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Abstract: Though the oral cavity is anatomically proximate to the nasal cavity and acts as a key
reservoir of EBV habitation and transmission, it is still unclear whether EBV plays a significant role in
oral carcinogenesis. Many studies have detected EBV DNA in tissues and exfoliated cells from OSCC
patients. However, very few studies have investigated the expression of functional EBV proteins
implicated in its oncogenicity. The most studied are latent membrane protein 1 (LMP-1), a protein
associated with the activation of signalling pathways; EBV determined nuclear antigen (EBNA)-1, a
protein involved in the regulation of gene expression; and EBV-encoded small non-polyadenylated
RNA (EBER)-2. LMP-1 is considered the major oncoprotein, and overexpression of LMP-1 observed
in OSCC indicates that this molecule might play a significant role in oral carcinogenesis. Although
numerous studies have detected EBV DNA and proteins from OSCC and oral potentially malignant
disorders, heterogeneity in methodologies has led to discrepant results, hindering interpretation.
Elucidating the exact functions of EBV and its proteins when expressed is vital in establishing the
role of viruses in oral oncogenesis. This review summarises the current evidence on the potential
role of EBV in oral oncogenesis and discusses the implications as well as recommendations for
future research.

Keywords: Epstein–Barr virus (EBV); oral squamous cell carcinoma (OSCC); oral potentially malignant
disorders (OPMD); latent membrane protein 1 (LMP-1)

1. Introduction

Seroprevalence data reveal that EBV (Human herpesvirus 4) has infected up to 90%
of the global population and EBV seroprevalence rates among children and adolescents
seem to be declining in some populations, indicating that the population at risk of complex
primary EBV infection may be increasing [1,2]. After primary infection, EBV establishes
latency in a minor proportion of B lymphocytes located in the lymphoid tissues, including
those of the head and neck, notably Waldeyer’s ring, as well as in the lining epithelia of
the naso and oropharynx, and in salivary glands where it replicates. It is often shed in
secretions of the upper aerodigestive tract, without obvious signs or symptoms in most
people [3].

EBV is strongly implicated in the causation of nasopharyngeal carcinoma (NPC),
gastric carcinoma and lymphoproliferative disorders such as Burkitt’s and Hodgkin’s

Viruses 2022, 14, 801. https://doi.org/10.3390/v14040801 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v14040801
https://doi.org/10.3390/v14040801
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0002-4279-7420
https://orcid.org/0000-0002-7644-6258
https://orcid.org/0000-0002-1709-5953
https://orcid.org/0000-0001-5866-262X
https://doi.org/10.3390/v14040801
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v14040801?type=check_update&version=1


Viruses 2022, 14, 801 2 of 14

lymphoma. It is regarded as driving the epithelial hyperproliferation and abnormal kera-
tinization of oral hairy leukoplakia, a benign lesion mainly found in immunocompromised
patients, and B cell lymphomas [4].

EBV is part of the normal oral flora and recent investigations confirm that it is clinically
associated with infections of gingivae, periodontal ligament, tooth pulp and periapical
tissues [1]. Many studies have reported the presence of EBV in normal oral epithelium,
oral potentially malignant disorders (OPMD), including oral lichen planus (OLP) [5], and
oral leukoplakia (OL) [6] as well as in oral squamous cell carcinoma (OSCC). [5] EBV
nucleic acid has been detected routinely in OPMD with a prevalence ranging from 6.2% to
72.2%. [5–11]. EBV proteins have been detected in SCC from the maxillary sinus [7]. Here,
we summarise the current evidence on the association of EBV with OPMD and OSCC and
throw insights into its potential role in oral carcinogenesis.

