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indicates increased potential for viral manipulation of microbial
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Microbial communities in oxygen minimum zones (OMZs) are known to have significant impacts on global biogeochemical cycles,
but viral influence on microbial processes in these regions are much less studied. Here we provide baseline ecological patterns
using microscopy and viral metagenomics from the Eastern Tropical North Pacific (ETNP) OMZ region that enhance our
understanding of viruses in these climate-critical systems. While extracellular viral abundance decreased below the oxycline, viral
diversity and lytic infection frequency remained high within the OMZ, demonstrating that viral influences on microbial
communities were still substantial without the detectable presence of oxygen. Viral community composition was strongly related to
oxygen concentration, with viral populations in low-oxygen portions of the water column being distinct from their surface layer
counterparts. However, this divergence was not accompanied by the expected differences in viral-encoded auxiliary metabolic
genes (AMGs) relating to nitrogen and sulfur metabolisms that are known to be performed by microbial communities in these low-
oxygen and anoxic regions. Instead, several abundant AMGs were identified in the oxycline and OMZ that may modulate host
responses to low-oxygen stress. We hypothesize that this is due to selection for viral-encoded genes that influence host
survivability rather than modulating host metabolic reactions within the ETNP OMZ. Together, this study shows that viruses are not
only diverse throughout the water column in the ETNP, including the OMZ, but their infection of microorganisms has the potential

to alter host physiological state within these biogeochemically important regions of the ocean.
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INTRODUCTION

Marine viruses are now recognized to play key roles in marine
ecosystems by lysing ~10-40% of bacteria per day, recycling
organic matter and nutrients via the ‘viral shunt’, and contributing
to microbial niche differentiation through horizontal gene transfer
[1-4]. In addition, some viruses encode “host genes” or auxiliary
metabolic genes (AMGs) that metabolically reprogram their hosts
during infection, including the well-documented cases of cyano-
bacterial viruses that express photosynthesis genes during
infection and contribute significantly to marine microbial photo-
synthesis [5-7]. The extent of viral-encoded AMGs is just now
being revealed, with detected AMGs so far also involved in C, N, P,
and S metabolism [4, 8-12].

While viral ecology and the potential influences of viral-encoded
AMGs has been examined in global-scale studies (e.g.,[10, 13]),
there have been few investigations of viruses in marine oxygen
minimum zones [11, 12, 14-16]. Marine oxygen minimum zones
(OMZs) may be considered as ‘extreme environments’, but they
constitute ~7% of oceanic volume and have increased substantially

due to global climate change over the past fifty years, especially in
the North and Equatorial Pacific where the volume of waters
considered functionally anoxic (dissolved O, below the detection
limit [17]) have quadrupled [18, 19]. The expansion of OMZs is
predicted to have positive feedbacks on climatologically active
trace gases including CH,4, N,O and DMS [20, 21] as a result of the
chemotrophy performed by the unique microbial assemblages
present in these regions [20]. Microbes in these areas deplete
bioavailable nitrogen through anaerobic ammonium oxidation
(anammox) and denitrification, accounting for 30-50% of oceanic
nitrogen removal [21, 22], and also play roles in dissimilatory sulfur
oxidation and sulfate reduction [23]. Recent research in OMZs has
largely focused on the cycling of these major nutrients, as well as
the taxonomically and functionally unique microbes responsible
for key metabolic processes [20, 21].

Previous research has shown that oxygen is a driver of viral
community structure in the Northeast Subarctic Pacific Ocean
OMZ [24] and significantly affects viral infections of the
ecologically important SUPO5 bacteria in the Saanich Inlet OMZ
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Fig. 1

Depth profiles of environmental and microbial parameters. Oxygen concentration and chlorophyll fluorescence (A, B), viral (C, D) and

bacterial concentrations (E, F), VMR (G, H), and FIC (1, J) at each station are displayed. Error bars represent standard deviations of the means of
triplicate samples. Shaded areas in I-J represent positive and negative 95% confidence intervals for single samples.

[8]. Prior work to explicitly examine OMZ viral community
structure using non-quantitative methods suggests that viral
diversity is low in the Eastern Tropical South Pacific (ETSP) OMZ,
but that OMZ viruses contain diverse metabolic genes that can
affect biogeochemical cycling [14]. However, more recent work in
the ETSP and Cariaco Basin has suggested that viral diversity
remains high within the OMZ [15, 16]. Thus, there is critical need
for quantitative datasets across diverse OMZs to provide the
foundational understanding required to incorporate viruses into
OMZ ecosystem models.

