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Leptin is a peptide hormone that regulates fat stores in the body and appetite by controlling the feeling of satiety. �is hormone is 
secreted by the white adipose tissue and plays a role in the storage and mobilization of fatty acids. Mutations of the LEP gene have 
been associated with obesity in different populations; it is a multifactorial disease that constitutes a major public health problem. 
In this study, we evaluated the impact of missense SNPs in the LEP gene extracted from dbSNP using 8 computational prediction 
tools. Out of the total of 4337 SNPs, 93 were nsSNPs (nonsynonymous single nucleotide polymorphisms). Among 93 nsSNPs, 12 
(S46L, G59S, D61N, D100N, N103K, C117S, D76V, S88C, P90R, I95N, L161R, and R105W) variants were predicted to be the most 
deleterious by prediction so�ware. On these 12 deleterious SNPs, 8 variants (S46L, G59S, D61N, D100N, N103K, C117S, L161R, and 
R105W) were located in the conserved positions and showed a decrease in structure stability which was evaluated by I-Mutant and 
Mupro. �en, by analyzing the different interactions between different amino acids in wild and mutated proteins, we assessed the 
structural impact of the deleterious modifications using the YASARA so�ware. Among 8 deleterious nsSNPs, we revealed structure 
changes in the 6 variants S46L, G59S, D100N, L103K, R105W, L161R, two of which R105W, N103K were previously reported as 
associated with obesity. Our study suggests 6 deleterious mutations could play an important role in contributing to human obesity 
and worth to be included in association and functional studies, then may be a drug target.

1. Introduction

Metabolic syndrome (MetS) is a worldwide epidemic complex 
disorder determined by a cluster of interconnected factors, 
which are dyslipidemia, hypertension, and dysregulated glu-
cose homeostasis, while abdominal obesity and/or insulin 
resistance (IR) are the main manifestations of the syndrome. 
All of these factors increase the risk of cardiovascular athero-
sclerotic diseases and type 2 diabetes mellitus [1]. Most of the 
epidemiological studies show that MetS’s prevalence ranges 
between 20% and 45% of the population [2].

Abdominal obesity has indeed recently gained increasing 
and special attention as the most prevalent manifestation of 
metabolic syndrome according to the National Cholesterol 

Education Program Adult Treatment Panel III (NCEP-ATPIII) 
and the International Diabetes Federation (IDF) [3]. Moreover, 
in 2016, the number of overweight people reached as high as 
1.9 billion adults worldwide of whom more than 650 million 
were obese [4].

�e imbalance between caloric consumption and energy 
expenditure mainly characterizes obesity, which is defined, 
according to the World Health Organization by the calculation 
of the body mass index (BMI) determined by the following 
formula: weight in kilograms/height in meters 2, as well as by 
measuring waist circumference. Indeed, a BMI of 30 or more 
and a waist circumference greater than 80 cm in women and 
94 cm in men indicate obesity [5]; furthermore, it becomes 
morbid when the BMI value exceeds 40 [4].
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�is global epidemic disease represents the fi�h leading 
cause of death in the world. �is is explained by the fact that 
it is associated with various dangerous diseases, such as car-
diovascular disease (CVD), hypertension (HT), type 2 diabetes 
mellitus (T2DM), hyperlipidemia, stroke, certain types of 
cancer, sleep apnea, liver, and gall bladder disease [6].

In addition obesity is a dysfunctional marker of fat tissue 
caused by interactions between environmental (inadequate 
diet, sedentary behavior, psychological, and sociocultural 
beliefs) and genetic factors [7]. While the hereditary nature of 
the corpulence is indisputable, it has been reported, with 
expansion of genome wide association studies, that more than 
50 genes are directly related to obesity. Among these genes, 
the LEP gene is considered as one of the major genetic factors 
involved in the obesity pathogenesis [3, 7–10].

�e LEP gene, also known as Ob gene, is located on chro-
mosome 7q31.3; it contains 3 exons separated by 2 introns 
[11] and codes for a mature and functional protein, the Leptin 
protein. �is protein belongs to the family of long-chain helical 
cytokines and contains 146 amino acids. �e Leptin protein 
is a metabolic and neuroendocrine hormone that is mainly 
secreted in the white fat tissue by the differentiated adipocytes. 
It is also an essential factor for the brain development and the 
formation of hypothalamic pathways, thus playing a key role 
in the regulation of body weight by inhibiting food intake and 
stimulating energy expenditure [12].