2. Characteristics of HHV4, the Epstein–Barr Virus

The EBV is a gammaherpesvirus, with a linear, double-stranded DNA genome of
170–185 kb encoding for more than 85 genes [8]. The EBV genome harbours a series of
0.5-kb terminal direct repeats located at both ends and internal repeat sequences that
separate the whole genome into long and short distinctive domains which encode the
proteins [9]. The nucleocapsid of EBV is made up of 162 capsomeres covered by a viral
envelope derived from host membranes. The space between the nucleocapsid and the
envelope is called the tegument. The outer envelope harbours the surface glycoproteins
that form “spike-like” protrusions [10] (Figure 1).

Figure 1. Structure of EBV virion (Image created by biorender.com, accessed on 23 January 2022).

EBV enters epithelial cells and lymphocytes by an interaction between these viral
glycoproteins and cellular receptors: viral entry occurs by direct fusion of the envelope
with host cell membranes. Following entry, the linear viral genome changes to circular
because of the merging of the terminal direct repeats at both the ends of the linear DNA [11].
The EBV genome inside the replicated cell is maintained as an extrachromosomal episome.

3. EBV Proteins and Their Functions

EBV encodes a series of proteins expressed at different periods following the infection
of B cells. These include Epstein–Barr nuclear antigens (EBNA-1, EBNA-2, EBNAs-3A,3B,
3C, and EBNA-LP), the viral BCL-2 homolog, BamHI-H rightward open reading frame 1
(BHRF1) and the latency membrane proteins-1 and -2 (LMP-1 and LMP-2). It also contains
two non-coding RNAs (EBER1 and EBER2) and two sets of miRNAs encoded within the
BamHI—the rightward transcripts (BARTs) and the BHRF1 locus (BHRF1 miRNAs) [12,13].

biorender.com
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These EBV products have been investigated for their potential role in oncogenesis by
facilitating the important hallmarks of malignancy [12,14] (Figure 2).

Figure 2. Epstein–Barr virus (EBV) latent genes target cancer hallmarks of epithelial malignancies
(Image created by biorender.com, accessed on 23 January 2022).

EBNA-1 is the main protein that maintains latency before the virus enters its replication
stage [15–17]. The primary function of EBNA-1 in latent infection is to facilitate viral genome
replication and to mediate genome segregation into daughter cell nuclei. EBNA1 is a homo-
dimeric protein and binds site-specifically to a DNA sequence 16 bp in length [18–20]. It is
now known that EBNA1 can link regions of DNA to which it binds, and often forms a loop
between the family of repeats (FR) and the Dyad of Symmetry (DS). EBNA1’s ability to
link DNA correlates with its support for replication and transcription [20,21]. EBNA1 also
regulates a subset of signalling pathways in the host cells and thereby contributes to the
survival and proliferation of EBV-infected cells. EBNA-1 binds to cellular promoters and
upregulates STAT1 (signal transducers and activators of transcription 1), whose expression
along with an increase in major histocompatibility complex class I and II downregulates
various pathways, including tumour growth factor-β (TGF-β) signalling pathways and the
canonical NF-κB pathway [17,19,20].

EBNA-2 is a transcriptional-coactivator that influences the expression of viral genes
in the latency period and regulates many cellular genes by binding to super-enhancer re-
gions in the cell chromatin, ultimately leading to cell cycle entry for proliferation. EBNA-2
mediates some of this regulation through interactions with human transcription factors,
including SPI1 (PU.1), RBPJ, EBF1 and many more [22,23]. EBNA2 activates transcrip-
tion through multiple interactions between its acidic transactivation domain (TAD) and
ATP-dependent remodellers histone acetyltransferases and elements of the pre-initiation
complex [24].

EBNA-LP, also known as EBNA-5, is the first viral latency-associated protein produced
after the EBV virus infects a cell. It acts with EBNA-2 to lead the cell into the cell cycle [25,26].
EBNA-LP has been shown to enhance EBNA2 mediated transactivation of LMP-1 [27].
It has been shown to have multiple interactions with host genes involved in tumour
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suppression, apoptosis and cell cycle regulation; however, there is no consensus in the
literature regarding the genes affected [28].

