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Abstract

For many years, double-layer phospholipid membrane vesicles, released by most cells,

were not considered to be of biological significance. This stance has dramatically changed

with the recognition of extracellular vesicles (EVs) as carriers of biologically active mole-

cules that can traffic to local or distant targets and execute defined biological functions. The

dimensionality of the field has expanded with the appreciation of diverse types of EVs and

the complexity of vesicle biogenesis, cargo loading, release pathways, targeting mecha-

nisms, and vesicle processing. With the expanded interest in the field and the accelerated

rate of publications on EV structure and function in diverse biomedical fields, it has become

difficult to distinguish between well-established biological features of EV and the untested

hypotheses or speculative assumptions that await experimental proof. With the growing

interest despite the limited evidence, we sought in this essay to formulate a set of unsolved

mysteries in the field, sort out established data from fascinating hypotheses, and formulate

several challenging questions that must be answered for the field to advance.

Introduction: Primitive vesicles go complex

During the course of evolution, the creation of the first cell required sequestration of encoding

nucleic acids and their replication machinery from the hazardous external microenvironment.

Lipids with polar head groups and hydrophobic tails became a natural solution to this challenge.

In the case of phospholipids, for example, a layer of hydrophilic polar head groups and two

hydrophobic lipid tails readily form double-layer membranes in the aqueous solution. More-

over, in light of the hydrophobic nature of the tails, the phospholipid membrane required a con-

figuration that minimized edges, resulting in a sphere. The formation of spherical double-layer

phospholipid structures in aqueous media occurs spontaneously without enzymatic activity.

Phospholipid vesicles are probably the simplest biological structures whose biogenesis can

be easily reproduced in a tube. It is therefore not surprising that double-layer phospholipid

membranes were used to encapsulate biological molecules. In addition, phospholipid

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000363 July 18, 2019 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Margolis L, Sadovsky Y (2019) The

biology of extracellular vesicles: The known

unknowns. PLoS Biol 17(7): e3000363. https://doi.

org/10.1371/journal.pbio.3000363

Published: July 18, 2019

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Funding: This work was supported by the NICHD

Intramural Program (to LM) and NICHD grants

R01HD086325 and R37HD086916 (to YS). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: Dr. Margolis has declared

that no competing interests exist. Dr. Sadovsky is a

member of a Clinical Expert Advisory Panel to

Illumina, Inc.

Abbreviations: CMV, cytomegalovirus; EM,

electron microscopy; ERCCI, Extracellular RNA

Communication Consortium; ESCRT, endosomal

sorting complexes required for transport; EV,

extracellular vesicle; EV-TRACK, Transparent

Reporting and Centralizing Knowledge in

Extracellular Vesicle Research; HCV, hepatitis C

virus; ISEV, International Society for Extracellular

http://orcid.org/0000-0002-1960-1928
https://doi.org/10.1371/journal.pbio.3000363
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000363&domain=pdf&date_stamp=2019-07-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000363&domain=pdf&date_stamp=2019-07-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000363&domain=pdf&date_stamp=2019-07-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000363&domain=pdf&date_stamp=2019-07-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000363&domain=pdf&date_stamp=2019-07-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000363&domain=pdf&date_stamp=2019-07-30
https://doi.org/10.1371/journal.pbio.3000363
https://doi.org/10.1371/journal.pbio.3000363
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/


membranes acquired new functions during evolution. For example, phospholipid membranes

of enveloped viruses incorporated proteins that mediate viral recognition and entry into target

cells. The phospholipid membrane that surrounds cells is even more complex and contains

proteins that regulate inflow and outflow of small molecules, transmit electrical currents, and

modulate ligand–receptor interactions as a part of cellular communication.

For many years, scientists seeking to understand the function of these complex phospho-

lipid membranes studied them in cells or viruses but largely ignored the more primitive phos-

pholipid vesicles. Indeed, their apparent simplicity, minute size, and unknown function kept

released subcellular vesicles under the research radar screen. They have been regarded as cellu-

lar debris and, reflecting their high production by thrombocytes, were dubbed “platelet dust.”

This sentiment has recently changed with the advent of new data on exocytosis; improved

tools for vesicle isolation, measurement, and imaging; and most importantly, experimentally

supported functions alongside creative hypotheses regarding their action. Released vesicles,

now clustered under the term “extracellular vesicles” (EVs) [1], became a commonplace object

of investigation in literally every field of biomedicine. Indeed, EVs are ubiquitous. They are

released by bacteria [2] and by virtually every cell in multicellular organisms. They entrap

nucleic acids, diverse cellular proteins, and metabolites and are predicted to transfer their

packaged molecules from one cell to another; therefore, they are dubbed “Trojan horses” in

the pioneering text by Gould and Hildreth [3].

