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Abstract: Exploiting hand gestures for non-verbal communication has extraordinary potential in HCI.
A data glove is an apparatus widely used to recognize hand gestures. To improve the functionality of
the data glove, a highly stretchable and reliable signal-to-noise ratio sensor is indispensable. To do
this, the study focused on the development of soft silicone microchannel sensors using a Eutectic
Gallium-Indium (EGaIn) liquid metal alloy and a hand gesture recognition system via the proposed
data glove using the soft sensor. The EGaIn-silicone sensor was uniquely designed to include two
sensing channels to monitor the finger joint movements and to facilitate the EGaIn alloy injection
into the meander-type microchannels. We recruited 15 participants to collect hand gesture dataset
investigating 12 static hand gestures. The dataset was exploited to estimate the performance of
the proposed data glove in hand gesture recognition. Additionally, six traditional classification
algorithms were studied. From the results, a random forest shows the highest classification accuracy
of 97.3% and a linear discriminant analysis shows the lowest accuracy of 87.4%. The non-linearity
of the proposed sensor deteriorated the accuracy of LDA, however, the other classifiers adequately
overcame it and performed high accuracies (>90%).

Keywords: machine learning; classification; wearable device; soft sensor; hand gesture recognition;
silicone strain sensor; eutectic gallium-indium (EGaIn)

1. Introduction

Nobody knows the exact origin of gestures in human society, when/how/why we
started to use gestures [1]. However, it is definitely true that the usability of gestures as
non-verbal communication is limitless. As an example using gestures for communication,
sign language is a typical example of the non-verbal communication using hand and finger
gestures. Several studies for hand gesture recognitions and sign languages have been
reported in the literature. (refer to the review article [2] for more details). Moreover, the
hand gesture recognition has been widely used for various applications: not only the sign
languages, but also drone control [3], robot arm manipulation [4], and virtual/augmented
reality interface [5].

There are several approaches to recognize hand gestures: vision based [6–8], data
glove based [9,10], and bio-signal based [11–14]. In particular, this study has focused on
hand gesture recognition based on the data glove approach. In the studies using data
gloves for the hand gesture recognition, a key topic is manufacturing a high stretchable and
reliable signal-to-noise ratio (SNR) sensor which is embedded into a glove to capture hand
motions [10,15–22]. For a soft and stretchable sensor, a Eutectic Gallium-Indium (EGaIn)
alloy [23] has been a popular choice as a conductive liquid material to be embedded in a
silicone matrix to construct microchannels due to its liquid state at room temperature, high
surface tension, and outstanding electrical conductance [20]. The EGaIn alloy was utilized
for various engineering applications in soft robotics, wearable electronics, stretchable
electronics and sensors, and tunable antennae [18,24–26]. Other liquid conductors such as
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carbon greases, ionic liquids, and biocompatible conductive liquids [15,16,19,21] have been
investigated to develop soft strain and force sensors. However, since the conductivity of
the liquid materials is very low compared to the liquid metal alloy, the associated sensing
system requires additional signal conditioning circuitries to acquire a reasonable SNR
signal and reliable measurements.

In the surveys of Rashid and Hasan [27] and Chen et al. [8], they introduced four type
of sensors for developing data gloves: flex sensor [28–31], stretch sensor [15,32–37], inertial
measurement unit (IMU) [38,39], and magnetic sensor [40,41]. IMU sensor is popularly
used for measuring the orientation in 3D space by fusing the information of accelerometers,
gyroscopes, and magnetometers. Magnetic (or hall-effect) sensor detects the movements in
a magnetic field. These IMU and magnetic sensors are popular measurement units for the
body movement, however they consist of rigid components that are relatively bulky for a
wearable device. Another type of sensor, a flex (or bend) sensor, tends to measure deflection
angles. It is widely used for commercial products such as CyberGlove III and 5DT data
gloves because of its practical advantages such as along-life cycle and low price. The other
sensor type, a stretch (or strain) sensor, is slightly similar to the flex sensor, however, the
stretch sensor has a particular characteristic, highly flexibility, which is suitable for human
body movements. The proposed sensor in this study can be categorized into the stretch
sensor.