The EBNA-3 family, consisting of EBNA-3A, EBNA-3B, and EBNA-3C, function as
transcriptional regulatory proteins through their interactions with DNA binding proteins
and other auxiliary transcription factors, as an alternative to directly binding to DNA [29].
Though a large number of such interacting proteins have been identified, RBPJ (or CBF1), a
downstream regulator of the Notch signalling pathway, is the most established transcription
factor crucial for EBV-induced host transformation [29,30]. All EBNA-3 proteins have
similar gene structures, are comparably regulated and share a common binding site of
RBPJ [31].

Among the latency-associated proteins, LMP-1 is the dominant oncoprotein, com-
monly expressed in EBV-related cancers [12,32]. LMP-1 interacts with molecules that
mediate signals from tumour necrosis factor (TNF) receptors, and thus activates multi-
ple signaling pathways, including NF-κB, JNK–p-38, ERK–MAPK, PI3K–AKT and JAK-
STAT [33]. Many reports have suggested that the activation of these signal transduction
pathways facilitates a plethora of downstream effects, including the expression of adhesion
molecules and growth factor receptors, cell proliferation, anti-apoptosis and angiogen-
esis [34,35]. Furthermore, it has also been shown to upregulate telomerase activity via
cMyc induction and promote the migration of tumour cells by inducing the activation and
secretion of different matrix metalloproteinases [36]. The protein has also been shown
to induce epithelial–mesenchymal transition in NPC as well as having cancer stem cell-
like properties [37]. Previous studies have found the expression of LMP-1 in 40–90% of
NPC [38–42]. LMP-1 has three functional domains, C-terminal activation regions (CTAR 1,
CTAR 2, CTAR 3) [43]. CTAR 1 triggers NF-κB immortalization of infected cells via the
activation of telomerase and blockage of apoptosis. It has also been shown to stimulate cell
proliferation by activation of cyclin D1, cyclin E and EGFR signalling pathways. CTAR2
has been shown to trigger an AP-1 signalling cascade, which upregulates the expression
of matrix metallopeptidase 9 (MMP-9). CTAR3 also triggers the JAK3/STAT signalling
pathway, which enhances the transcription and expression of vascular endothelial growth
factor (VEGF) [44].

4. Clinical Studies on the Association of EBV with OPMD and OSCC

Table 1 lists the findings regarding the detection of EBV DNA and its associated
proteins from studies conducted in different parts of the world in normal mucosa, OPMD
and OSCC using PCR, in situ hybridization, EBV genomic microarray (EBV-chip) and
immunohistochemical techniques. EBV was not only found in OPMD and OSCC but also
detected in the normal oral epithelium and can be regarded as part of the normal oral flora.
In normal oral samples, the prevalence of EBV ranges widely, differing by the geographical
location, gene target used, method of sample collection and detection techniques.

Table 1. Clinical studies on detection of EBV in OPMD and OSCC.

Author Year Study
Location

Total No. of
Samples

Detection
Method

Sample
Type Marker Major Findings Reference

Vanshika S,
et al. 2021 India 108 OSCC PCR FFPE EBV DNA EBV DNA detected in 27.8%

(30 out of 108) [45]

Heawchai-
yaphum C,

et al.
2020 Thailand 165 OSCC

EBV
detection
by PCR

and EBER
by ISH

FFPE EBNA1,
LMP1

EBV DNA detected in 41%
(68 out of 165)

(To further confirm the
infection of EBV in OSCC,
EBER-ISH was performed.

Strong EBER-positive signals
were detected in epithelial

cells of OSCC tissues.

[46]
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Table 1. Cont.

Author Year Study
Location

Total No. of
Samples

Detection
Method

Sample
Type Marker Major Findings Reference

Al-
Thawadi
H, et al.

