholamines may also have an effect on neu-

roplasticity, shown for example by their role in modulating

hippocampal long-term potentiation (Frey and Morris,

1997; O’Carroll et al., 2006; Kabitzke et al., 2011;

Morris and Gold, 2012). Persistent effects once treatment

has finished have been less frequently studied (Kaelin et al.,

1996; Plenger et al., 1996; Pavlovskaya et al., 2007).

Methylphenidate

Mode of action

Methylphenidate is a psychomotor stimulant. Its primary

mechanism of action is blockade of the noradrenaline and

dopamine transporters (Solanto, 1998), but it also increases

dopamine release via D2 receptor-dependent modulation of

vesicular trafficking (Volz et al., 2007, 2008). These mech-

anisms increase extracellular levels of both noradrenaline

and dopamine, which is believed to be the primary mech-

anism by which methylphenidate improves cognition

(Berridge et al., 2006). In animal models of TBI, methyl-

phenidate improves working memory and attention via

stimulation of both D1 dopamine receptors and �-2 adre-

noreceptors in the PFC (Arnsten and Dudley, 2005).

There is also evidence that methylphenidate might in-

crease neuroplasticity and so promote longer-term cognitive

improvements. In animal models, single doses of methyl-

phenidate do not augment either basal or evoked extracel-

lular dopamine levels (Wagner et al., 2009b). However, 2

weeks of daily pretreatment leads to increased dopamine

levels in response to the drug, implying that methylphenid-

ate may be inducing functional changes in DAT or changes

in DAT trafficking. Methylphenidate has also been shown

to amplify long-term potentiation in the hippocampus

(Rozas et al., 2015), an effect modulated via activation of

b adrenergic and D1/D5 receptors.

Evidence of use

In humans, 17 studies to date have assessed methylphenid-

ate’s effect on cognition following TBI (Table 2). These

studies differ greatly in design, time after injury and contain

relatively few patients (range 1–44, mean 20). The majority

assess the response to methylphenidate over 1–6 weeks

with two studies assessing response after a single dose

(Kim et al., 2006, 2012). Three trials assessed whether a

residual effect remained after stopping the medication

(Kaelin et al., 1996; Plenger et al., 1996; Pavlovskaya

et al., 2007). In these studies, cognitive testing was repeated

at 1, 3, or 8 weeks following treatment cessation, with

persisting improvements seen in the studies reassessing at

1 and 3 weeks (Kaelin et al., 1996; Pavlovskaya et al.,

2007) but not in the study that reassessed at 8 weeks

(Plenger et al., 1996).

The majority of trials (n = 9) show improvements in in-

formation processing speed (Evans et al., 1987; Kaelin

et al., 1996; Whyte et al., 1997, 2004; Al-Adawi et al.,

2005; Kim et al., 2006, 2012; Willmott and Ponsford,

2009; Willmott et al., 2013; Johansson et al., 2015) with

one trial showing persisting improvement a week after drug

cessation (Kaelin et al., 1996). These improvements in

speed did not come at the expense of accuracy (Whyte

et al., 2004; Willmott and Ponsford, 2009; Kim et al.,

2012).

The effect of methylphenidate on attention is less clear.

One detailed trial evaluated the effect of methylphenidate

on a range of attentional measures including standard cog-

nitive tests, observed attentiveness, productivity and care-

giver assessments (Whyte et al., 2004). Participants were

noted to be more attentive whilst performing tasks and

caregiver ratings of attention were also significantly raised

on treatment, suggesting functionally significant real-world

benefits. Several other trials also show an improvement in

attention (Evans et al., 1987; Gualtieri and Evans, 1988;

Plenger et al., 1996; Al-Adawi et al., 2005; Lee et al., 2005;

Kim et al., 2006, 2012; Pavlovskaya et al., 2007) but

almost an equal number of studies failed to find a benefit

(Mooney and Haas, 1993; Speech et al., 1993; Whyte

et al., 1997; Tiberti et al., 1998; Willmott and Ponsford,

2009).