�e Leptin communicates the state of the body energy to 
the central nervous system. �is action is predominantly done 
via the long form Leptin receptor b (LepRb) expressed mainly 
in the hypothalamus neurons, considered as the principal tar-
get for central Leptin action [13]. �e LepRb is responsible for 
the main effects of Leptin on the energy homeostasis, through 
its Leptin binding domain and its extended intracellular sig-
naling domain. Mechanisms of Leptin Action and Leptin 
homeostasis control of feeding are carried out by its anorectic 
action. �e Leptin protein regulates the orexigenic NPY/AgRP 
neurons by their inhibition and the anorexigenic POMC/
CART neurons by their activation, furthermore it regulates 
the expression and the release of their neuropeptides and, 
therefore it leads to the food intake decrease and the energy 
expenditure increase [14]. Moreover, the binding of Leptin to 
its LepRb receptor triggers the activation of a signaling path-
way by the activation and the phosphorylation of JAK2 tyros-
ine kinase associated to the LepRb receptor, which itself 
activates the phosphorylation of three tyrosine residues on 
LepRb, of which Y1138 activates STAT3 signaling and medi-
ates the main effects of Leptin on the energy homeostasis [15].

In addition, it has been shown that clusters of LepRb 
located in extrahypothalamic sites are crucial as mediators of 
the anorexic action of the Leptin and thus the body weight 
control. Attached to these sites, Leptin controls different aspects 
of the energy homeostasis, including anorexia circuits, hedonic 
feeding, energy expenditure, and glucose homeostasis [16].

It is now confirmed that the dysregulation of central neural 
circuits is one of the main causes of obesity, which may be the 
result of the lack or the absence of Leptin signaling caused by 
LEP gene mutations [16, 17].

However, it has been shown that in obese people, there 
is a high level of Leptin which correlates positively with 

adipose tissue and does not have any effect of reducing nutri-
tion and thus preventing obesity. �is has been explained 
by a physiological mechanism of resistance to the catabolic 
effects of the Leptin action on obesity. �is may be due to 
an alteration of the Leptin transportation, a cellular LepRb 
signaling perturbation and rarely a genetic alteration of 
LepRb [19].

Bioinformatics hold a central place in modern biology, 
mainly involving computer sciences, mathematics, and statis-
tics in order to analyze and treat biology information. 
Bioinformatics dispose of many tools vaguely implicated in 
the analysis of protein structure and function as well as the 
identification of multiple sequence alignment of homologous 
proteins, the search for sequence patterns and the evolutionary 
analysis.

Biocomputing plays a key role in understanding genomic 
variations implication, especially single-nucleotide polymor-
phisms (SNPs), which represent the most frequent genetic 
variations in the human genome.

�e nonsynonymous SNPs (nsSNPs) are the single nucle-
otide variations that affect the coding region of the protein 
and modify the mutated site-encoded amino acid, which may 
lead to a structural modification of the mutated protein, and 
may thus cause function alteration. �ese variations can be 
the origin of complex and frequent diseases such as obesity, 
diabetes, and hypertension [20].

Hence, the aim of our work was to perform a computa-
tional analysis in order to determine the most functionally 
deleterious SNPs of human LEP gene using a cluster of muta-
tion prediction tools, conservation and stability in addition to 
a structural analysis.

2. Materials and Methods

Our computational strategy was similar to that used by differ-
ent previous studies [21–23] which includes the prediction of 
deleterious nsSNPs in LEP gene from the public datasets using 
various bioinformatics tools. High-risk nsSNPs were further 
selected for conservational, stability, and structural analysis. 
�e workflow in Figure 1 illustrates the overall computational 
process of identification and characterization of candidate 
functional nsSNPs in LEP gene (Figure 1).

2.1. Dataset Collection.  Human LEP gene information data 
were retrieved from OMIM database (Online Mendelian 
Inheritance in Man) (https://www.omim.org/), while the SNPs 
information of the LEP gene was retrieved from the NCBI 
dbSNP database (https://www.ncbi.nlm.nih.gov/snp/).