2020 Bosnia 64 OSCC PCR, IHC FFPE LMP-1
LMP-1 detected in 78%

(50 out of 64) by PCR. 76%
(35 out of 46) by IHC

[47]

Naqvi SU,
et al. 2020 Pakistan 58 OSCC PCR FFPE EBV DNA EBV DNA detected in 26%

(15 out of 58) [48]

Reddy SS,
et al. 2017 India

75
OPMD (25),
OSCC (25),

NM (25)

IHC FFPE LMP-1
LMP-1- detected in 8% (2 out
of 25) OSCC, 8% (2 out of 25),
OPMD, 8% (2 out of 25) NM

[32]

Rahman R,
et al. 2019 Thailand

115
NM (10)OL

without
dysplasia (27)

OL with
Dysplasia (42)

OSCC (36)

IHC FFPE LMP-1

LMP-1 detected in NM
(26.36%), OL without

dysplasia (28.03%), OL with
dysplasia (34.15%),

OSCC (59.67%)

[49]

Kikuchi K,
et al. 2016 Japan

248
150 OSCC, 83

dysplasia (mild:
22, moderate: 43,

severe: 18),
15 NM

PCR FFPE
EBV DNA
(EBNA-2),

LMP-1)

LMP-1 detected in Normal
gingiva 33.3%, Mild dysplasia

45.5%, Moderate dysplasia
4.7%, Severe epithelial

dysplasia 44.4%, OSCC 10.7%
EBV DNA- (EBNA-2)

detected in normal gingiva
71.3%, Mild 22.7%, moderate

dysplasia 53.5%, Severe
epithelial dysplasia 66.7%,

OSCC 52%.

[50]

Acharya S,
et al. 2015 Thailand 185 (91 OSCC,

94 NM) PCR
Exfoliated

cancer
cells

EBV DNA

EBV DNA detected in oral
exfoliated cells

45.05% of OSCC patients
18.08% of NM

[51]

Bagan L,
et al. 2016 Spain

71
(12 OSCC, 12

OPMD, 47 NM)
PCR Saliva EBV DNA

EBV DNA detected in saliva
NM (40.4%)

OSCC group (58.3%)
OPMD group (41.7%)

[52]

Shamaa
AA, et al. 2008 Egypt

58 (22 OSCC,
16 epithelial

dysplasia,
20 NM)

IHC FFPE LMP-1

LMP-1 detected in
NM-negative, Epithelial

dysplasia- 62.5%
(10 out of 16), OSCC—81.8%

(18 out of 22).

[53]

Kis A, et.
al. 2009 Hungary

293 (65 OSCC, 44
OL, 116 OLP,

68 NM)

PCR &
IHC FFPE EBV DNA

EBV DNA detected in
NM-19.1%, OSCC-73.8%,

OL-29.5%, OLP lesions-46.6%
In OSCC, LMP-1 expression

was not detected.

[54]

Yen CY,
et al. 2009 Taiwan 57 OSCC

EBV
genomic

microarray
(EBV-chip)

FFPE EBV DNA

EBV DNA detected in 85.7%)
of biopsy specimens of OSCC

indicating high rate of
EBV infection

[55]

Bagan JV,
et al. 2008 Spain 20 (5 PVL, 10

OSCC, 5 NM) PCR FFPE EBV DNA

EBV DNA detected in 60%
Proliferative verrucous

leukoplakia
40%- OSCC

0%- NM

[6]

Iamaroon
A, et al. 2004 Thailand 185 (91 OSCC,

NM 94) ISH FFPE EBV RNA

Expression of EBV RNA
studied in 24 cases of OSCC.

None of OSCC expressed
RNA (EBER) transcripts.

[56]

Sand LP,
et al. 2002 Sweden 119 (29 OSCC, 23

OLP, 67 NM) PCR FFPE EBV DNA

EBV DNA detected in
Oral mucosa-7.3%

OLP-26.1%
OSCC-37.9%

[5]
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Table 1. Cont.