Although the field of EV research is new, “there is no new thing under the sun” [4]. Indeed,

we can trace the concept of EVs as far as Charles Darwin, who 150 years ago proposed (as a

part of his pangenesis theory) that every cell type in the body generates gemmules, which are

particles of “minute size” that contain molecules and serve to communicate them to other cell

types. Gemmules may also mediate the maternal–fetal transfer of heritable information and

may be subject to environmental modification. At that time, Darwin’s theory was not accepted

and went into hibernation because of lack of evidence. However, contemporary readers can

easily relate Darwin’s gemmules to EVs that, although probably not inherited, nevertheless

carry nucleic acids [5] and mediate mother-to-fetus dialog [6].

The explosion of new data about EVs, which paved the way to a new field of research, was

eclipsed by an even grander explosion of untested hypotheses by overly enthusiastic research-

ers outside of the EV field. The use of shared terminologies for structurally and functionally

diverse vesicles attests to the inadequate EV separation and analysis techniques. EVs released

by cells are highly heterogeneous in size, cargo, membrane composition, biogenesis, and most

importantly, biological function. Although the recent communications and guidelines by the

Extracellular RNA Communication Consortium (ERCC1) and the International Society for

Extracellular Vesicles (ISEV) clearly assist in EV definitions, isolation methods, and informa-

tion on EV profiles in diverse biofluids [7–9], a lack of standards remains widespread. Many

vital aspects of EV function, including the selective incorporation of cellular molecules, release

of EVs to the extracellular space, recognition and acceptance by other cells, and high efficiency

of delivery of bioactive molecules to the recipient cells, remain a mystery. These are particu-

larly enigmatic when the function of EVs in their natural environment, not merely in simu-

lated biological models, is assessed. Below, we discuss the main unsolved mysteries and

technical hurdles that challenge the field of EV research and propose priorities and clues for

solving these mysteries. These challenges are also depicted in Fig 1.

Size matters: EV subtypes

Within any field of biology, definitions and classifications naturally lag behind essential knowl-

edge, obtained through experiments and the accrual of scientific observations, of the structures
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and functions involved. At present, common definitions of EVs rely on size. In view of the

range of phospholipid membrane thickness, the smallest diameter of phospholipid vesicles

may be in the range of 10–20 nm [10]. The diameter of most EVs is likely near 100 nm and

above. The upper size limit of EVs is not known. The size of apoptotic bodies and “oncosomes”

[11] is in the range of microns. Strictly speaking, mammalian platelets, which are approxi-

mately 2 μm in diameter, can be considered megakaryocyte-generated EVs. Practically, most

studies are focused on EVs that measure 1 μm or less.

The recent deployment of asymmetric flow field-flow fractionation has revealed distinct

populations of larger and smaller EVs, including the 35-nm-in-diameter exomeres [12].

Other nanoparticles that may or may not be EVs were also revealed using PKH lipophilic dye

staining of precipitated and filtered particles [13]. Energetic and thermodynamic analyses of

membrane bending, adjusted to membrane thickness and elasticity, clearly predict that sponta-

neous vesiculation will result in a range of EV configurations and size distribution. Yet actual

vesicle size depends not only on the type of membrane phospholipids but also on the presence

or absence of particular membrane proteins. Currently, a popular way to define the distribu-

tion of EV subtypes is by using nanoparticle tracking analysis (NTA) systems. Although easy

to use, the results of such evaluation may be misleading, as NTA or similar tools analyzes all

particles merely on the basis of size. The data generated by NTA systems should be verified by

electron microscopy (EM)—in particular, by cryo-EM, flow cytometry, and atomic force

microscopy [14]. A fine EV isolation and size analysis based on step-gradient centrifugation

seems to be adequate, as reported by Théry and colleagues [9,15]. Further analysis of EV sub-

populations will benefit from linking size to other biophysical and biochemical EV properties

in order to better define vesicle subtype, as discussed in the next section.