The recent works about the stretch sensor for developing data gloves have studied
various design concepts and evaluated the performance of their designs. Bianchi et al. [32]
used knitted piezo-resistive fabrics to recognize hand postures and to detect tactile pressure
as well. Michaud et al. [33] developed a gallium-based soft, resistive and thin (<50 µm)
strain sensor to measure finger joint angles, but it was insensitive to normal pressure.
Atalay et al. [35] proposed a data glove via the batch manufacturing technology which was
easy for the mass production. They developed a data glove with highly stretchable textile-
silicone capacitive sensors. Their capacitive sensor had the advantages of high linearity
and low hysteresis. Additionally, Ryu et al. [36] devised a knitted glove sensing system
with fabric structure strain sensors and evaluated the electrical responses of the tensile
and compressive behaviors of the strain sensor. Yeo et al. [42] proposed a strain sensor,
which had 150 mm in length and 2 mm in width; and was fabricated by the screen-printing
method of silver ink on a thin layer. Their strain sensor was developed to be integrated
into a pneumatic soft actuator for building a sensorized actuating glove which could be
used for rehabilitation and virtual reality applications.

There were a soft sensor using a conductive liquid metal, EGaIn, similar to our study.
Park et al. [34] proposed a soft sensor which consisted of soft silicone, Ecoflex, and a
conductive liquid metal, EGaln. The proposed sensor had high elasticity, light weight
and reasonable sensitivity. They designed two separated regions to detect the movement
of finger joints. Kim et al. [43] introduced a novel fabrication process based on direct
ink writing (DIW) of EGaIn in a 2D plane. This fabrication process directly created the
whole sensor system for a data glove: the sensing elements, electrical wires, and electrode
parts. Nassour et al. [44] also introduced a soft sensor which was fabricated by injecting
the conductive liquid metal, EGaIn, into a silicone tube. Based on the soft sensor, they
prototyped a data glove to identify 15 hand gestures.

Compared to these previous studies, this study presents the following as the main
advantages of the developed EGaIn-silicone microchannel soft sensor.

• Integration of multiple sensory points to detect multiple joints of a finger; generally,
hand gestures involving finger movements require two separate sensors to measure
the degree of bending (DoB) of a finger.

• High stretchable characteristic; essentially, the proposed soft sensor has higher stretch-
ability and robustness which are came from the material properties of the soft silicone
compared to the piezoelectric film which is widely used for sensors of a data glove in
the hand gesture recognition applications.
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• The possibility to measure dual properties: pressure and strain; fortunately, the
proposed EGaIn-silicone microchannel sensor has abilities reacting to being pressured
and to being stretched.

In this study, we present the development of a hand gesture monitoring glove based on
the soft and robust EGaIn-silicone microchannel sensors to measure finger joint movements.
We evaluated the performance of the data glove to 12 hand gestures which are stemmed
from American Sign Language. The performance of the data glove was evaluated from the
hand gesture dataset collected from 15 human participants. The major contributions of this
study are as follows.

• This study developed a EGaIn-silicone based soft sensor for creating a data glove.
The proposed sensor was designed for (1) the integration of multiple sensory points;
(2) highly stretchable characteristic; and (3) possibility to measure dual properties.
Generally, hand gestures related to finger movements require at least two separated
sensory points to measure DoB of a finger. In the consideration of the integrated sensor
design, it may become easier to install the sensors on a data glove. Consequently, the
complexity and the defective rate of the manufacturing procedure of the data glove
may decrease.

• The performance of the proposed soft sensor (or the data glove) was evaluated in a
real application as the classification of hand gestures. We collected the dataset of the
hand gestures from the human subjects and evaluated the performance of the data
glove upon six traditional classification algorithms. As interpreting the results, we
discussed the functionality of the proposed sensor in the hand gesture recognition.

This paper is organized as follows. Section 2 presents our manufacture procedure
to build EGaIn-silicone soft sensors and a data glove for hand gesture recognition; data
acquisition of hand gestures; and data analysis used in this work. Section 3 presents results,
which are discussed and interpreted in the Discussion (Section 4). Section 5 provides
conclusion and possible follow-up work.