Author Year Study
Location

Total No. of
Samples

Detection
Method

Sample
Type Marker Major Findings Reference

Gonzalez-
Moles MA,

et al.
2002 Spain 78 OSCC

IHC-
LMP-1,

PCR- EBV
DNA, ISH-

EBER-
EBVRNA

FFPE
EBV DNA,

LMP-1,
EBER

Expression of LMP-1 in 12
(85.7%), EBV DNA- 15
(19.2%), EBER- 0 of the

EBV-positive OSCC

[57]

Shimakage
M, et al. 2002 Japan 37 OSCC ISH FFPE EBV DNA

EBV DNA detected in large
number of OSCCs (72%)
obtained by nucleotide

sequence analysis.

[58]

Ikuta K,
et al. 2000 Japan

141 (48 throat
washings from
healthy adults
and 93 salivas
from healthy

children)

PCR Saliva EBV DNA

EBV DNA detected in 90%
(43 of 48) in throat washings

from healthy adults.
(38%) (35 of 93) in saliva from

healthy children.

[59]

Tsuhako K,
et al. 2000 Japan

102 (60 OSCC
from Okinawa
and 42 OSCC
from Sapporo)

PCR FFPE EBV DNA

EBV DNA detected in 76.67%
(46 of 60 cases) of OSCC were
positive for EBV in Okinawa.

38.1% (16 of 42 cases) of
OSCCS were positive for EBV

in Sapporo.

[60]

Kobayashi
I, et al. 1999 Japan 46 OSCC

EBV DNA
by combi-
nation of
PCR and
southern
blot hy-

bridization
method.

LMP-1 by
IHC.

EBER-1 by
ISH

FFPE
EBV DNA,

LMP-1,
EBER-1

EBV DNA detected in 15.2%
(7 out of 46) samples

LMP1 was detected in 13%
(6 out of 46) samples.

EBV-encoded small RNA
(EBER)-1 was not

demonstrated in any of
the sample.

[61]

Gonzalez-
Moles M,

et al.
1998 Spain 108 OSCC PCR FFPE EBV DNA

EBV DNA detected in 26.3%
(5 of 19 cases) well

differentiated OSCCs
73.7% (14 of 19 cases)

moderately and poorly
differentiated OSCCs.

(Percentage positivity of EBV
DNA increases from well

differentiated OSCC to poorly
differentiated OSCC)

[62]

D’ Costa J,
et al. 1998 India

279 (103 OSCC,
100 OPMD, and

76 NM)
PCR FFPE EBV DNA

EBV DNA detected in NM-
4% (3 of 76)

OSCC 25% (25 of 103)
Oral lesions (OL, OLP, oral

submucous fibrosis,
melanoplakia,

erythroplakia)-13% (13 of 100)

[63]

Cruz I,
et al. 1997 Netherland

48 (12 normal
mucosa, 9

premalignant
lesions,

36 OSCCs)

PCR FFPE EBV DNA

EBV DNA detected in
OSCC-100%

Premalignant lesions-77.8%
NM-8.3%

[64]

Van
Heerden
WE, et al.

1995 South
Africa

120 (90 OSCC,
30 NM) PCR FFPE EBV DNA

EBV DNA detected in
-OSCC—24%

-Tumour tissues
(non-specified)-24%

(11 out of 45)
-Normal mucosa 37%

(11 out of 30)

[65]
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Table 1. Cont.

Author Year Study
Location

Total No. of
Samples

Detection
Method

Sample
Type Marker Major Findings Reference

Van
Rensburg
EJ, et al.

1995 South
Africa

143 (57 OSCC
with fragment of
normal tissue, 48

OSCC only,
28 NM)

PCR FFPE EBV DNA

EBV DNA detected in
-OSCC with a fragment of
normal epithelium—25%

(14 out of 57)
-OSCC without normal

epithelium- 27% (13 out of 48)
-NM—42% (16 out of 38)

[66]

Mao EJ,
et al. 1993 England 80 (20 OSCC,

15 NM) PCR
Exfoliated

Cancer
cells

EBV DNA
EBV DNA detected in

NM—25% (15 out of 60)
OSCC—50% (10 out of 20).