Here we investigated viral community structure and potential
ecological impacts at two stations in the Eastern Tropical North
Pacific (ETNP; Supplementary Fig. S1), which, located south of Baja
California, encompasses 41% of global OMZ area and is the largest
permanent OMZ [19]. To this end, we combined quantitative
microscopic and metagenomic methods to evaluate the influence
of environmental parameters, including oxygen concentrations,
on (i) viral and bacterial abundances, (ii) lytic viral infection
frequency in bacteria, (iii) viral community structure based on
morphology and metagenomically-derived viral population abun-
dances, and (iv) the distribution of viral-encoded AMGs. The
results from this study indicate that while viral diversity and
infection frequency remain high within the ETNP OMZ, the
structure of the viral community and the composition of viral-
encoded AMGs are substantially altered in the oxycline and the
functionally anoxic core of the OMZ.

The ISME Journal (2022) 16:972 - 982

RESULTS AND DISCUSSION
Environmental conditions, viral and bacterial abundance, and
frequency of infection
Physiochemical parameters were measured using a Conductivity
Temperature Depth profiler equipped with a fluorometer and
dissolved oxygen sensor at two stations of the ETNP, one
nearshore and one offshore. Examination of environmental
conditions revealed similarities and key differences between the
nearshore and offshore stations in the ETNP (Supplementary
Fig. S1). While both stations exhibited a strong OMZ with oxygen
concentrations below detection for ca. 700 m within the water
column, the nearshore station revealed a shoaling of the oxycline
relative to the offshore station (Fig. 1A, B). Temperature and
oxygen profiles at both stations indicated the presence of a
diurnal mixed layer modulated by air temperature and wind-
driven mixing (Supplementary Fig. S2A, B). We thus use the term
“mixed layer” as a depth category indicating the upper,
oxygenated portion of the water column, distinct from the
oxycline, OMZ, and below the OMZ. Phosphate and nitrate levels
increased with depth beginning in the lower portion of the
oxycline at both stations (Supplementary Fig. S2C-F) and there
were noticeably higher peaks of nitrite and ammonium in the
oxycline at the offshore station (Supplementary Fig. S2G-J).
Depth profiles of chlorophyll fluorescence also differed
markedly between the stations, with a single peak at the offshore
station, but two maxima at the nearshore station (Fig. 1A, B). This
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secondary chlorophyll maximum (SCM) within the OMZ of the
nearshore station has been previously documented in both the
ETNP [17] and Eastern Tropical South Pacific (ETSP) OMZs [25]. This
oxygen-depleted portion of the water column maintains an active
photosynthetic community, including Synechococcus and Prochlor-
ococcus [26] that drive a cryptic oxygen cycle in which oxygen is
consumed as fast as it is produced [25, 27].

Microbial abundances for each sample were quantified using
epifluorescence microscopy. Viral and bacterial concentrations
had local maxima in the upper, oxygenated portion of the water
column, with positive correlations between them and with oxygen
concentration (Fig. 1C-F, Supplementary Fig. S3). While some
studies have reported secondary maxima of viral concentrations in
marine and freshwater OMZs [14, 28, 29], this was not evident in
the ETNP. There were notable differences between stations,
including (i) approximately twice the concentration of viruses in
the mixed layer at the nearshore station, resulting in @ much
higher virus-to-microbe ratio (VMR), and (ii) the presence of a
secondary maximum in bacterial concentration at the nearshore
SCM that was accompanied by only a minor increase in viral
concentration (Fig. 1C-H).

In contrast to the VMR, the frequency of infected cells (FIC) as
estimated using transmission electron microscopy was similar
between stations, reaching local maxima in the mixed layer as well
as the OMZ (Fig. 11, J). VBR was thus not correlated with FIC
(Supplementary Fig. S3), reflecting the complex balance between
production of viruses and bacteria with removal of viruses through
decay [30, 31] and mortality of bacteria resulting from numerous
sources [32]. The increased FIC in the OMZ indicated that viruses
were still lytically replicating in the OMZ as has been observed in
multiple prior studies [28, 29, 33-35], resulting in a lack of
correlation with oxygen concentration (Supplementary Fig. S3).

Morphological diversity of viral communities

Viral morphology, including morphotype and capsid diameters,
was analyzed using quantitative transmission electron microscopy
[36]. We found non-tailed viruses to be the most abundant
morphotype at both stations and all depths, ranging from 56-93%
of each sample (Supplementary Fig. S4), consistent with a global
survey in the upper water column [36]. The percent of non-tailed
viruses was positively correlated with depth, and negatively with
temperature and oxygen (Supplementary Fig. S3). This suggests
either (i) an increase with depth of bona fide non-tailed dsDNA
viruses such as the Autolykiviridae, which infect among others
many widespread Vibrio species [37], (ii) an increased abundance
of non-tailed ssDNA viruses [38], or (iii) a loss of tails as an
initial step of natural tailed virus decay as has previously been
suggested [36].

Viral capsid widths were also similar to those reported for the
global upper oceans [36]. While viral capsid width did vary
significantly among all samples (global ANOVA p < 0.001), there
was not an evident trend in overall capsid widths with depth or
between stations (Supplementary Fig. S5). However, capsid width
distributions were significantly related to depth, temperature,
oxygen, chlorophyll fluorescence, nitrite, and nitrate (p <0.05,
Supplementary Fig. S6A-I). This indicates that viral community
structure in the ETNP, based on morphology, is driven directly or
indirectly by environmental variables as has previously been
shown [13, 36].