There is limited evidence that methylphenidate improves

memory functions. Three trials demonstrated improvements

in some memory tests (Evans et al., 1987; Gualtieri and

Evans, 1988; Kaelin et al., 1996), but the majority of

trials failed to show a significant improvement (Mooney

and Haas, 1993; Speech et al., 1993; Plenger et al., 1996;

Tiberti et al., 1998; Willmott and Ponsford, 2009; Kim

et al., 2012). Executive functions, including working

memory, also fail to show a consistent improvement

across studies. Two studies showed a benefit in certain ex-

ecutive functions, with one showing persistent benefit 1

week later (Kaelin et al., 1996; Kim et al., 2006). Other

studies have failed to show improvements in working

memory (Willmott and Ponsford, 2009; Kim et al., 2012).
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Two studies assessed impact on functional outcomes. A

randomized, controlled study (Plenger et al., 1996) showed

a significant improvement in functional outcome after 4

weeks of treatment but this effect was no longer apparent

2 months after stopping medication. These results imply

methylphenidate may accelerate the recovery process but

its effect on longer-term outcomes is unclear.

Amantadine

Mode of action

Amantadine has a mixed set of actions including weak an-

tagonism at the N-methyl D-aspartate (NMDA) receptor.

NMDA receptors are distributed throughout the striatum

with a presence on presynaptic dopamine terminals and

GABA interneurons. Blockade of the former causes reduc-

tions in dopamine release and thus the latter mechanism is

more likely to be important for the actions of amantadine

on dopamine release. The GABAergic interneurons are

located postsynaptically to the dopamine terminals in the

striatum. Glutamate signalling through the NMDA recep-

tors inhibits dopamine release via local regulation and

through modulation of inputs from the ventral pallidum

and cortical inputs (Kegeles et al., 2000; Hernandez

et al., 2003). Excitatory cortical inputs into the striatum

can also disinhibit striatal GABAergic interneurons

(Farber et al., 2003; Homayoun and Moghaddam, 2007),

and this may contribute to the enhancing effects of aman-

tadine on dopamine release.

Evidence of use

Six studies of mixed design suggest potential improvement of

cognitive problems post TBI with amantadine (Table 3). The

largest study randomized 184 vegetative or minimally con-

scious TBI patients into either an amantadine or placebo

group 4–16 weeks after injury (Giacino et al., 2012). This

study showed accelerated recovery in behaviour over the 4

weeks of treatment, although this effect was lost 2 weeks

after drug cessation. It is therefore not clear from this study

whether amantadine improves long-term outcome or accel-

erates the recovery process to a similar end-point. An earlier

smaller study also showed accelerated recovery in the acute

setting (Meythaler et al., 2002). One case series, one case

study and a retrospective chart review all showed improve-

ments in measures of attention, information processing speed

and executive functions when amantadine was given in the

chronic phase (Nickels et al., 1994; Kraus and Maki,

1997a,b). The case study showed an additional benefit

when levodopa was given in combination with amantadine

(Kraus and Maki, 1997a). However, another small (n = 10)

double-blind, randomized, controlled trial failed to show any

significant effects (Schneider et al., 1999). An interesting

open-label designed study showed improvements in execu-

tive functions that correlated with increased left PFC resting

metabolism identified by 18F-FDG PET (Kraus et al., 2005),T
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providing a possible mechanistic insight into the drug’s

mode of action.

Dextroamphetamine

Mode of action

Dextroamphetamine increases catecholamine levels by in-

hibiting presynaptic reuptake via downregulation of cate-

cholaminergic transporter expression (Kahlig and Galli,

2003), stimulating catecholaminergic release and inhibit-

ing monoamine oxidase (Fleckenstein et al., 2007).

Evidence of use

Two single case controlled studies and one retrospective

observational study have assessed the use of dextroam-

phetamine post-TBI (Supplementary Table 1). The retro-

spective study identified 9 of 15 patients who responded

to treatment but significant experimental flaws make in-

terpretation of this result difficult (Hornstein et al.,

1996). Two studies used a double-blind, crossover

design in a single patient. Both demonstrated improve-

ments in information processing speed and sustained at-

tention, with one also showing improvements in verbal

learning (Evans et al., 1987; Bleiberg et al., 1993).