[67]

4.1. Prevalence of EBV Based on Geographical Location

Variation in prevalence of carriage of EBV DNA in formalin-fixed paraffin-embedded
(FFPE) OSCC according to the geographical location was demonstrated in a Japanese study
carried out in Okinawa and Sapporo. The study used PCR and detected EBV DNA in
76.6% of Okinawan and 38.1% of Sapporon cases [60]. Differences in EBV prevalence
were also shown in three Thai studies, but these apparently used different methods of
sample collection, selection of gene targets and detection techniques [46,51,56]. The study
conducted by Acharya et al., in 2015, detected EBV DNA in exfoliated cells of 45% of OSCC
cases using PCR in a Northeast Thai population. This was supported by a recent Thai
study from the same population that revealed strong EBER-positive signals in FFPE OSCC
tissues by in situ hybridization [46]. However, when Iamaroon et al., in 2004, used an in situ
hybridization technique in the Northern Thai population, they found none of the 24 cases
of OSCC to express EBER transcripts [56]. Thus, variations in EBV prevalence based on
geographical location as well as detection techniques are observed in these studies [46,56].

4.2. Prevalence of EBV Based on the Method of Sample Collection

Among the techniques of sample collection, throat washings, oral smears and scraping
methods seem to demonstrate a higher EBV prevalence with 20–90% in normal mucosa of
healthy adults [59,67,68] being positive compared with biopsy specimens in normal mucosa
(0–40%) [5,49,52,54,63–67]. In Japan, EBV DNA was identified in 90% of throat washings
from healthy adults and in 38% of saliva samples from healthy children [59]. Since EBV is
present as part of the normal oral flora in healthy people, immunosuppression allows EBV
to easily infect oral epithelial cells as exemplified by oral hairy leukoplakia [69].

4.3. Prevalence of EBV Based on the Method of Detection

Because EBV is regarded as a useful tumour marker in certain neoplasms, laboratory
testing of EBV and the identification of viral gene products have become critical. There are
several diagnostic methods for EBV detection, including serological and molecular diagnos-
tic methods, each with its own advantages and limitations. Although in situ hybridization
(ISH) is the gold standard, detecting EBV with a 100% sensitivity, the molecular determina-
tion of viral DNA, RNA and EBV viral load is now being used in the clinical assessment of
tumour-associated EBV infections [70–72]. Among the studies we reviewed, the presence of
EBV nucleic acids in affected tissues was performed by in situ hybridization (ISH) and by
PCR, and the detection of EBV-related proteins, including EBV nuclear antigen 2 (EBNA2)
and the latent membrane proteins, were detected by immunohistochemical assays. As
previously stated, the percentage of EBV-positive cases in NM, OPMD and OSCC varied
among studies, and one of the most significant causes for this wide range may be the
sensitivity of the method employed. Of the three EBV detection methods reported, we
found that PCR yielded a higher EBV-positive detection rate than did ISH or IHC (Table 1).
The reason for this may be that the target DNA is able to be amplified thousands of times
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by PCR and thus has a higher sensitivity. On the other hand, PCR is unable to provide
information on the cellular localization of the virus.