2.2. Prediction of Deleterious nsSNPs.  SIFT (Sorting 
Intolerant From Tolerant) was used to differentiate between 
tolerant and intolerant coding mutations. �is so�ware is 
based on multiple alignment information to predict tolerated 
or deleterious substitution for every position of the query 
sequence; this server calculates the probability of an amino 
acid to be tolerated at a specific position. Substitutions with 
probabilities less than a tolerance index of 0.05 are predicted 
to be intolerant or deleterious; those superior or equal to 0.05 

https://www.omim.org/
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are predicted to be tolerated [24]. PolyPhen2 (Polymorphism 
Phenotyping) is a so�ware which predicts the possible 
effects of an amino acid substitution on the structure and 
the function of a protein by using structural and comparative 
evolutionary considerations. �is prediction is based on 
several features including the sequence, phylogenetic and 
structural information that characterize the substitution. 
Each amino acid substitution has a qualitative prediction 
(“probably damaging”, “potentially damaging”, “benign” or 
“unknown”). �e PolyPhen-2 score varies from 0.0 (tolerated) 
to 1.0 (deleterious) [25].

Other so�ware were used to confirm the impact of del-
eterious mutations on the structure and function of Leptin: 
MAPP (Multivariate Analysis of Protein Polymorphism) 
[26] predicts the functional effect of amino acid substitu-
tions based on the quantification of physicochemical devi-
ation present in a column of a protein sequence alignment. 
�e greater is the calculated deviation, the higher is the 
probability that amino acid substitution affects the protein 
normal function. PANTHER (Protein Analysis �rough 
Evolutionary Relationships) [27], uses evolutionary conser-
vation of amino acid to predict pathogenic coding variants. 
It uses an alignment of evolutionarily related proteins to 
estimate how long the current state of a given amino acid 
has been preserved in its ancestors. �e longer the preser-
vation time, the higher the probability of functional conse-
quences. PhD-SNP (Predictor of human Deleterious Single 
Nucleotide Polymorphisms) [28], is a trained classifier that 

can predict whether a nsSNP is disease related or not based 
on a machine learning technique. Starting from the protein 
sequence, this Support Vector Machine (SVM) classifier can 
distinguish between deleterious and neutral nsSNPs. SNAP 
(screening for nonacceptable polymorphisms) [29], a neu-
ral-network based classifier for the prediction of the func-
tional effects of single amino acid substitutions. SNAP 
utilizes sequence information, as well as functional and 
structural annotations to predict whether a nsSNP is likely 
to disrupt protein function. PredictSNP [30], is a consensus 
classifier that combines the output of six different prediction 
tools (MAPP, nsSNP Analyzer, PANTHER, PhD-SNP, 
PolyPhen-1, PolyPhen-2, SIFT, and SNAP) to evaluate the 
effect of nsSNPs on protein function. PROVEAN [31], is a 
sequence based prediction tool that predicts the functional 
effect of protein variations. �is tool employs an align-
ment-based score that measures the change in sequence 
similarity of a protein before and a�er the introduction of 
an amino acid variation.

2.3. Sequence Conservation.  ConSurf is a web server used to 
analyze amino acids conservation (https://consurf.tau.ac.il). 
�is algorithm identifies the functional regions of a protein by 
evaluating the degree of this conservation. �e grades varying 
from 1 to 9 indicate the extent of conservation of the amino 
acid throughout evolution. Consequently, grade 9 refers to the 
highest conserved residue, while grade 1 represents the least 
conserved residue [32].
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Figure 1: Computational methodology used for the functional nsSNPs analysis.
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identity with the experimental protein sequence. �e model 
with a QMEAN of −1, 82 and a sequence identity of .99, 32% 
was selected. �e PDB code of this model is 1AX8. Mutant 
models were constructed manually from the native protein 
FASTA file. �en, �e wild type and the mutant structures 
were subjected to the energy minimization by the Gromacs 
5.1.4 program [37]. At the end, structural analysis was carried 
out using YASARA so�ware allowing molecular visualization 
and comparison of 3D structure between the wild type and 
the mutant proteins [38].

3. Results

3.1. SNP Datasets.  We collected a total of 4337 SNPs, 
including 93 nsSNPs, 72 were synonymous variants, and 733 
were located in 3′ UTR region and 14 in 5′ UTR region. In 
addition, 2930 were in the intronic region, 595 and 91 were, 
respectively, at the upstream and downstream regions of the 
gene. Others section include diverse variants such as inframe 
deletion, coding sequence variant, and splice acceptor variant. 
Results are shown in Figure 2.