Population-level diversity of viral communities

Viral contigs were identified using VirSorter [39] and clustered into
10,601 populations at 95% ANI. Unsurprisingly, less than 1% of
observed viral populations could be assigned a taxonomic
identification (Supplementary Fig. S7) using RefSeq (version 74),
as is common in marine viromes [40]. None of the fifty most
abundant viral populations (12.2% of total abundance), which are
mostly present in the low-oxygen samples at both stations, could
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be assigned a specific taxonomic identification. Of the less-
abundant populations that could be identified, most were closely
related to Synechococcus phages or other cyanophages, which
have previously been identified in the mixed layer, oxycline, and
even below the oxycline in the ETNP [26, 41]. Diversity (Shannon
H') and evenness (Pielou’s J) of viral community structure based
on relative population abundances in this study were similar to
previous results from a global ocean survey [13], with a mean
diversity and evenness of 7.12 and 0.899, respectively. Both viral
diversity and evenness were consistent among all samples (Fig. 2A,
B). This is in contrast to a previous study in the ETSP OMZ, which
reported much lower viral alpha diversity and evenness, especially
within the OMZ core [14]. However, that study used multiple
displacement amplification to amplify nucleic acids for the
metagenomes, which was later shown to have substantial biases
(reviewed by [42, 43]). A recent study reported that diversity of
free-living and particle-associated bacterial communities in the
ETNP peaks near the SCM [44]. However, the slight increase in
oxycline viral diversity we observed was not significant (Fig. 2A),
indicating that extracellular viral community diversity patterns do
not mirror those of the bacterial community.

For both stations combined, viral communities in the surface
mixed layer were quite distinct from those in low-oxygen samples,
with few shared populations (Fig. 2C, D). Most viral populations
were unique to either the mixed layer or the oxycline (n =5914),
with populations in the OMZ core predominantly representing a
subset of the oxycline community (Fig. 2C). Hierarchical clustering
of the viral populations revealed two clusters comprised of the
mixed layer communities and the low-oxygen communities,
respectively, and their subtle differences in relative abundance
of viral populations was visualized using a heatmap (Supplemen-
tary Fig. S8). Mixed layer communities showed clear differences
between stations, as well as compared to low-oxygen commu-
nities (Fig. 2D), and all communities were significantly related to
temperature, salinity, oxygen, and chlorophyll fluorescence (p <
0.05 for all; Supplementary Fig. S9A-I). After removal of the mixed
layer communities, the low-oxygen subset of communities
clustered by depth category rather than station (Fig. 2E) and
were significantly influenced by depth, temperature, salinity,
oxygen, chlorophyll fluorescence, nitrite and nitrate concentra-
tions (p < 0.05 for all, Fig. S9J-R). These findings are similar to a
previous investigation of viral communities in the subarctic North
Pacific OMZ that showed significant differences between photic
and aphotic samples, though distance from shore was less
influential [24]. In the ETNP, we suspect that coastal upwelling
accounted for the differences between mixed layer samples [45],
while the strong influences of oxygen and depth overwhelm
factors that differ between our stations in low-oxygen samples.

General AMG trends

Viral-encoded AMGs can metabolically reprogram their hosts
during infection and significantly impact biogeochemical cycling,
even accelerating host niche differentiation [10, 46-48]. While
most of the genes that could be assigned functions within the
ETNP viral metagenomes were related to viral replication,
including DNA replication and repair and viral structural proteins,
there were 247 genes annotatable as Class | AMGs, and 81 as Class
I AMGs (3% of total genes; Supplementary Fig. S10). As with prior
studies (reviewed by Roux et al. [10, 41]), we found that AMGs in
the ETNP viral community were related to environmental
conditions. The majority of AMGs were present at both the
offshore and nearshore stations at similar abundances (Fig. 3A). Of
the few AMGs that were unique to one station, the most abundant
were related to membrane transport and phospholipid metabo-
lism at the offshore station (Fig. 3B). This distribution of AMGs was
consistent with the population-level structure of the viral
community in which the samples below the mixed layer were
highly similar between stations (Fig. 2D, E).

The ISME Journal (2022) 16:972 - 982
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Fig. 2 Diversity and distribution of viral populations in the ETNP. Shannon index H' (A) and Pielou’s evenness J' (B). The Euler diagram (C)
shows the number of unique and shared viral populations in each group of samples for both stations combined (stress = 0.0011%).
Correspondence analyses based on relative abundances of viral populations compare all samples (D) and the subset of samples from low-
oxygen environments (E). For panels D and E, the percentage of inertia explained by CA1 and CA2 are reported on the axes.