4.4. Prevalence of EBV in Normal Mucosa, OSCC and OPMD

The detection rate of EBV has been reported to range from 0 to 92% in normal mucosa
(Table 1) [5,6,58,63,73]. Overall, however, EBV has been shown to be more prevalent in OSCC
than in normal mucosa [74]. The accumulated evidence so far remains inconclusive regarding
the presence of EBV itself in OSCC, with results again ranging from 0 to 100% [5,57,75].
Three studies conducted in East Asia found high EBV prevalence in OSCC [55,74,76]. A
study in the Netherlands found EBV DNA in 100% of OSCC using PCR [64]. This was
supported by a study conducted in Spain, which showed the positivity of EBV DNA,
using PCR, to increase from well differentiated to poorly differentiated OSCC [62]. In
Asia, numerous studies have come from different parts of Japan with variable findings
(0–85.7%) [45,46,48,60,61]. Two Japanese studies detected a high prevalence of EBV and
suggested a causative role in OSCC [74,76]. In contrast, studies of subjects from North
America, and North and West Europe reported lower EBV prevalence and concluded that
the pathogenic role of EBV in OSCC is doubtful [67,75,77]. EBV seems to be more prevalent
in OSCC than in OPMD [52,54,64] with a variation in results when different methods of
detection are used.

Kikuchi et al., in 2016, detected LMP-1, the main oncoprotein of EBV, in OSCC, in
oral epithelial dysplasia and in morphologically normal mucosa from tongue and gingival
fibrous overgrowths. They found a significantly higher expression of LMP-1 in severe
epithelial dysplasia than in OSCC [50]. They suggested that an increased expression of
the latent infection gene in severe epithelial dysplasia could indicate a crucial role for
the virus in the dysplasia-to-carcinoma sequence within the oral cavity. Conversely, a
study conducted in Egypt reported that malignant oral mucosa expressed LMP-1 more
evidently than oral epithelial dysplasia [53]. These findings are supported by our recent
study in Thailand, as well as several studies conducted in Spain, Bosnia and Japan using
immunohistochemistry [47,49,57,61]. On the contrary, another study conducted in Hungary
did not find any LMP-1 expression in OSCC using the same method [54]. Since LMP-1
plays a key role in the malignancies known to be driven by EBV, and since previous studies
have such conflicting results, further work on larger samples with the best techniques is
required to clarify the role of LMP-1 in the dysplasia-carcinoma sequence of the oral cavity.

A gene exerts its effects by transcribing DNA into mRNA, which is then translated
into a protein, the final effects of the gene’s action taking place in the cytoplasm [78].
Hence, increased LMP-1 expression in the cytoplasm of OL with dysplasia and OSCC is
indicative of the LMP-1 gene in the functional state during the early and late events of
oral carcinogenesis. It does not mean, however, that the protein is necessarily oncogenic:
association does not prove cause and effect. Aetiological agents and pathogenic pathways
can and do vary from case to case. In our study, we were the first to analyse the intracellular
localization of LMP-1 in normal oral mucosa, OL with and without dysplasia and OSCC [49].
In normal oral mucosa, cytoplasmic staining alone was not observed. Nuclear staining
was observed in all the cases, but only a few cases showed nuclear plus cytoplasmic
staining [49]. In OSCC, cytoplasmic staining alone and nuclear plus cytoplasmic staining
were considerably more intense compared to those of normal mucosa, and OL with and
without dysplasia. Prominent golden-brown colour staining in the cytoplasm of OSCC was
prominently observed compared to normal mucosa. Changes in the localization of LMP-1
protein observed in OSCC suggest a potential role in oral carcinogenesis. An increased
expression of LMP-1 was detected in 81.8% (18 out of 22) of OSCC, higher than the 62.5%
(10 out of 16) of epithelial dysplasia in the study by Shamaa et al [53].

A meta-analysis by She et al., published in 2017, attempted to pool studies on the
association of detection of EBV in OSCC [79]. However, the results have to be interpreted
with caution, as the confidence intervals were very wide in all the analyses presented.
Moreover, high heterogeneity was detected in overall and subgroup analyses, which adds
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to the uncertainties. Regardless of the statistical evidence, our review is in agreement with
the previous meta-analysis in that EBV is more prevalent in the OSCC samples than in
normal controls.