3.2. Prediction of Deleterious NsSNPs.  We were interested 
in the nsSNPs by predicting their structural and functional 
effect on the Leptin protein. Among the 93 nsSNPs, only 9 

2.4. Prediction of Change in Protein Stability.  I-Mutant (https://
folding.biofold.org/cgi-bin/i-mutant2.0) is a neural network 
used for automatic prediction of SNPs that affect the protein 
stability. It also measures the degree of protein destabilization 
[33] and gives the predicted free energy change value (DDG) 
and the sign of the prediction: Increase or Decrease. �e DDG 
value is the Gibbs free energy value from the mutated protein 
minus the Gibbs free energy value from the wild type to Kcal/
mol. A DDG value below 0 means that the stability of the 
protein has decreased, whereas a DDG superior to 0 means it 
has increased [34].

�e stability was also evaluated by Mupro tool (https://
mupro.proteomics.ics.uci.edu). �is web server is developed 
by two machine learning methods: Support Vector Machines 
and Neural Networks that predict the incidence of single site 
amino acid mutation on protein stability. Both of them were 
trained from a large set of mutations data with an accuracy 
superior to 84% and calculated a score that ranged from −1 to 
1 as the prediction reliability [35].

2.5. Analysis of Structural Impacts of SNPs.  �e FASTA 
sequence of Leptin protein was extracted from Uniprot 
Protein Database (https://www.uniprot.org/), while the 3D 
structure was built using Swiss Model web server (https://
swissmodel.expasy.org) [36]. �is server generates reliable 
structure models by giving their QMEAN and the degree of 
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Figure 2: Distribution of SNPs present in the LEP gene.
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3.4. �e Impact of Predicted Deleterious Mutations on Leptin 
Protein Stability.  �e evaluation of the effect of the 8 nsSNPs 
predicted as deleterious from the previous steps on the stability 
of the Leptin structure was done by I-Mutant and Mupro. All 
of these showed a decrease in structure stability and were 
selected for the structural analysis. �e results are shown in 
Table 3.

3.5. Structural Analysis.  �e structure of the Leptin protein was 
analyzed by YASARA so�ware, which identifies the different 
types of bonds between the different residues generating the 
3D structure of the protein. �ese bonds play a major role in 
the stability and the folding of protein while each disruption 
in these interactions affects structure and might interrupt the 
function of the Leptin.

�e different structural interactions that exist in the wild-
type protein were compared with the mutated proteins. �e 
result showed that there is a variation in the number of differ-
ent types of interactions between the native and 6 Leptin 
mutants.

nsSNPs (S46L, G59S, D61N, D100N, N103K, C117S, D76V, 
L161R and R105W) were selected as being probably or totally 
deleterious by SIFT and PolyPhen (Table 1). �e values filtered 
by SIFT were between 0 and 0.02, while those filtered by 
PolyPhen were between 0, 60, and 1. However, the nsSNPs 
S88C, P90R, and I95N were predicted to be less deleterious 
by PolyPhen, but other prediction so�ware confirmed their 
deleterious effects (Table 2). In total, 12 nsSNPs (S46L, G59S, 
D61N, D100N, N103K, C117S, D76V, S88C, P90R, I95N, 
L161R, and R105W) were selected to be the most deleterious 
by prediction so�ware.

3.3. Analysis of Conservation.  �e results of the Consurf 
analysis showed that within the 12 nsSNPs, only 8 deleterious 
missense SNPs were located in conserved regions with a score 
of 7-8-9. Among these, 4 were predicted as functional residues 
and 2 were predicted as structural residues. �e 4 residues 
D76V, S88C, P90R, and I95N were predicted as variable 
residues; therefore, there were not selected for the further 
analysis. Results are shown in Figure 3.

Table 1: NsSNPs predicted as deleterious by SIFT and POLYPHEN.

GnomAD: �e genome aggregation database. ExAC: �e exome aggregation consortium. 1000G: 1000 genomes. TOPMED: �e trans-omics for precision 
medicine. NA: Not available.

SNP MAF AA Position SIFT Score POLYPHEN Score
rs866158426 NA S46L Deleterious 0.01 Probably_damaging 0.96
rs200575914 0.00000 (1/245916. GnomAD) G59S Deleterious 0 Probably_damaging 1
rs886061972 NA D61N Deleterious 0 Probably_damaging 0.96
rs724159998 0.00001 (1/121404. ExAC) D100N Deleterious 0 Probably_damaging 0.99
rs28954113 0.005 (27/5008. 1000G) N103K Deleterious 0 Probably_damaging 0.99
rs1051206328 NA C117S Deleterious 0 Probably_damaging 0.99
rs771956117 0.00001 (1/115652. ExAC) L161R Deleterious 0 Probably_damaging 1
rs1332916395 0.00001 (3/246190. GnomAD) D76V Deleterious 0 Probably_damaging 0.99
rs199838573 0.00000 (1/246242. GnomAD) S88C Deleterious 0 Probably_damaging 0.68
rs1206379074 0.00001 (1/125568. TOPMED) P90R Deleterious 0.02 Probably_damaging 0.60
rs1226851396 0.00001 (1/125568. TOPMED) I95N Deleterious 0.01 Probably_damaging 0.65
rs104894023 NA R105W Deleterious 0 Probably_damaging 0.99