Bromocriptine

Mode of action

Bromocriptine is a selective D2 dopamine receptor agon-

ist, binding to both presynaptic autoreceptors (which in-

hibit dopamine release) as well as postsynaptic sites (Fuxe

et al., 1981). Due to its higher affinity for the presynaptic

autoreceptor, it has been proposed to have an inhibitory

effect on dopamine function at lower doses, whereas at

higher doses its effects at the postsynaptic receptor are

thought to predominate, resulting in a facilitatory effect

on the dopaminergic system (Meltzer et al., 1983;

Luciana and Collins, 1997).

However, one study suggested that low doses in ro-

dents (2.5 and 5 mg/kg) could increase extracellular dopa-

mine levels (Brannan et al., 1993), aligning with in vitro

evidence that at low concentrations bromocriptine can

act as a partial D2 antagonist (Lieberman and

Goldstein, 1985). The relevance of this potential increase

in dopamine levels after single, low doses to the use of

the drug in clinical settings is not currently known.

Therefore, bromocriptine has a complex effect on the

dopaminergic system that is dependent on the dose,

mediated through a combination of pre- and postsynaptic

effects.

Evidence of use

There is mixed data regarding the use of bromocriptine

(Supplementary Table 2). One case series identified an

improvement in all cognitive outcomes measured

(working memory, list learning and verbal fluency), anT
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effect that persisted for 2 weeks following drug cessation

(Powell et al., 1996). A further randomized, controlled trial

showed a single low dose (2.5 mg) improved certain execu-

tive functions (e.g. planning and inhibition). Other cogni-

tive functions such as working memory did not improve,

leading the authors to conclude that bromocriptine had a

targeted effect on these cognitive processes rather than a

non-specific improvement in arousal or attention

(McDowell et al., 1998). A retrospective case review also

showed a greater degree of functional recovery when used

in severe cases over a 2–6 month window (Passler and

Riggs, 2001). More recent randomized trials, however,

using both regular higher dosing (5 mg twice daily for 6

weeks) and a single low dose (1.25 mg) failed to show a

benefit in attention or working memory (Whyte et al.,

2008; McAllister et al., 2011a).

Atomoxetine

Mode of action

Atomoxetine increases extracellular levels of noradrenaline

via inhibition of noradrenaline reuptake. It has high affinity

for the noradrenaline transporter and much lower affinity

for DAT (Bymaster et al., 2002). Animal models, however,

have shown that in the PFC it increases dopamine levels as

well as noradrenaline (Bymaster et al., 2002; Swanson

et al., 2006), which is likely to be due to the role of the

noradrenaline transporter in regulating dopamine levels in

the PFC (Bari and Aston-Jones, 2013). There is also evi-

dence that atomoxetine acts as an NMDA antagonist at

clinically relevant doses (Ludolph et al., 2010).

Evidence of use

Just one trial has explored the use of atomoxetine. Fifty-

one patients with a moderate-to-severe traumatic brain

injury and self-reported attentional problems did not

show improvement over a 2-week treatment period

(Ripley et al., 2014).

Guanfacine

Mode of action

Guanfacine is a selective �-2A noradrenergic agonist.

Alpha-2A receptors are predominantly concentrated in the

PFC and the locus coeruleus and have been widely impli-

cated in the control of PFC cognitive functions (Arnsten,

1998).

Evidence of use

One trial including functional MRI showed a benefit in

working memory in 13 patients with mild traumatic brain

injury 1-month post-injury (McAllister et al., 2011b). The

functional imaging showed increased activation in working

memory associated regions, suggesting its effects maybe via

direct manipulation of PFC functioning. Interestingly, this

group tested the same working memory paradigm with

bromocriptine and found no benefit (McAllister et al.,

2011a). Therefore, given the evidence that both methylphen-

idate (a dual dopaminergic and noradrenergic agonist) and

guanfacine (a selective �-2A noradrenergic agonist) improve

working memory but bromocriptine (a dopamine D2 recep-

tor agonist) does not, the results suggest that noradrenergic

�-2A receptor stimulation, or stimulation of dopamine D1

receptors as these can have similar downstream intracellular

effects (Arnsten et al., 2012), maybe key to improving work-

ing memory function.