While 52% of the AMGs were present in both mixed layer and
low-oxygen samples, the functional categories of these shared
AMGs were present at different abundances within depth
categories (Fig. 3C). Eleven shared gene categories were more
abundant in low-oxygen samples, including amino acid metabo-
lism, carbohydrate metabolism, cell wall and capsule formation,
and sporulation genes (Fig. 3C). Of the AMGs unique to the mixed
layer, most were related to photosynthesis, respiration, and amino
acid metabolism, while those unique to low-oxygen samples were
primarily related to amino acid metabolism and membrane
transport (Fig. 3D). These larger differences in AMG composition
when comparing mixed layer versus low-oxygen samples again
support the population-level comparisons of the viral commu-
nities (Fig. 2D), in which oxygen concentration is a major driver of
viral community composition (Supplementary Fig. S9E).

To further investigate the distribution of AMGs, we examined
depth profiles of AMG functional categories at each station
(Fig. 4A-G and Supplementary Fig. ST1A-L). All AMGs combined
exhibited relatively low abundance in the mixed layer at both
stations, increased dramatically in the oxycline, and then
decreased with depth (Fig. 4A). The number of unique and shared
AMGs among depth categories (Fig. 4A, inset) also reflected
overall community structure (Fig. 2C), with the majority of AMGs
shared across all depth categories, and the most unique AMGs
found within the mixed layer and oxycline. This indicates that
viruses do not utilize many unique AMGs among the depth
categories, but instead that commonly occurring ones are
selectively enriched in specific sections of the water column as
described below.

Viral influences on photosynthesis, nitrogen, and sulfur
metabolism

AMGs related to photosynthesis were unsurprisingly most
abundant in the mixed layer (Fig. 4B), where they function to
enhance host photosynthetic activity (reviewed by Aldunate et al.
[41]). We also observed extremely low abundances of

The ISME Journal (2022) 16:972 - 982

photosynthesis-related AMGs below the OMZ as has been
reported in the subarctic North Pacific OMZ, likely due to phage
released from sinking organic particles at depth [11]. The most
abundant photosynthesis AMGs in the ETNP, psbA/D and psbN,
encode for photosynthetic reaction center proteins and have been
observed in oceanic datasets previously [11, 14, 49, 50] as they are
widely distributed within marine cyanophage isolates. However,
while the abundance of these photosynthesis genes was
significantly positively correlated with oxygen and chlorophyll
concentrations (Supplementary Fig. S12), they were much less
abundant at the nearshore station than expected given the high
chlorophyll concentration present in the mixed layer and SCM
(Fig. 1A, B). Their low abundance at the nearshore station SCM
may be due to (i) a high prevalence of uncharacterized viruses that
infect the unique cyanobacterial ecotypes in the SCM as found in
the ETSP [25, 26], which may not contain these core photosynth-
esis genes, (ii) a selection for viruses that do not contain these
genes, as they may only impart a selective advantage under high
light conditions [51, 52], or (iii) a counter selection of these genes
because the viruses have short latent periods during which the
viral genes could not be sufficiently expressed to boost host
photosynthetic potential, as has been suggested with some
cyanobacterial isolates previously [50, 52].

Recent work regarding viruses in the ETSP and Cariaco basin has
suggested viral AMGs may influence nitrogen and sulfur cycling
within the low-oxygen layer [12, 16]. Although we detected some
AMGs related to these processes within the ETNP, they were
present at low abundances. Depth profiles of nitrogen metabolism
AMGs revealed a peak in the mixed layer and oxycline at the
nearshore and offshore stations, respectively (Supplementary
Fig. S11H), then decreasing with depth. Sulfur metabolism AMGs
were most abundant in the mixed layer at both stations and
decreased with depth, though the nearshore station remained
slightly higher abundance until below the OMZ (Supplementary
Fig. S11K). We detected no genes associated with the processes
that dominate nitrogen cycling in the ETNP, including annamox,
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(within panel C).

nitrite oxidation, denitrification, and ammonia oxidation [44, 53-55].
We detected draT, which is part of a system that inhibits
nitrogenase under high-ammonium conditions or energy depletion
[56], though this gene was present at very low levels only in the
OMZ core of the offshore station. Additionally, nifU was present in
all samples, though as it is often found in organisms not capable of
fixing nitrogen [57, 58], we categorized it as an AMG related to
iron—sulfur cluster assembly. The most abundant sulfur metabolism
gene we detected was tauD, which catalyzes the oxygenolytic
release of sulfite from taurine [59] and was present in the mixed
layer and oxycline of both stations. SoxY, which encodes part of a
thiosulfate oxidizing enzyme complex [60], was also observed in
this study at very low abundance in the oxycline and OMZ core of
both stations. Sulfur metabolism AMGs previously observed in
marine viromes, namely dsrC, soxB, and rdsrA, were not observed
here [8, 61-63].