2. Materials and Methods
2.1. EGaIn-Silicone Sensor Fabrication Process

The soft EGaIn-silicone sensor consists of a conductive liquid metal, silicone matrix
embedding microchannels, and electrical wires. As a conductive liquid material for filling
microchannels, a well-known 99.99% EGaIn alloy (from Sigma-Aldrich, Inc.) [45] with the
resistivity of ρ = 29.8 × 10−8 Ω/m [23] was used. A platinum-catalyzed Ecoflex 00-30
silicone rubber (from Smooth-on, Inc.) was chosen to be used as a sensor matrix to construct
highly deformable microchannels due to its low Young’s modulus (70 kPa), low viscosity
(3000 cps), and 900% elongation rate [45].

The fabrication process of the sensor is shown in Figure 1. A plastic mold was prepared
using an Object500 Connex2 3D printer (from Stratasys, Ltd.) with a high quality resolution
of 16 µm [46] and rigid and durable Vero family photopolymer inks. The mold contained
two microchannels based on the design of cross-sectional dimensions of 250(w) × 125(t)
µm. The spacing between microchannels was 500 µm, and the total length of the individual
microchannels was set to 160 mm. A liquid Ecoflex 00-30 silicone mixed with two parts of
the silicone material was poured into the mold and cured at room temperature for 24 h. A
thin silicone layer was prepared by spin-coating the liquid Ecoflex 00-30 silicone. The cured
silicone mold with open microchannels was bonded to the spin-coated silicone layer and
fully cured at room temperature without additional pressure or heat. Since the spin-coated
silicone layer was very thin, we did not experience any microchannel blockage that could
result from the wet silicone flowing into the microchannels. A EGaIn alloy was injected into
the microchannels while air was released through an additional syringe needle inserted
into the other terminal port. Finally, 32 AWG cooper wires were connected to the EGaIn
microchannel sensors by inserting them into the terminal ports.
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sors were bonded to the palm side of the data glove using the Ecoflex silicone as an adhe-
sive material. The sensors were decided to be installed on the palm side of the glove, since 

Figure 1. Fabrication process of the EGaIn-silicone sensor.

A prototype of the EGaIn-silicone sensor with an overall thickness of 2 mm is shown
in Figure 2a. The cross section of the microchannel is originally designed in a rectangular
shape with a size of 250 (w) × 125 (t) µm. However, as shown in Figure 2a, the final
microchannels constructed in the silicone matrix was similar to the crescent moon shape
different from the original channel design due to the printing limitations of the polyjet
3D printer using the photopolymer inks and layer-by-layer UV light curing process. As
shown in Figure 2a, the microchannel had three electrical wiring terminals designed with
approximate dimensions of 2.5 (l) × 1 (w) × 0.625 (t) mm to minimize their resistance
changes due to applied strain and to facilitate the electrical wire insertion. The middle
terminal was used to provide a 5 V DC input voltage. The total length of both microchannels
is equal to 160 mm; therefore, the individual channels are designed to have two different
active sensing lengths of 40 (by four folds) and 80 mm (by two folds), respectively, to
distinguish the bending positions of finger joints.

Figure 2. EGaIn-silicone sensor prototypes: (a) a EGaIn-silicone sensor and the selected cross-sectional areas of the sensor;
(b) a hand gesture sensor using a fabric glove installed with the EGaIn-silicone sensors.

A hand gesture sensor system of Figure 2b was fabricated by mounting five EGaIn-
silicone sensors on the folds of each finger of the data glove. The five EGaIn-silicone
sensors were bonded to the palm side of the data glove using the Ecoflex silicone as an
adhesive material. The sensors were decided to be installed on the palm side of the glove,
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since the change in resistance caused by the folding of the sensor is much more effective
than the change by the stretching of the sensor. When the proximal interphalangeal (PIP)
joint is bent, a microchannel sensor (Ch1 in Figure 2a) with the active sensing length
of 80 mm measures the associated resistance change. On the other hand, the resistance
values of both microchannel sensors (Ch1 and Ch2 sensors) vary by the bending of the
Metacarpo-phalangeal (MCP) joints. Under ideal finger bending conditions, the number of
microchannels in the Ch2 sensor is twice that of the Ch1 sensor, so the change in resistance
of the Ch2 sensor should be twice as large as the change in resistance of the Ch1 sensor.