Fig 1. Progress in the field of EV biology depends on solving at least eight challenging problems, which refer to the “unsolved mysteries” described in the

corresponding text sections. EV, extracellular vesicle.

https://doi.org/10.1371/journal.pbio.3000363.g001
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Unsolved mystery #1

What are the biological implications of the broad EV size diversity? If every size-defined EV

has different functions, the system of EV-mediated cell–cell communication is much more

complex than currently assumed. To address this issue, we need to identify the smallest size

difference that faithfully defines different vesicles. Can one cell produce EVs of different sizes,

or does size difference reflect EV production by different cells? Does the repertoire of EVs

released by a particular cell type change over time? What additional variables should be

included to better define EV homogeneity and heterogeneity?

Beyond size: Composition matters as well

At first glance, the ability of a single cell type to release myriad EVs of different sizes seemed

enigmatic. It is now clear that there are at least three distinct EV biogenetic pathways: endoso-

mal sorting complexes required for transport (ESCRT) protein–based formation of intraluminal

vesicles within multivesicular bodies (MVBs) (“exosomes”), a pathway that is shared by viruses

[16]; formation by pinching off from the plasma membrane (“microvesicles” [17,18]); and

membrane disintegration (“apoptotic bodies”). Whether vesicle classification by biogenesis

pathway rather than by size may have a stronger biological basis or functional relevance remains

an unanswered question. Are there sets of EV molecules that are specific to a particular biogene-

sis pathway and that would allow us to distinguish different EVs? For example, Ras-associated

binding (Rab) proteins Rab27a and Rab27b, both important for microvesicle docking [19], may

help to distinguish exosomes from microvesicles. Another strategy that may help in distinguish-

ing between exosomes and the smaller microvesicles is to isolate MVBs and extract their intra-

luminal exosomes before they are released. However, isolation of MVBs remains a challenge.

Unsolved mystery #2

What is the contribution of biogenesis pathway and composition to the definition of EV biol-

ogy? The enormous complexity of EV biology can be somewhat reduced by linking structural

EV variables with function. The relevant variables remain to be defined and likely include

more than merely size and composition. More biologically insightful links between EV size

and structure, including membrane molecules and cargo, may assist in advancing our defini-

tions of EVs.

Preparation of a parcel: Is the cargo sorted by package type?

During their biogenesis, EVs may selectively capture cell-specific proteins, lipids, RNAs, or

even DNA, which may become a part of the EV membrane’s or cargo’s “molecular signature”

(reviewed in [20]). Based on these discriminatory signatures, particular EVs, isolated from

complex mixtures (e.g., blood), may be traced to their cells of origin. However, the mechanism

of such selective packaging remains unknown. Selectivity of cargo packaging into EVs is best

demonstrated by RNA molecules, as the spectra of EV RNA usually reflect the RNA spectra of

the donor cells [21]. Several hnRNPq RNA binding proteins (RBPs, such as YBX1, KRAS,

hnRNPA2B1, SYNCRIP, HuR, and ELAVL1 [22–26]) have been implicated in the sorting of

RNAs into EVs. Proteins may also be selectively sorted to EVs: for example, cytokines associ-

ated with EVs are different from those released in a soluble form by cells of the same type [27].

However, the selectivity of EV encapsulation may not be a universal rule, as other data suggest

a nonselective micro RNA (miRNA) packaging and secretion [28,29].

Encapsulation of cargo within EVs may be enough to protect it against degradation; how-

ever, additional RNA protection by intravesicular RBPs was recently suggested [30]. The
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presence of RNA-processing enzymes, such as DICER, within EVs [31] also suggests the tanta-

lizing possibility that the packages are not inert and that there is ongoing intravesicular pro-

cessing of cargo molecules. Notably, the previous finding of AGO2 within EV cargo rather

than in ribonucleoprotein complexes has been recently disputed [32].

Different molecules may be concomitantly incorporated into EVs. In general, biological

communication systems are characterized by redundancies and interdependence, such that

one variable is associated with other variables. For instance, when we receive an envelope with

an Internal Revenue Service logo, we reasonably expect that there is no love letter inside. If

EVs indeed constitute a system of cell–cell communication, they are likely to harbor some

redundancy in surface characteristics and cargo, as recently reported [33].

Unsolved mystery #3

Can we identify redundancies within EV cargo and relations among EV cargo elements?

Addressing this issue may require the development of an elaborate single-vesicle analysis tool

rather than a bulk analysis of the entire EV population. We should decipher the mechanism of

selective encapsulation of particular cargo molecules into EVs and its association with EV

membrane molecules.