Although the ETNP is known to contain a near-complete
nitrogen cycle [21, 54, 55, 64] and our chemical profiles indicated
the presence of these processes (Supplementary Fig. S2E-J), as
well as sulfur oxidation and sulfate reduction [63], we detected
very few AMGs related to these processes. This seemingly
introduces a paradox in which viral-encoded AMGs do not include
genes related to the dominant nitrogen and sulfur cycling
processes in the ETNP. However, these results are parsimonious
with the hypothesis that viruses will only contain AMGs required
to enhance rate-limiting steps in reactions beyond that of which
the host requires in order to increase viral replication [10, 471.

SPRINGER NATURE

Thus, we suggest that AMGs related to nitrogen and sulfur
metabolism in the ETNP are so low in abundance because host
metabolic processing of these nutrients is sufficient to sustain
requirements for viral replication. Our results indicate that viruses
influence host physiological state in the ETNP more than
manipulate metabolic reactions.

Viral replication strategy and influences on host physiological
state

We found that phage integrases increased in relative abundance
with depth at the offshore station, while at the nearshore station
they peaked in the oxycline and decreased below it (Fig. 4C). This
suggests that a higher portion of the extracellular viruses at the
offshore station seem to have the ability to integrate into their
hosts as lysogens, which has been suggested to increase with
depth and environmental stress [29, 65]. The increased potential
for lysogeny with elevated stress is consistent with the patterns
regarding viral-encoded genes related to host stress
described below.

Iron-sulfur cluster synthesis, sporulation, toxin-antitoxin (TA),
and antimicrobial resistance (AMR) genes were detected through-
out the ETNP. Depth profiles revealed that all three AMG
categories were most abundant in the oxycline at both stations
and decreased in abundance with depth (Fig. 4D-F), resulting in
no correlations with environmental variables (Supplementary
Fig. $S12). Iron-sulfur clusters are extremely important prosthetic
groups required by many microbial enzymes central to

The ISME Journal (2022) 16:972 - 982
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metabolism [58, 66-69], including electron transfer and modula-
tion of gene expression under oxidative and redox stress
conditions [67, 70]. The most abundant of these AMGs we
detected were involved in cluster assembly or biosynthesis,
several of which have been observed in previous viromes
[11, 71]. One such assembly gene, suff, has been shown to
enhance the activity of sufS to assemble housekeeping iron-sulfur
clusters under oxidative stress [72-76], but cannot function alone
[74], so its presence without sufS in the ETNP suggests that host
production of sufE is the limiting step in this iron—sulfur cluster
formation. The other most common iron-sulfur cluster biosynth-
esis pathways are the isc [58, 66, 77] and nif [57, 58] operons: of
these, we detected nifU as mentioned above. Additionally, we
detected several hits to iron-sulfur cluster binding domains
commonly found in ferredoxins that mediate electron transfer in
various metabolic reactions [78]. The presence of these iron-sulfur
cluster genes suggests that viruses may be boosting host
response to oxidative and redox stress, especially in the oxycline.

We detected several AMGs related to sporulation, a bacterial
survival strategy where the cell produces a hardy endospore form
that can persist for extended periods of time [79]. These genes
were most abundant in the oxycline and decreased with depth
below it, with the offshore remaining more abundant than the
nearshore in the OMZ core (Fig. 4E). The most abundant of these,
spoVR, along with spoVS, spollE, and spoVG, are related to the
formation of bacterial spores [80]; of these, spoVS has been seen in
soil viromes previously [9]. Phages have been shown to persist in
bacterial spores, and some lysogenic phages of Clostridium
botulinum and Bacillus species have been shown to encode key
virulence genes as well as sporulation genes to modulate host
metabolism [81-84]. Though many spore-producing microbes are
obligate or facultative anaerobes, the unique stressors of the
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unstable oxycline environment may limit these hosts. Thus, ETNP
viruses may then help induce sporulation in their hosts to persist
similarly to previously characterized phages of Clostridium and
Bacillus species [83, 85].

We found that the distribution of AMGs related to TA systems
was similar to that of sporulation-related genes, though there was
little difference between stations (Fig. 4F). The main driver of this
pattern was a gene that encodes zeta toxin, a well-characterized
plasmid-borne postsegregational killing system [86, 87]. Some
temperate phages that persist as extrachromosomal prophages or
integrate into host genomes use genes for plasmid inheritance
and persistence, including toxin-antitoxin genes [65], though we
did not identify any integrase genes on populations containing TA
AMGs. A gene for the SymE toxin, part of a type | TA system that is
often found in bacterial chromosomes [88], was present at much
lower abundance. In the oxycline, host cells under extreme
environmental stress may be more likely to expel plasmids or
extrachromosomal prophages because maintenance of them is
costly [89-91]. We suggest that postsegregational killing systems
such as the zeta toxin can deter hosts from expelling viruses while
under the unique stressors of the oxycline, allowing the viruses to
lyse their hosts.