Levodopa

Mode of action

Levodopa is the precursor to dopamine. It is converted

within dopaminergic neurons to dopamine via the enzyme

L-amino acid decarboxylase (L-AAD).

Evidence of use

There has been one small observational study (Lal et al.,

1988). Twelve moderate-to-severe patients were assessed on

a titrated dose of levodopa (combined with carbidopa) with-

out placebo control. The study suggested improvements

based on clinical observation in a range of cognitive domains

but a formal, properly controlled study is clearly required.

Stratifying patient treatment
based on catecholaminergic
function
Although there is a broad evidence base that catecholami-

nergic medications can improve certain cognitive impair-

ments following TBI, the magnitude of effects in

individual patients are very variable. This variability reflects

the heterogeneous nature of TBI and has important impli-

cations for future work. Clinical trials in unselected TBI

patients need large numbers to be adequately powered,

and to date many have been underpowered (Warden

et al., 2006). One way to improve the design of future

trials is to select patient subgroups based on the presence

of specific types of neuropathology that are more likely to

respond to specific cognitive enhancers. An individual’s

‘catecholaminergic status’ is likely to be a key factor deter-

mining catecholaminergic treatment response because the

synaptic concentrations of catecholamines are non-linearly

related to cognitive function (the inverted-U relationship

discussed above). A principled way to select patients for

trials would be to define an individual’s catecholaminergic

state after TBI. Advanced imaging techniques using struc-

tural, molecular and functional imaging techniques all offer

the potential to directly assess the catecholaminergic sys-

tems and therefore help guide treatment selection (Fig. 5).

In addition, innate factors such as age, gender and genetics

that alter an individual’s catecholaminergic status might be
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incorporated into these decisions as they influence a pa-

tients ‘position’ on the inverted-U curve.

Structural imaging

Structural imaging techniques allow damage to the catecho-

laminergic systems to be assessed. Damage to the brainstem

nuclei can be assessed visually using standard MRI se-

quences. For example, susceptibility weighted imaging pro-

vides a sensitive marker for microhaemorrhages. More

sophisticated quantitative approaches provide additional in-

formation. Volumetric measures can quantify atrophy

within brainstem nuclei [Fig. 5A(III)]. In addition,

damage to the structural connections can be measured

using diffusion imaging. Although the catecholaminergic

fibres are poorly myelinated and therefore unlikely to be

directly measured by techniques such as diffusion tensor

imaging (DTI), the white matter tracts through which

they travel could be used as a surrogate marker for

damage to the ascending catecholaminergic fibres. In

Parkinson’s disease, DTI techniques have been used to

assess the integrity of the ‘nigrostriatal tract’ and show

abnormalities consistent with the degree of motor deficits

in these patients (Zhang et al., 2015). A similar approach

could be used in TBI patients [Fig. 5A(II)], with the result-

ing measures potentially used as the basis for machine

learning methods to predict effects of TBI in individuals

(Hellyer et al., 2013).

Molecular imaging

Molecular imaging allows direct measurement of catecho-

laminergic function. Numerous PET and SPECT ligands are

available to measure dopamine function and others are in

development for the noradrenergic system (Ding, 2014; Fig.

3). The dopaminergic ligands available can be used to

assess synthesis capacity, receptor density as well as dy-

namic endogenous release of dopamine (Farde et al.,

1987; Volkow et al., 1994; Cumming et al., 1997). These

have been applied widely in Parkinson’s disease and other

neurodegenerative conditions (Tai and Pavese, 2013), but

have been used surprisingly little in TBI.

As already discussed, two studies show dopaminergic

abnormalities following TBI, including reductions in striatal

DAT levels using both SPECT (Donnemiller et al., 2000)

and PET (Wagner et al., 2014). SPECT imaging offers the

advantages of lower cost and commercial availability, with

ligands such as 123I-ioflupane (DaTScan) already widely

used clinically to aid the diagnosis of parkinsonian dis-

orders. PET, however, provides greater spatial resolution

and improved quantitative assessment. One important con-

sideration to bear in mind when performing molecular ima-

ging is the effect of atrophy or focal tissue loss, which are

both common following TBI, this reduces apparent ligand

binding potential and therefore needs to be accounted for

when using these techniques.