Table 2: Confirmation of the deleterious nsSNPs by other prediction so�ware.

D: Deleterious, N: Nondeleterious.

AA positions PROVEAN_pred PredictSNP MAPP PhD_SNP SNAP PANTHER
S46L D D D N D D
G59S D D D N D D
D61N D D D N D D
D100N D D D N D D
N103K D D D D D N
C117S D D D D D D
L161R D D D D D D
D76V D D D D D D
S88C D D D D D D
90R D D D D D D
I95N D D D D D D
R105W D D D D D D
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at positions 101, 109, 83, and 76, respectively, and a single 
hydrophobic binding with Leucine at position 79. In the 
mutated protein in which Arginine was replaced by 
Tryptophan, bonds at positions 79, 76, and 83 were lost, while 
no changes were observed in positions 109 and 101 
(Supplementary Material, Figure  S3).

�e L161R variant, the wild protein had also 2 hydrogen 
bonds, one with the Serine residue at position 164 and the 
other with the Methionine residue at position 157, in addition 
to 2 other hydrophobic bonds; one with the �reonine residue 
at position 31 and the other with the Isoleucine residue at 
position 35. However, all these bonds disappeared in the 
mutated protein (Supplementary Material, Figure  S4).

In contrast, the variants D61N and C117S did not reveal 
any changes between the mutated and the wild-type protein.

4. Discussion

Many genomic variants especially SNPs have been identified 
through high-throughput technologies. �e National 
Biotechnology Information Center (NCBI) has created the 
dbSNP database that contains nearly 44 million validated 
human SNPs [39]. One of the interests of bioinformatics is to 
differentiate between the deleterious and neutral SNPs [40]. 
Particularly, In silico analysis of nsSNPs  provides an essential 
tool to select potential variants that can be associated with a 
disease.

For the S46L variant, a single hydrophobic binding, was 
identified in the wild-type protein between Serine at position 
46 and Asparagine at position 93, while a new hydrophobic 
binding between leucine at position 46 and Aspartate at posi-
tion 44 was added to the mutated protein whose Serine was 
replaced by Leucine, in addition to the hydrophobic binding 
cited in the wild-type protein (Figure 4(a)).

Regarding the G59S variant, Guanine had a single hydro-
gen bond with the Leucine residue in the wild-type protein, 
which disappeared in the mutated protein (Supplementary 
Material, Figure S1).

Regarding the D100N variant, the wild-type protein had 
3 hydrogen bonds formed with the 3 Leucine residues, 
Glutamine and Arginine, respectively, at positions 104, 96, and 
41. �e mutated protein kept the same residue at position 104 
with the addition of another hydrogen bond in position 96 
plus the disappearance of the hydrogen bond in position 41 
(Figure 4(b)).

For the N103K variant, the wild protein showed the pres-
ence of 2 hydrogen bonds; one with the Leucine residue in 
position 107 and the other with the Asparagine residue in 
position 99. In addition to these two bonds in the mutated 
protein, there was an appearance of a hydrogen bond with the 
Aspartate residue at position 100 as well as a hydrophobic 
bond with the Leucine residue at position 34 (Supplementary 
Material, Figure S2).

At position 105, the Arginine residue had 4 hydrogen 
bonds with the Leucine, Histidine, Glutamine, and Aspartate 
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strengthening the nsSNPs’ prediction and bias avoiding, 
several programs were solicited [44].

From 93 nsSNPs, 8 variants (S46L, G59S, D61N, D100N, 
N103K, R105W, C117S, and L161R) were predicted to be the 
most deleterious and located in conserved positions. 
According to the study established by Grasso et al., the activity 
of Leptin is localized in parts of the areas between residues 
106–140 [45], which includes the variant C117S of our col-
lection. While disulfide bonds and their interactions are 
strongly conserved in nature, their change is expected to alter 
the protein folding and thus its function. �erefore, the var-
iant C117S is suspected to be a potential candidate for Leptin 
destabilization.  