AMGs related to AMR and virulence peaked in the oxycline at
the nearshore station and within the oxycline and OMZ core
offshore (Supplementary Fig. S11B, L), resulting in negative and
positive correlations with depth and temperature, respectively
(Supplementary Fig. S12). Viruses have been shown to help
defend their hosts from other microbes in free-living and biofilm
settings, as well as influence their bacterial host’s ability to infect
their own multicellular hosts and/or establish productive infection
[65, 84, 87, 92, 93]. Two of the most abundant AMGs related to
AMR and virulence in our dataset are related to the production of
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alginate, which helps form the capsule of P. aeruginosa that
protects the bacterium from antibiotics and is important in biofilm
production [94]. Other abundant AMGs include tylF and a
tryptophan halogenase, which are involved in the production
pathways of a macrolide that functions against Gram positive
bacteria, and the broad-spectrum anti-fungal pyrrolnitrin, respec-
tively [95, 96]. The most abundant virulence gene, a glycosyl-
transferase involved in the biosynthesis of lipopolysaccharide,
contains an endotoxin in some Gram-negative bacteria including
Pseudomonas [97-99]. Boosting the production of antimicrobial
compounds and virulence factors in their hosts could allow viruses
in the ETNP to keep the hosts alive long enough to facilitate viral
replication. Overall, the presence of these genes related to host
physiological state is once again parsimonious with the hypothesis
that viruses will only contain AMGs required to enhance rate-
limiting steps in reactions beyond that of which the host requires
in order to increase viral replication [10, 47]. In the ETNP, the
survivability of bacterial hosts under stress due to varying nutrient
and oxygen conditions may be a more important factor in viral
success than speeding up energy or carbon production.

AMGs related to vitamin metabolism

Vitamin and cofactor metabolism AMGs exhibited relatively low
abundance in the mixed layer, increased dramatically in the
oxycline, and then decreased with depth at both stations (Fig. 4G),
resulting in no correlations with environmental variables (Supple-
mentary Fig. S12). Several of these AMGs, including the most
abundant pantoate transferase, are involved in the biosynthesis of
pantothenate (vitamin Bs), which is required for the synthesis of
coenzyme A (CoA, [91, 92]), or are directly involved in CoA
synthesis [100, 101]. CoA is an essential coenzyme that plays a key
role in fatty acid metabolism and the biosynthesis of peptides
[100]; notably, we detected a pantothenate kinase, which is the
rate-limiting step in CoA biosynthesis, in all samples except below
the OMZ. This suggests that viruses in the ETNP may be boosting
pantothenate and CoA levels to bolster host metabolism. We also
observed cobT, related to the aerobic production of cobalamin in
bacteria [102], mostly in the oxycline of both stations. Recent
research suggests the importance of cobalamin-producing
archaea, especially Thaumarchaeota [103], in the ETNP as potential
drivers of community structure as this highly-sought after
coenzyme is produced by few organisms [104, 105], giving them
a selective advantage. A study investigating putative archaeal
viruses in the ETNP OMZ region did not identify any viruses with
cobalamin biosynthesis genes, including cobT, but this may be
due to the conservative nature of the analysis [105]. Thus, viruses
in the ETNP may be modulating community structure by boosting
cobalamin production in their hosts, especially in the oxycline at
both stations and in deep offshore areas.

CONCLUSIONS

Marine OMZs constitute a relatively large portion of the world’s
oceans and harbor unique microbial communities that perform
globally-important biochemical processes (reviewed by Paulmier
et al. [19-21, 27]), yet information regarding the viral communities
within these regions remains sparse. Here we demonstrate that
there are some similarities, as well as substantial differences, in viral
community ecological metrics throughout the water column in the
ETNP OMZ region. While viral abundance decreased within the low-
oxygen portion of the water column, the frequency of infected cells
was approximately equivalent to that found in the upper-ocean
mixed layer, indicating that viruses are both present and actively
infecting bacteria within the OMZ. We also demonstrate that the
diversity of the viral communities was consistently high throughout
the water column, but that viral community population structure
diverged significantly with oxygen concentration. Given the
divergent microbially-driven biogeochemical cycling that occurs
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as a function of oxygen concentration in marine OMZs, and the
importance of AMGs as drivers of viral population structure [4, 8-
11], we expected that viral-encoded AMGs involved in nitrogen and
sulfur cycling would drive the differences observed in viral
community structure throughout the water column in the ETNP.
Instead, we observed that while a high portion of annotated PFAMs
were shared among the depth categories, their relative abundances
indicate strong selection for different viral-encoded AMGs with
varying oxygen concentration that are not related to nitrogen or
sulfur cycling (Fig. 5). Our study shows that the AMGs enriched in
the upper oxygenated water column are related to increasing host
metabolism, including photosynthesis, while viral AMGs within the
low-oxygen portion of the water column are primarily related to
enhancing the host bacterium’s ability to deal with oxygen-related
stress (Fig. 5). We reason that this is due to the requirement of
viruses to streamline their genomes and retain only essential genes,
as they are limited by physical space in their capsids [106] and the
energy and materials required for DNA replication [107]. We
speculate that there may only be selective pressure to maintain
AMGs within viral populations under certain conditions, such as the
presence of nitrogen-related metabolism genes found only within a
certain range of nitrogenous nutrient concentrations [10]. Thus,
when host metabolism is sufficient to support viral replication,
viruses may have no need to encode AMGs related to the
predominant biogeochemical reactions being performed by their
hosts in that environment, but will instead selectively encode any
gene that increases viral replication. In the ETNP OMZ region, our
study indicates that viral influences are not predominantly related
to directly altering biogeochemical reactions, but instead they
encode genes that enhance their bacterial hosts’ ability to
sufficiently maintain metabolic functions for the virus to replicate.