You’ve got mail

The quantity of cargo material carried within an EV is extremely small. For example, if one cal-

culates the total amount of miRNA or other molecules that they carry, it is a mystery how EVs

can execute their assumed functions [34]. Thus, for a relatively small number of EVs to carry

particular bioactive molecules into discrete cell populations, one has to assume a highly effi-

cient and EV-specific recognition tool in recipient cells [18]. Whereas distinct targeting may

be superfluous when a large number of EVs or bioactive molecules are released to neighboring

cells, delivery to a distant target depends on a unique address or “bar code” provided by a com-

bination of specific surface molecules that can be recognized by a “bar code reader” (receptor

molecules) on the target cell’s surface. The nature of this bar code, which likely consists of pro-

teins and lipids on the EV surface, remains a central question in the field [35,36]. It is possible

that certain cells attract circulating EVs, whereas others reject them, passively or actively, by

altering EV adhesion to the cell surface and, thus, subsequent internalization.

Cytokines found on the EV surface may serve as one type of bar code molecule and may be

recognized by the abundant cell-specific cytokine receptors [27]. Cytokine association with

EVs was reported to change in HIV infection, but their impact on EV interaction remains

unclear [14].

Although the concept of EV delivery of bioactive molecules in order to impact target cell

physiology is attractive, a simpler model may suggest that EVs are a means to purge cellular

cargo and thus avoid cell-autonomous effects. This has been recently suggested with regard to

the high prevalence of tRNAs and vault RNAs within EVs [30,37] but has not been fully

assessed.

Unsolved mystery #4

Are the nature and quantity of cargo material sufficient to explain the ascribed biological

effects? As a first approach, we should calculate more precisely how many bioactive molecules

EVs can deliver to the target cells. A central challenge is to determine the “bar code” that des-

tines particular EVs to a particular cell and the target cell bar code reader that responds to EV

targeting. Solving these questions may pave the way to tools designed to manipulate the bar

code reader, which has important translational implications.
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Exosomes going viral

Exosomes and many types of enveloped viral particles, particularly RNA viruses, have a similar

size and are generated through the same ESCRT pathways (reviewed in [18]), making exo-

somes and RNA viruses “close relatives” [38]. In fact, enveloped viruses may be considered a

form of EV. Exosomes from virus-infected cells incorporate not only cell-encoded but also

virus-encoded molecules. For example, EVs generated by cells infected with HIV or cytomega-

lovirus (CMV) carry virus-encoded membrane proteins that are involved in virus recognition

during cell entry [39,40]. Similarly, the biogenesis pathways of RNA virions (e.g., HIV) and

EVs result in formation of particles with similar physicochemical properties. Moreover, exo-

somes and small enveloped viruses may have common evolutionary roots. However, we do

not know which was the “chicken” and which the “egg”; either enveloped viruses developed

from primitive lipid vesicles by encapsulating nucleic acids and incorporating specific mem-

brane molecules for which cells have receptors, or EVs evolved as defective viruses that lost the

machinery for nucleic acid replication and membrane molecules that mediate viral infection.

New insights into the coevolution of viruses and EVs may shed light on their cross talk and the

function of EVs in attenuating viral infections. Interestingly, EVs that are generated by HIV-

1-infected cells and harbor viral proteins and viral genome fragments are not infectious, but

they can affect viral infectivity itself [41]. EVs may help viruses to evade the immune system

[42,43] and promote HIV infection [44]. EVs containing hepatitis C virus (HCV) RNA can

transfer HCV infection of cultured hepatocytes [45]. It has also been reported that large EVs

can encapsulate the entire hepatitis A virus [46], providing an envelope to this unenveloped

virus.

Unsolved mystery #5

Beyond semantics, what are the differences, in terms of physicochemical properties, between

EVs that carry virally encoded molecules and EVs that carry (defective) viral particles? To

address this mystery, we should learn how to separate infectious HIV-1 virions (and other

small RNA viruses) from the noninfectious EVs carrying viral components. This will allow us

to investigate how noninfectious EVs affect viral infection and to try to manipulate EVs to

inhibit viral infection.

A parcel is delivered: How to open it?

Specific mechanisms are needed to deliver bioactive EV cargo inside the cell. The processing

of the EV message, embedded within its bioactive material, remains an unsolved mystery in

the field. Current data suggest that different cell types use specific pathways to promote EV

entry into cells for subsequent intracellular processing [18,36,47]. This may involve discrete

endocytic pathways, fusion of EVs with the plasma membrane, or other, yet-to-be-identified

strategies. Selective uptake may also be intertwined with the means used for cell-dependent EV

recognition. The role of EV cargo in this process is unknown.