2.2. Resistance Change Measurment

The baseline resistances of the EGaIn-silicone sensor without any deformations were
1.68 Ω and 1.58 Ω for Ch1 and Ch2 sensors, respectively. The resistance values were
measured by using the middle terminal as a common ground. The baseline resistance
of the two microchannel sensors should be the same because of the microchannels filled
with a similar amount of an EGaIn alloy proportional to the same total length. However,
we observed that the 3D printed microchannels have some non-uniformity, which could
make the difference in resistance measurements. Figure 3 shows the simple voltage divider
circuit diagram to read signals from the EGaIn-silicone sensor. The 5 V DC input voltage
was continuously supplied by the NI SCB-68 module connected to the NI USB-6251 data
acquisition device that measures the voltage difference of the EGaIn-silicone sensor due to
sensor deformation.

Figure 3. Electronic circuit diagram for measuring the resistance change of the EGaIn-silicone sensor
due to the geometrical deformation of the microchannel.

Figure 4 shows the change in resistance as long as uniaxial strain is applied along the
longitudinal direction of the EGaIn-silicone sensor. The sensor was gradually stretched
multiple times at a relatively low speed less than 3 mm/s, with various strain levels of 100,
125, 200, and 225%. The resistance of the EGaIn sensor progressively increases as the sensor
is expanded along its length, showing a similar nonlinear profile with measurements. In
Figure 4, we observed that the reading data from the Ch1 sensor shows a slightly large
nonlinearity than the Ch2 sensor. The Ch1 sensor appears to increase in nonlinearity pattern
as the maximum strain level increases, while the Ch2 sensor has a constant nonlinearity.
In general, polymer-based sensors have some degree of hysteresis [20]. The Ch2 sensor
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shows a certain amount of hysteresis; however, the hysteresis of the Ch1 sensor depends
on the maximum strain value. For example, the hysteresis level of the Ch1 sensor was
much greater for the 225% applied strain compared to the 100% strain case, but the amount
of hysteresis was dramatically reduced at about 100% strain level. This hysteresis problem
with EGaIn-silicone sensors is likely to be more apparent in pressure sensing applications
in a high pressure range of over 40 kPa [20,47]. The hysteresis characteristics of EGaIn-
silicone sensors also depends on the strain rate. The level of the hysteresis decreases with
increasing strain or pressure rate [20]. The strain sensing results of the Ch2 sensor show
the repeatability under the loading and unloading conditions of the sensor, regardless of
the level of the strain applied.

Figure 4. Measurement of resistance change of the EGaIn-silicone sensor while uniaxial strain is
applied along the longitudinal direction of the sensor.

2.3. Data Acqusition of Hand Gestures

In the study, 12 static hand gestures were investigated to estimate the performance,
in the hand gesture recognition, of the data glove which the proposed soft (force/stretch)
sensors were installed. The investigated hand gestures are shown in Figure 5. We recruited
15 healthy volunteers under the approval of the Institutional Review Board (IRB) at the
University of Maryland and written informed consent. We collected the age, gender, height,
and weight of the volunteers for the demographic and ethnic information of the study
participants shown in Table 1.
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Figure 5. The collected 12 static hand gestures.

Table 1. Demographics of the study participants (mean+/−SD).

Age [yr] Gender (M: Male, F: Female) Height [cm] Weight [kg]

32 ± 7 M: 13, F: 2 172.0 ± 7.6 71.4 ± 11.5

The data glove included the 5 proposed soft sensors which have 10 channels in total
as shown in Figure 2b and voltages of the channels were measured via the circuit explained
in Figure 3. The NI USB-6251 acquired voltage data from the 10 channels of the data glove
at 1 kHz sampling rate. The experiment collecting the data glove data of the 12 hand
gestures had one type of section. The section was repeated six times for data acquisition.
The protocol of the section is as follows:

1. Start at Gesture #1 (Rest)
2. Hold the Gesture #1 for 7 s
3. Return to the Gesture #1 for rest
4. Prepare Gesture #2 (Hand Close)
5. Perform Gesture #2
6. Hold the Gesture #2 for 7 s
7. Return to the Gesture #1 for rest
8. Repeat 4. ~ 7. for Gesture #3 ~ #11
9. Prepare Gesture #12 (Num 9)
10. Perform Gesture #12
11. Hold the Gesture #12 for 7 s
12. Return to the Gesture #1 for rest
13. Take a rest for a while (one section has been finished.)