In both normal ageing and Parkinson’s disease, reduced

striatal DAT levels have been shown to relate to cognitive

deficits (Marie et al., 1999; Muller et al., 2000; Mozley

et al., 2001). However, it is currently unclear how striatal

DAT levels relate to cognitive function after TBI and

whether they predict treatment response. Two of the au-

thors (P.O.J. and D.J.S.) are currently conducting a clinical

trial of methylphenidate where we will test whether striatal

DAT levels predict treatment response (Imperial College

London, 2016).

Further molecular imaging studies are needed to explore

the exact nature of catecholamine disruption in TBI pa-

tients and its relation to cognitive function. 18F-

DOPA can be used to assess dopamine synthesis in the

presynaptic terminal (Cumming et al., 1997). In

Parkinson’s disease, reductions in this tracer in the caudate

correlate with impairments in neuropsychological perform-

ance (Bruck et al., 2001). Behavioural abnormalities after

TBI may be mediated through distinct catecholaminergic

receptors and these could be probed using molecular ima-

ging. D1 receptors are related to many aspects of cognitive

function affected by TBI and their levels can be measured

using 11C-SCH 23390 and 11C-NNC 112 (Elsinga et al.,

2006). In addition, extrastriatal D2/3 receptors can be mea-

sured with 11C-PHNO, which may have relevance in

neuropsychiatric problems following TBI (Wilson et al.,

2005a).

Animal work demonstrates a dynamic element to dopa-

mine abnormalities after TBI, with reduced dopamine re-

lease from intact dopaminergic terminals (Wagner et al.,

2005). This finding suggests that dynamic measures of cat-

echolamine function may be necessary to fully characterize

abnormalities after TBI. PET provides methods to

study this. For example, 11C-raclopride is a displaceable

D2/3 receptor antagonist (Farde et al., 1986) that can pro-

vide quantitative information about striatal D2/3 receptor

levels, but is also sensitive to fluctuations in endogenous

dopamine release as increasing dopamine levels reduce
11C-raclopride binding due to competitive binding (Breier

et al., 1997; Laruelle, 2000). This latter property allows ‘dy-

namic’ assessment of an individual’s dopaminergic system

in response to either medication (such as a stimulant) or

increased cognitive demands (Egerton et al., 2009).

The noradrenergic system has been less extensively

investigated via nuclear imaging methods, although sev-

eral noradrenaline transporter (NET) ligands have been

developed and are increasingly being used in research

(Ding, 2014). More recently, an �-2C adrenoreceptor

ligand (11C-ORM-13070) has been shown to be sensitive

to monitoring extracellular noradrenaline concentrations,

thereby offering the potential to assess noradrenergic

neurotransmission in vivo (Lehto et al., 2015). As nor-

adrenaline abnormalities are likely to be central to some

cognitive impairments after TBI, the application of specific

noradrenergic ligands in TBI is a promising research

direction.
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Network function

As discussed above, measuring activity within ICNs such as

the DMN provides another potential method of guiding

treatment choices. Network abnormalities after TBI can

be identified using techniques such as functional MRI,

which could allow a more rational choice about drug treat-

ment as information accumulates about the network effects

Figure 5 Assessment of the catecholaminergic systems. (A) Structural assessment. (I) Standard MRI sequences can be used to assess

evidence of damage to catecholaminergic structures (e.g. the brainstem nuclei). Susceptibility weighted imaging (SWI), T1 and fluid-attenuated

inversion recovery (FLAIR) sequences are differentially sensitive. This example shows these three sequences in the same individual with no

obvious damage on T1 or FLAIR but evidence of small haemorrhages in the upper mid-brain/cerebral peduncles on susceptibility weighted imaging.

(II) White matter damage is common after TBI and can be assessed using MRI techniques such as DTI. Whole brain analysis can be performed in

an individual with the top left image demonstrating areas with increased damage (red) compared to a normative control group. By specifying a

region of interest (e.g. white matter area containing the nigrostriatal tract highlighted in purple in the top right image), damage to specific tracts can

be assessed. (III) Volumetric analysis of the substantia nigra. (B) Molecular assessment. (I) 123I-Ioflupane (DaTscan) and PHNO. (II) 11C-(S,S)-

methylreboxetine (11C-MRB) ligand that binds to the noradrenaline transporter (Smith et al., 2015). (C) Functional connectivity and ICN

assessment. (I) Functional connectivity analyses can be used to assess impairments in functional connectivity between different regions of interest.