In principle, cell entry may not be obligatory for EV function. Binding to particular cell-sur-

face molecules may trigger a cascade of reactions that alter cell physiology. Such a phenome-

non is known for viruses (“kiss and run”) [48] or for peptide complexes on the EV surface that

interact with T-cell receptors on T lymphocytes [49]. Also, EVs may collapse on the cell sur-

face, releasing a protein cargo that interacts with specific growth factors, cytokines, or other

cell-surface receptors. At the present time, we do not fully understand the diverse mechanisms

that mediate the delivery of EV cargo molecules to cell-surface receptors and into the cells. To

ensure more definitive and reproducible results, the delineation of pathways using pharmaco-

logical inhibitors, which may have nonspecific effects, is not sufficient. Multiple genomic
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knock-down or knock-out tools should accompany such inhibitors to decipher EV release and

uptake mechanisms, and discrepancies among these approaches should be discussed [50].

Unsolved mystery #6

What are the mechanisms underlying the efficient unpacking of EVs in target cells? We need

to decipher the mechanisms underlying EV entry into and cargo processing inside the cells.

Can EVs affect the cells by merely binding to the plasma membrane? How can EV cargo mole-

cules evade degradation in the target cell’s cytoplasm?

Executing the received order

Although it is generally believed that EVs generated by one type of cell can influence the function

of target cells, there are only a limited number of well-substantiated examples of vesicles generated

by one cell type impacting the biology of a different cell or tissue type [51–55], with most such

data derived from in vitro systems. It might be easier to imagine how a replication-competent

RNA molecule may affect target cell physiology [37]. A similar expectation from a small amount

of protein is more challenging and may involve amplification of the cargo protein’s signals.

EVs carrying “executive orders” in the body can emanate not only from the host cells but

also from microbiota. Recently, it was established that bacteria, including commensal ones,

release EVs (reviewed in [2]), and the spectra of these EVs change in pathologies [56], stimu-

lating the tantalizing hypothesis that bacterial EVs mediate microbiota–host interactions.

Unsolved mystery #7

How do EVs alter cell physiology? Many systems have been proposed, yet definitive proofs,

particularly using in vivo systems, are scarce.

Healthy versus diseased packages

Several diseases have been recently associated with abnormalities in EV-mediated cell–cell

communications. In this context, a disease may emanate from EV miscommunication at the

level of the sending cells, the target cells, or the circulating EVs themselves and may involve

the number of packages, their composition, delivery, or processing systems. Examples of stud-

ies in which EVs have been implicated in disease processes include cancer and metastatic

spread [51, 57–59], cardiometabolic disease and regulation of myocardial hypertrophy [60],

cardiac regeneration after injury [61,62], obesity [63], and neurological disease [64,65]. EVs

were also implicated in defense against a disease (e.g., antiviral effect [54]). Is it also possible

that global changes in the vesiculome (akin to changes in the microbiome) may affect general

homeostatic functions throughout the entire organism? The link between EVs and diseases led

researchers to examine EV pathways as targets for therapeutic intervention, as well as the isola-

tion and analysis of tissue-specific circulating EVs as biomarkers of diseases (reviewed by

[62]). Indeed, blood EVs are particularly attractive as “liquid biopsies” for determining the

state of hard-to-access tissues. The utilization of EVs as diagnostic tools requires improved

and standardized EV isolation technologies that may exceed current standards (e.g., ultracen-

trifugation/gradient-based separation, antibody-based chromatography columns) and may

also require faster, near-point-of-care isolation [15,66]. Recently, De Wever and colleageus

summarized different issues that should be resolved in order to promote the clinical applica-

tions of EVs [67]. Whether or not altered EVs play a functional role in pathogenesis or are

merely a symptom may be resolved with future EV manipulation or the delivery of artificial

EVs to minimize disease.
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Unsolved mystery #8

Do disease-associated EVs play a role in disease pathogenesis, or are they merely a marker of

disease? If EVs are a part of disease development or severity, their manipulation could have

important therapeutic implications. EVs may also serve an important role in tissue-specific

clinical diagnostics.