Before starting the experiment, a plenty of practicing time was allowed for a partici-
pant to become accustomed to performing the hand gestures and the experiment protocol.
After confirming the familiarity from the participant, the experiment and data acquisition
was performed.

2.4. Analysis of Hand Gesture Recognition

To analyzing the performance of the hand gesture recognition via the proposed data
glove, five procedures were performed: (1) preprocessing, (2) segmentation [48], (3) feature
extraction, (4) training classifiers, and (5) performance evaluation.
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(1) The preprocessing procedure included 2 tasks: removing the start and end transient
sections from the analysis and segmenting the steady state section with a prefixed
window length to extract features. The length of the transient section is about 0.4 s(s)
to 0.8 s; mainly, this was caused from a motion transaction from Gesture #1 (Rest) to a
specific gestures and from a specific gesture to Gesture #1 for the rest. The transient
section, which was found by the visual inspection of a trained inspector, was removed
from the analysis. The investigator inspected the voltage signals of 10 channels
visually; (1) finding the onset and end of each gesture trial, and (2) determining the
transient sections which was about 0.4–0.8 s long after the onset and before the end as
shown in Figure 6.

(2) For the segmentation, the steady state section was windowed by 200 milliseconds
(ms) length with no overlapped area. The window length, 200 ms, was empirically
selected for a reasonable accuracy and train/test sample size by trial-and-error [48].

(3) For the feature extraction, the mean value of each segment which included 200 sam-
ples due to 200 ms of the window length at 1 kHz sampling rate was calculated as a
feature. For example, a hand gesture which had a 5 s steady state section had 25 seg-
ments per each channel, therefore, this gesture generated a 25 × 10 feature matrix
which had 25 samples of 10 feature dimensions from 10 channels of the sensors. Due
to this averaging method, no filtering techniques were applied to the raw voltage data
in the preprocessing procedure. The total sample size generated from 15 subjects was
36,323. The dataset included 10 feature columns which had floating-point numbers in
voltage (V). The total number of classes was 12 stemmed from the static hand gestures
investigated in this study.

(4) We chose six traditional machine learning techniques: K-Nearest Neighbors (KNN) [49],
Support Vector Machine (SVM) [50], Linear Discriminant Analysis (LDA) [51], Quadratic
Discriminant Analysis (QDA) [51], Random Forest (RF) [52], and Naïve Bayes (NB) [53].
We investigated the six traditional classifiers because the results needed to be inter-
preted by speculating the reasons from the behaviors of the classifiers in the white box
(interpretable model) manner. That is why we did not include black-box classifiers
such as ANN [50] and Deep learning architectures [54] in this study. The model param-
eters of the classifiers were estimated by the grid search. The estimated parametres
were: KNN: ‘k’ = 2 where ‘k’ is the number of neighbors; LDA: ‘n_components’ = 1
where ‘n_components’ is the number of components; QDA: ‘reg_param’ = 0.001
where ‘reg_param’ is the regularization of the per-class covariance; SVM: ‘C’ = 107,
‘gamma’ = 0.001, and kernel = radial basis function where ‘C’ is the regularization
parameter and ‘gamma’ is the kernel coefficient; RF: ‘n_estimators’ = 1500 where
‘n_estimators’ is the number of trees in the forest. For training and testing the clas-
sifiers, we divided the data by 80% for training and 20% for testing at the subject
level; the samples from 12 subjects were used for training and the samples from the
other three subjects were used for testing (five-fold cross validation was adopted). We
assumed that the five-fold cross validation appropriately divides the samples for the
proper train and reliable test of the classifiers as well as the subject level separation to
assess the effect of inter-subject variation in the hand gesture classification.

(5) For the performance evaluation, we calculated the accuracy, recall, precision, and F1
score of each classifiers. As well, confusion matrix and ROC curve were analyzed.
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Figure 6. Preprocessing and segmentation for the feature extraction of hand gestures. This figure shows measured voltages
of 10 channels of a Gesture #2 (hand close). The start and end transient sections (red regions of 0.4–0.8 s length) are removed
at the preprocessing procedure. After the preprocessing, the feature is calculated as the mean value of a window (a green
region of 0.2 s length) at the steady state section.