METHODS

Sample collection

Samples were collected from the ETNP OMZ during the OMZ Microbial
Biogeochemistry Expedition cruise (R/V New Horizon, 13-28 June 2013) as
previously described [105]. Samples were collected from two stations:
Station 6 was located on the continental shelf (18°55'12” N and 104°53'24"
W), and Station 2 was located ~450 km west of Station 6 (18 °55'12" N and
108°47'60" W). We thus use the terms “nearshore” and “offshore” to
describe Stations 6 and 2, respectively. At each station, water samples were
collected from eight depths spanning the mixed layer (5m, 30 m, 60 m at
the offshore station; 5m and 30 m at nearshore station), oxycline (85 m
and 130 m at offshore station: 60 m, 85m, 100 m at nearshore station),
OMZ core (300 m and 800 m at both stations), and below the OMZ (1000 m
at both stations). Seawater was collected using Niskin bottles on a rosette
containing a Conductivity Temperature Depth profiler (Sea-Bird SBE
911plus, Sea-Bird Electronics Inc., Bellevue, WA, USA) equipped with a
Seapoint fluorometer (Seapoint Sensors Inc., Exeter, NH, USA) and SBE43-
dissolved oxygen sensor (Sea-Bird Electronics Inc., Bellevue, WA, USA). CTD
profiles from this study were deposited at the Biological & Chemical
Oceanography Data Management Office (BCO-DMO) [108].

Microbial abundances

Triplicate samples (4ml) for viral and bacterial enumeration were
preserved with EM-grade glutaraldehyde (2% final concentration), flash-
frozen in liquid nitrogen and stored between -72°C and —80°C until
analysis. Viral and bacterial concentrations were determined using a
previously described method [109] in which thawed samples were filtered
onto 0.02-um- pore-size filters (Anodisc, Whatman, GE Healthcare Life
Sciences, Piscataway, NJ, USA), stained with SYBR Gold nucleic acid stain
(Invitrogen, Life Technologies, Carlsbad, CA, USA) and enumerated using
an epifluorescence microscope (Axio Imager. D2, Zeiss, Jena, Germany).
Microbial abundances determined in this study were deposited at the
BCO-DMO [110].

Frequency of infected cells
The percentage of cells with active lytic viral infections was determined by
transmission electron microscopy to quantify the frequency of visibly
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more likely to facilitate host persistence long enough for viral replication to occur.

infected cells [31] using intact cells [35]. Samples preserved with EM-grade
glutaraldehyde (2% final concentration) were flash-frozen and stored at
-80°C until analysis. Samples (12 ml) were centrifuged onto 200-mesh
copper grids with carbon-stabilized formvar support (Ted Pella, Redding,
CA, USA) made hydrophilic with 20s of glow discharge with a sputter
coater (Hummer 6.2, Anatech, Battle Creek, MI, USA) for 1 h at 55,000 x g
using an ultracentrifuge (LM-80, Beckman Coulter, Brea, CA, USA) with a
swing-bucket rotor. Grids were then stained with 0.5% uranyl acetate and
analyzed as previously described [35] to determine the frequency of visibly
infected cells using a transmission electron microscope (FEI Tecnai Spirit).
The frequency of infected cells was then calculated from the frequency of
visibly infected cells [111]. Frequency of infected cells data generated from
this study were deposited at BCO-DMO [112].

Morphological analysis of viral communities

Viral capsid diameters, tail length, and morphotype were determined using
the gTEM method described previously [36]. Samples preserved with EM-
grade glutaraldehyde (2% final concentration) were flash-frozen and
stored at -80 °C until analysis. Viruses were deposited onto TEM grids using
an air-driven ultracentrifuge (Airfuge CLS, Beckman Coulter, Brea, CA, USA),
followed by positive staining with 2% uranyl acetate (Ted Pella, Redding,
CA, USA). TEM grids were dried at room temperature overnight then stored
desiccated until analysis using a transmission electron microscope (Philips
CM12 FEI, Hilsboro, OR, USA) with 100 kV accelerating voltage. Micrographs
of 100 viruses were obtained per sample using a MacroFire Monochrome
charge-coupled device camera (Optronics, Goleta, CA, USA) and analyzed
using Image) software (U.S. National Institutes of Health, Bethesda, MD,
USA) [113] to measure the capsid diameter and tail length, and classify
their morphotype as previously described [36]. Morphological data
generated in this study were deposited at BCO-DMO [114].