5. Molecular Mechanisms of EBV Infection Involved in Oral Carcinogenesis

The mechanism by which EBV takes part in carcinogenesis may vary for each malig-
nancy, but some common features are notable. EBV is found to remain in a latent state
within its associated malignancies. EBV latency permits the persistent expression of viral
oncogenes while simultaneously preventing immune detection and cytopathic effects dur-
ing the replicative phase of the viral life cycle [80]. EBV reactivation can be triggered by
two immediate-early (IE) trans-activators, namely Zta and Rta, after various stimulating
factors, including sodium butyrate, 12-O-tetradecanoylphorbol-13-acetate (TPA), anti-Ig,
and TGF-β. Running these two IE proteins at the same time turns on the whole lytic viral
cascade of gene expression and EBV replication [81]. Even after the loss of EBV, it has
been reported that delayed differentiation and enhanced invasiveness were retained in
epithelial cells, demonstrating that a stable epigenetic reprogramming occurred after EBV
infection [82,83].

Cyclin D1 is a key cell-cycle regulatory protein that promotes G1/S transition in
cells [84]. Disorders in cell cycle control can lead to uncontrolled proliferation, a hallmark
of malignancy and observed in OSCC [85]. Overexpression of cyclin D1 is not only observed
in OSCC [86,87] but is also seen in OPMDs and oral epithelial dysplasia [88,89]. This is
supported by a recent immunohistochemical study which showed overexpression of cyclin
D1 protein from epithelial dysplasia to OSCC: a proportional increase in the percentage
of cyclin D1 expression with an increase in the histopathological grade, i.e., from well
differentiated to poorly differentiated OSCC [90]. These findings indicate that cyclin D1
deregulation is a major, and early, event in the neoplastic process. Cyclin D1 overexpression
is closely associated with EBV infection. By upregulating the expression of cyclin D1 via
the NF- κB signalling pathway and downregulating the expression of p16, LMP-1 promotes
uncontrolled cell proliferation by accelerating the transition of the cell cycle from G1 to S
phase [91].

Some authors have found coinfections of human papillomavirus (HPV) and EBV in
OSCC [4,92]. High-risk HPV infection alone is not enough to initiate neoplastic transfor-
mation in normal human epithelial cells, including those of the head and neck region [93].
Coinfection by multiple oncogenic viruses may be a significant risk factor in the devel-
opment of OSCC [92,94] (Figure 3). Experimentally, an EBV infection has been shown to
promote the invasive phenotype and delay differentiation in epithelial cells expressing
HPV16 E6 and E7 oncogenes [82,92]. Toll-like receptors (TLRs) play an important role in the
early innate immune response against invading pathogens by sensing a microorganism [95].
LMP-1 is a potent inhibitor of TLR9 transcription, which can enhance the aforementioned
superinfection [95]. Further studies on coinfected cells are required as the combined impact
of both HPV and EBV may increase the potential for carcinogenesis compared to normal
cells [92].
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Figure 3. The process of carcinogenesis as a result of viral integration into the host genome (Image
created by biorender.com, accessed on 23 January 2022).

6. Conclusions

EBV is clearly oncogenic in NPC and some lymphomata. Although there is substantial
literature describing the presence of EBV nucleic acid and/or EBV proteins in normal,
dysplastic and neoplastic oral mucosa, the findings have not been conclusive regarding
the oncogenicity of this ubiquitous virus for oral cancer. This is only partly because of
the inconsistency of results and variations in the technology applied. Even if the pres-
ence of viral markers was more consistent, this would not constitute proof. It cannot be
said too often that association does not prove cause and effect. We must always bear in
mind the Bradford Hill principles and the strict criteria for causation [96]. Whilst further
epidemiological studies using standardised techniques will be helpful, there is a need for
mechanistic, hypothesis-driven experiments in tissue culture models and animals in order
to move our understanding forward. Should solid evidence emerge, we might look forward
to vaccination of the population, for which early research is encouraging, to contribute to
the control of oral cancer.
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