We used a laptop computer equipped with CPU (core i7-10510U@1.8GHz) and RAM
of 16 GB for data processing, training classifiers, and analysis. We exploited scikit-learn
(ver. 0.23.2), pandas (ver. 1.0.3), matplotlib (ver. 3.2.1), numpy (ver. 1.18.1) and other useful
python libraries as well.

3. Results

To estimate the performance in the hand gesture recognition via using the proposed
soft sensors (the data glove), we investigated the accuracy, receiver operating characteristic
curve, confusion matrix, recall, precision and F1 score. From the accuracy box plot as shown
in Figure 7 and Table 2, the accuracy of LDA is 87.4% with ±5.6% standard deviation (SD).
LDA shows the lowest accuracy and the largest SD among the 6 classifiers; KNN has 94.5%
accuracy with ±2.2% SD, NB: 93.9% ± 1.7%, LDA: 87.4% ± 5.6%, QDA: 93.6% ± 2.4%,
SVM: 92.9% ± 4.0%, and RF: 97.3% ± 2.4%. The best classification accuracy was established
by RF and the smallest SD was by NB. The receiver operating characteristic curves of six
classifiers are shown in Figure 8.

Table 2. Performance metrics of classifiers (mean ± SD).

Classifier Accuracy Precision Recall F1 Score

KNN 94.5% ± 2.2% 95.0% ± 2.0% 94.5% ± 2.2% 94.4% ± 2.3%
NB 93.9% ± 1.7% 94.4% ± 1.7% 93.9% ± 1.7% 93.8% ± 1.7%

LDA 87.4% ± 5.6% 89.5% ± 4.1% 87.4% ± 5.6% 87.1% ± 5.7%
QDA 93.6% ± 2.4% 94.3% ± 2.1% 93.6% ± 2.4% 93.4% ± 2.5%
SVM 92.9% ± 4.0% 93.5% ± 3.3% 92.9% ± 4.0% 92.7% ± 4.0%

RF 97.3% ± 2.4% 97.6% ± 1.9% 97.3% ± 2.4% 97.2% ± 2.4%

Figure 9 shows the confusion matrices of the six classifiers. The noticeable low
classification accuracies, which means the classification accuracy of the individual gesture
is less than 80% in the confusion matrices, are Gesture #3 (78%) in KNN; Gestures #2 (71%),
#3 (60%), and #5 (77%) in LDA; Gestures #3 (70%) and #8 (75%) in QDA; and Gesture #3
(72%) in SVM. The values in the parenthesis are the classification accuracies of each gesture.
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Gesture #3 was less accurately recognized over the studied classifiers and it was mostly
misclassified as Gesture #11, except that LDA mostly misclassified Gesture #3 as Gesture
#1. This is a less-expected result; certainly, it is not enough to explain this result by only
the similarity of these gestures, Gestures #3 and #11. It is because that there are other
candidates excluding Gesture #11 with respects to the gesture’s shape similarity.

Figure 7. Accuracy of the classifiers; the median accuracies are KNN: 95.2%, NB: 93.8%, LDA: 87.9%,
QDA: 93.3%, SVM: 94.6, and RF: 97.5%; the circles of each classifier express the accuracies of five-fold
cross-validation; the orange line in the box plot shows median values. One-way ANOVA with
Bonferroni post hoc test for the multiple comparison was performed. (*, p < 0.05).

Figure 8. Receiver operating characteristic curves of the six classifiers; AUC and ROC curve were
calculated by macro-average technique for the multi-class classification.
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Figure 9. Confusion matrices of the classifiers; the total number of samples is 34,202 which was collected from 15 participants.

Another point is Gestures #2 and #8. All classifiers were likely to misclassify Gesture
#2 as Gesture #8, vice versa. This misclassification is explainable by the gesture’s shape
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similarity; the only difference between these gestures is the posture of the thumb. Addi-
tionally, the misclassification of Gesture #5 in LDA is frequently Gesture #10; these gestures
have only a difference of the position of the little finger. In RF, all classification accuracies
of the individual gestures are over 80%.

Figure 10 shows the recall, precision, and F1 score of each gesture and classifier. These
three performance plots also show the similar tendency as presented in the results of the
confusion matrix; the classification performance of Gestures #2, #3, and #8 are mostly lower
than of the others over all classifiers.