This may provide a biomarker for damage to the catecholaminergic systems, e.g. disruption in the functional connectivity between the brainstem

(blue) and cortical regions (nodes in the default mode network in red/yellow). (II) Connectivity within and between ICNs for an individual can

provide a unique signature that may provide information regarding injury and relate to the cognitive deficits. Assessment of a derived connectivity

matrix has the potential to be used to guide treatment as well as assessing an individual’s response to treatment. FPCN = fronto-parietal control

network.
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of particular drugs. For example, if methylphenidate is

known to enhance the normal task-dependent deactivation

of the DMN that is lost after TBI, then the drug would be a

logical choice in patients with this network abnormality.

Therefore, assessing an individual’s impairments in network

activity using functional MRI offers a potential mechanism

by which treatment may be selected if the effect of the

treatment at this network level is known (Fig. 5C) (Leech

and Sharp, 2014). In addition, this approach allows treat-

ment response to be measured. This network-based ap-

proach could be particularly useful following TBI, where

patients have a wide-range of underlying causes for cogni-

tive problems that will require distinct approaches to

treatment.

Innate and genetic factors affecting
catecholaminergic status

Many innate factors also affect the catecholaminergic sys-

tems and are likely to influence the choice of treatment

following TBI. Ageing reduces both dopaminergic

(Kaasinen and Rinne, 2002) and noradrenergic levels

(Mann et al., 1980; Marcyniuk et al., 1986), and influences

the response to catecholaminergic drugs (Turner et al.,

2003; Castner and Goldman-Rakic, 2004; Sambataro

et al., 2012). Therefore, TBI patients would be expected

to show significant age-dependent variations in treatment

response. There is also evidence that gender alters the

dopaminergic system, and that oestradiol levels act in com-

bination with genetic variants in the dopamine system to

affect cognitive measures in an inverted-U manner (Jacobs

and D’Esposito, 2011). Experimentally, animal models of

TBI have demonstrated gender-specific altered response to

catecholaminergic therapies, with female rats displaying

little cognitive benefit but excessive motor response when

treated with doses of methylphenidate that are therapeutic

for males (Wagner et al., 2007).

Genetic variations in the catecholaminergic systems may

also influence how these systems are affected by TBI. As

discussed above, variability in COMT genotype has signifi-

cant effects on dopamine status, primarily within the PFC,

which is likely to be relevant to cognitive problems follow-

ing TBI. In addition, genetic variations in the linked

ankyrin repeat and kinase domain (ANKK1) and dopamine

D2 receptor genes have been associated with differences in

cognitive recovery following TBI (Failla et al., 2015). As

recently hypothesized by Myrga et al. (2015), these innate

factors could be used to predict an individual’s baseline

location on the inverted-U framework for cognitive per-

formance. Hence, patients already lying to the left of the

inverted-U for innate or genetic reasons are likely to be

more susceptible to the hypodopaminergic effects of TBI

and also more likely to respond to dopaminergic medica-

tions. In the future, an assessment of these factors for an

individual would be usefully incorporated into treatment

decisions.

Conclusions
The cause of cognitive problems following TBI is multifac-

torial but there is good evidence that disruption to the

catecholaminergic neurotransmitter systems is an important

cause in some patients. These systems modulate many of

the cognitive functions that are impaired following TBI and

are themselves affected by TBI. Drugs affecting dopamine

and noradrenaline can enhance cognitive impairments in

some cases, but treatment response is very variable. This

variability is probably due to the heterogeneity of the dis-

ease as well as the non-linear effect of the catecholamines

on cognitive functions. Therefore, an accurate assessment

of an individual’s catecholaminergic status is likely to be

necessary to direct treatment. There are various molecular,

structural and functional imaging methods that could

achieve this but further research is required. In particular,

further mechanistic work is needed to delineate the exact

nature and cause of disruption to the catecholaminergic

systems, and the utility of these imaging techniques in pre-

dicting response to treatments also need to be established.
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