Concluding remarks

The field of EV biology is rapidly evolving and expanding, affecting almost all biomedical dis-

ciplines, from oncology and obstetrics to microbiology and marine biology. A major challenge

in EV research is the huge and underappreciated vesicle diversity. Many of the hurdles in

understanding EV function stem from our inability to separate a complex population of vesi-

cles into subclasses of particular sizes, compositions, and biogenetic pathways. Despite a burst

of new publications on EVs, several basic hypotheses regarding their function remain to be

experimentally tested. Notably, most studies in the field of EV biology have been performed in

vitro and using cell lines in which the experiment-specifc culture conditions may affect the

biochemical and biophysical features of EVs. Which of these experimental results can be

extrapolated to an in vivo system? Notwithstanding occasional skepticism, at least a couple of

observations have been proven beyond doubt, justifying the existence of the field: cells release

EVs not only in vitro but also in vivo, and diverse types of vesicles have been isolated and ana-

lyzed from all bodily fluids. Moreover, the number of EVs and their composition changes in

disease provide hope that EV-based liquid biopsies can be used for diagnostics [8,68].

EV-based cell–cell communication relies on the ability of vesicles to deliver bioactive mole-

cules to other cells [69]. This has been validated predominantly in vitro. Recent experiments

using animal models [70–72] enable the tracing of EVs to their cells of origin, providing strong

evidence in support of an important EV function in vivo.

Data reproducibility remains a challenge in the field. This challenge is amplified by the EV

diversity in cultured cells and in bodily fluids. Small deviations in the isolation protocols may

result in a collection of different EV populations. The problem of irreproducibility among labs

may be solved by the development and deployment of effective technologies that allow better

EV isolation, size characterization, and definition of cargo composition. The position papers

by ISEV and by ERCC [7–9] and the web platforms and information by the Transparent

Reporting and Centralizing Knowledge in Extracellular Vesicle Research (EV-TRACK) con-

sortium ([73], www.evtrack.org) represent important steps in overcoming these problems.

More needs to be done in the biomedical research space.

As with other scientific disciplines, EV science is moving forward by a combination of new

ideas, technologies, astute observations, and careful data analysis. Currently, the EV field

seems to be rich in ideas but lacking in appropriate technologies to test these ideas. Progress is

made and is likely to help resolve some of the mysteries listed here. One example is in technol-

ogies that target single-vesicle analysis [74,75], which will provide greater insights into vesicle

type and diversity. The development of new technologies and their acceptance by scientists in

different research fields will reveal new functional and structural properties of EVs that will

eventually propel the field to the forefront of biomedicine, on a par, eventually, with other gen-

eral fields, such as virology, cell biology, and immunology.

Acknowledgments

The authors thank Lori Rideout for assistance during preparation of the manuscript.

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000363 July 18, 2019 8 / 12

http://www.evtrack.org/
https://doi.org/10.1371/journal.pbio.3000363


References
1. Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, et al. Membrane vesicles, current state-of-

the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011; 68: 2667–2688. https://doi.org/

10.1007/s00018-011-0689-3 PMID: 21560073

2. Kim JH, Lee J, Park J, Gho YS. Gram-negative and Gram-positive bacterial extracellular vesicles.

Semin Cell Dev Biol. 2015; 40: 97–104. https://doi.org/10.1016/j.semcdb.2015.02.006 PMID:

25704309

3. Gould SJ, Booth AM, Hildreth JE. The Trojan exosome hypothesis. Proc Natl Acad Sci USA. 2003; 100:

10592–10597. https://doi.org/10.1073/pnas.1831413100 PMID: 12947040

4. The Bible KJV. Ecclesiastes 1:9.

5. Liu Y, Chen Q. 150 years of Darwin’s theory of intercellular flow of hereditary information. Nat Rev Mol

Cell Biol. 2018; 19: 749–750. https://doi.org/10.1038/s41580-018-0072-4 PMID: 30425323

6. Ouyang Y, Mouillet JF, Coyne CB, Sadovsky Y. Review: placenta-specific microRNAs in exosomes—

good things come in nano-packages. Placenta. 2014;35 Suppl: S69–73.

7. Das S, Extracellular RNA Communications Consortium, Ansel KM, Bitzer M, Breakefield XO, Charest

A, et al. The extracellular RNA communication consortium: establishing foundational knowledge and

technologies for extracellular RNA research. Cell. 2019; 177: 231–242. https://doi.org/10.1016/j.cell.

2019.03.023 PMID: 30951667

8. Srinivasan S, Yeri A, Cheah PS, Chung A, Danielson K, De Hoff P, et al. Small RNA sequencing across

diverse biofluids identifies optimal methods for exRNA isolation. Cell. 2019; 177: 446–462 e416. https://

doi.org/10.1016/j.cell.2019.03.024 PMID: 30951671
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