�e Leptin protein consists of four antiparallel α-helices 
connected by two long crossover links and one short loop, 
arranged into a le�-hand twisted helical bundle (Figure 5) 
[46]. �e refolding is maintained by different interactions 
ensuring their stability. A�er the first step, I-mutant and 
Mupro were used to evaluate the protein structure stability. 
�ese tools predicted that the 8 nsSNPs identified as deleteri-
ous decrease the stability which can significantly affect the 
protein structure. According to Wang and Moult study, 
approximately 80% of their disease associated nsSNPs dataset 
generated protein destabilization [47]. Furthermore, Yue and 
Moult estimated that up to 25% of nsSNPs might alter the 
protein function in the human population by affecting the 
protein stability [48]. In this case, the deleterious nsSNPs may 

Since its discovery in 1994, the Leptin protein has attracted 
much attention as an essential central and peripheral signal 
to maintain the energy homeostasis. Moreover, many studies 
have demonstrated the association of the LEP gene mutations 
and obesity in obese patients [3, 41–43]. �is study ran a com-
putational analysis of nsSNPs of the LEP gene.

�e nsSNPs of the LEP gene were collected from the 
dbSNP database. �ese variants were analyzed by the different 
prediction algorithms in order to measure their probabilities 
for being deleterious by modifying the amino acids. 
Evolutionary information represents widely the most useful 
feature for such a prediction task [40]. With the aim of 

Table 3: Prediction of change in protein stability using I-MUTANT 2 and Mupro.

Uploaded variation AA position
Imutant-2 MUPRO

DDG DDG SVM NN
rs866158426 S46L −0.49 Decrease −0.417 Decrease −0.476 Decrease −0.982 Decrease
rs200575914 G59S −1.15 Decrease −0.911 Decrease −0.782 Decrease −0.693 Decrease
rs886061972 D61N −1.06 Decrease −0.813 Decrease −0.259 Decrease −0.761 Decrease
rs724159998 D100N −2.68 Decrease −1.09 Decrease −0.781 Decrease −0.725 Decrease
rs28954113 N103K −0.7 Decrease −1.282 Decrease −0.73 Decrease −0.663 Decrease
rs1051206328 C117S −0.98 Decrease −1.852 Decrease −1 Decrease −0.912 Decrease
rs771956117 L161R −0.29 Decrease −2.214 Decrease −1 Decrease −0.964 Decrease
rs104894023 R105W −1.02 Decrease −1.22 Decrease −1 Decrease 0.90 Decrease

Figure 4:  Comparison of the native leptin protein structure and 
two mutant forms. (a) S46 (wild type-Leptin) and 46 L (variant 
protein). (b) D100 (wild type-Leptin) 100 N (variant protein). 
Residues substituted are showed in red, residues involved in hydrogen 
bonds are marked in magenta, residues participate in hydrophobic 
interactions are indicated in blue, the residues which lost a hydrogen 
bonds and/or hydrophobic interactions are marked in green, the 
new residues appeared are indicated in cyan. Hydrogen bonding 
are marked by yellow dashed lines and hydrophobic interactions are 
showed by green lines.
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D44
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Figure 5: In silico modeled structure of LEPTIN protein. �e three-
dimensional model of LEPTIN generated using Swiss Model So�ware.
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In the current study, we were able to predict high impact 
amino acid substitutions on the Leptin structure using com-
putational tools. From 93 nsSNPs, the variants S46L, G59S, 
D100N, L103K, R105W, and L161R, were predicted to be del-
eterious, conserved, decrease stability and alter the protein 
structure. We believe that further functional studies are needed 
to directly determine the full effect of these mutant proteins 
in obesity occurrence.

5. Conclusion

In silico analysis is currently at the center of the coding and 
regulatory variants screening concerns related to diseases at 
the molecular level. In this study, In silico analysis targeting 
functional nsSNPs in the LEP gene was performed to investi-
gate the possible effect of nsSNPs on the structure and function 
of the Leptin protein. �e 6 mutations (S46L, G59S, D100N, 
L103K, R105W, and L161R) were identified as possible causes 
of the structural modifications of the Leptin protein, and could 
probably affect its activity. Indeed, a single mutation (C117S) 
was found in a functional region of the protein and 2 muta-
tions (R105W, N103K) were previously found in patients suf-
fering from obesity.
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