Metagenome preparation and analysis

Ten samples were used for metagenomics (30 m, 85 m, 100 m, 300 m, and
1000 m at the nearshore station: 30 m, 60 m, 130 m, 300 m, and 1000 m at
the offshore station). For each sample, 20 liters of seawater were filtered

The ISME Journal (2022) 16:972 - 982

through a 0.22 um-pore-size filter (Steripak; Millipore Sigma, Burlington,
MA, USA) and viruses in the filtrate were concentrated using iron chloride
flocculation as previously described [115, 116] followed by storage at 4 °C.
Viral particles were then resuspended using an ascorbic EDTA buffer and
their DNA extracted using a Wizard DNA purification system (Promega,
Fitchburg, WI, USA) after treatment with DNase | as previously described
[105]. Extracted DNA was then sheared with a Covaris ultra-sonicator
(Woburn, MA, USA), gel-purified to select fragments of 160-180bp in
length, and then ligated and amplified using the standard lllumina
protocol with PCR ampilification of the library. Sequencing was carried out
on a HiSEq 2000 system at the DOE Joint Genome Institute (Berkeley, CA,
USA), except for the 300 m sample from the offshore station which was
sequenced at the University of Arizona Genome Center. Metagenome
accession numbers and metadata were deposited at BCO-DMO [117].

Sequencing reads were quality trimmed to remove bases with quality
scores lower than two standard deviations from the average score (across
sequencing cycles), and bases with a quality score lower than 20. Reads
>95 bp were assembled using Idba_ud v1.1.2 with default parameters
[118]. Assembled contigs were analyzed using the program VirSorter v1.0.2
with the "--virome’ option [39], and all contigs =10 kb of categories 1 and 2
as well as manually curated contigs and prophage predictions of
categories 3-6 were selected for further analysis. Selected viral contigs
were clustered with nucmer 3 [119] at 295% ANI across =80% of their
lengths, as in [13], to generate a pool of non-redundant ‘population
contigs’. Information about the metagenome assemblies and VirSorter
contigs can be found in Table S1.

Taxonomic annotation of the viral populations was determined based
on affiliation of >50% of the genes with a reference genome from RefSeq
(version 74; using a BLASTp comparison with thresholds of 50 for bitscore
and 10° for e value). All viral populations generated as described above
were used in subsequent analyses regardless of their taxonomic
annotation. Functional annotations of all predicted proteins from ETNP
viral contigs was based on a comparison to the PFAM domain database
v.27 [120] with HmmSearch [121] thresholds of 30 for bit score and 1073
for e value). PFAMs hits were manually categorized by their general
function, including “DNA replication, recombination, repair; nucleotide
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metabolism”, “lysis”, “metabolism”, “structural”, and “transcription, transla-
tion, protein synthesis”. Of these, 270 could not be assigned to a functional
category but did match a PFAM domain, whereas 452 did not match any
PFAM domain (12.4% and 11.4% bp mapped/kb genome/Mb metagen-
ome, respectively). We included Class | or Il AMGs in our analyses based on
the established definitions [11], resulting in 329 identified AMGs (16.1% bp
mapped/kb genome/Mb metagenome). Of these, 81 could only be
identified as peripherally associated with metabolism (8.0% bp mapped/
kb genome/Mb metagenome).

Statistical analyses

All statistical analyses were conducted using R version 3.5.1 [122]. Depth
profiles, bar plots, stacked bar plots, and the heatmap were created using
the ggplot2 package [123]. Shannon index (H') and Pielou’s evenness (J)
were calculated using ‘diversity’ function in the vegan package [124]. Euler
diagrams were visualized using the ‘venneuler’ function in the venneuler
package [125].

Correlations were performed using the ‘rcorr’ function of the Hmisc
package [126] using Pearson coefficients, and visualized using the
‘corrplot’ function of the corrplot package with an a of p<0.05 [127].
We used a binomial test to compare the number of significant correlations
we identified to the expected false-positive rate as previously described
[128]. Briefly, we compared the expected false-positive rate of the number
(n) of tests at our significance level a (n x a) to our number of significant
correlations (‘successes’ under a binomial distribution). Because our
number of determined significant correlations far exceeded the false-
positive rate, we considered the correlations to be significant.

Correspondence analysis was performed using the ‘cca’ function in the
vegan package [124] to obtain an ordination plot of viral communities
based on viral capsid diameters or populations for each sample as in [36].
Average optimal capsid diameter bin size was determined using the
method of [129]. Vectors and response surfaces of environmental variables
were fitted to the CA ordination plot using the function ‘envfit’ in vegan
with 10,000 simulations to estimate p values and the function ‘ordisurf’ in
vegan, respectively [124]. Hierarchical clustering was performed using the
‘pvclust’ function of the pvclust package [130] with 100 bootstrap
replications to estimate p values.
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