Figure 10. Precision, recall, and F1 score of the classifiers at each gesture; Gestures #2, #3, and #8 have relatively lower
values than the other gestures; most of the cases shows that RF performs better than the other classifiers.

4. Discussion

In this study, a fabric data glove was developed based on robust and highly flexible
strain sensors using a silicone rubber embedding microchannels filled with a liquid metal
EGaIn alloy. Moreover, the hand gesture recognition via the proposed glove was studied
with the various classification techniques. The proposed soft EGaIn-silicone sensor was
fabricated by rubber molding and casting and liquid metal injection methods. The EGaIn-
silicone sensor exhibited some degree of nonlinearity and hysteresis characteristics, but
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showed a gradual increase in resistance as the applied uniaxial strain increases along
to the longitudinal direction of the sensor. The preliminary test results also verified the
repeatability of the strain measurement using the EGaIn-silicone sensor.

Additionally, as a possible application using the proposed glove, the hand gesture
recognition was studied with the 12 static hand gestures. The performance of the glove in
the gesture recognition with the traditional machine learning methods showed that high
multi-class classification accuracy over 90%, except for LDA because of the non-linearity of
the soft sensors. As shown in Table 3, this study has led to the comparable classification
accuracy for hand gesture recognition via the developed data glove compared to other
studies. The availability of the proposed data glove and soft sensors was confirmed from
the results. However, this study also has a couple of limitations and we state the limitations
in this section. Moreover, we discuss a couple of findings from the study as well. Details
are as follows.

Table 3. Comparison of studies for a data glove based hand gesture recognition.

Reference Sensor Raw Data # Gestures # Users Accuracy

Shukor et al. [55] Tilt 10(tilt) 9 4 89%
Saggio et al. [56] Flex(glove) + IMU(arm) 10 (flex) + 6 (IMU) 10 7 98%

Pezzuoli et al. [57] Flex(glove) + IMU(arm) 10 (flex) + 2 (IMU) 27 5 99%

Huang et al. [58] Reduced Graphene Oxide(RGO)
coated fibers 10 (flex) 10 4 99%

Nassour et al. [44] Potassium Iodide(KI)-Glycerol(Gly)
+ Conductive Liquid 14 (flex) 15 1 89%

Ciotti et al. [30] Knitted Piezoresistive Fabrics 5 (stretch) 8 5 98%
Mummadi et al. [59] IMU 5 (IMU) 22 57 92%

Wong et al. [60] Capacitive 5 (capacitive) 26 10 99%
This Study EGaIn Microchannels 10 (stretch) 12 15 97%

Gestures #2 vs. #8 and Gestures #3 vs. #11— From the confusion matrices in the
Results section, it was found that Gesture #2 was frequently misclassified as Gesture #8.
The difference between Gesture #2 and #8 is the position of the thumb; Gesture #2 is a fist
motion with the bended thumb, but Gesture #8 is the thumbs-up motion which has the
straightened thumb. This misclassification might come from the limitation of the proposed
soft sensor; even though we installed the sensors on the palm side of the glove to increase
their sensitivity, a few cases were noticed that the sensors were not able to detect the DoB
of a bended finger. This was likely to be caused from the thickness of the sensor. With
our restricted fabrication capability, reducing the thickness of the sensor was limited. The
sensitivity of this thick sensor was imperfect to detect the bended finger. We speculate that
this limitation also affects to the misclassification between Gestures #3 and #11.

LDA vs. QDA— For the results, LDA shows the worst classification accuracy. How-
ever, QDA shows relatively reasonable accuracy compared to the other classifiers. The
key difference between LDA and QDA is the way of dealing with the covariance matrix of
classes; LDA assumes that all classes have the same covariance matrix, but QDA assumes
that each class has its own covariance matrix which means that each class has different
variances [61]. We speculate that this difference helps to explain the non-linearity of the pro-
posed soft sensor and QDA performed the hand gesture classification problem well; LDA
did not. The other classifiers, KNN, NB, SVM, and RF, seem to handle the non-linearity of
the senor adequately according to the results.

Limitations—This study has several limitations as follows.
First of all, the state-of-the-art deep learning techniques for the hand gesture classifica-

tion were not investigated in this study. After the rapid growth of GPU-based machine
learning techniques, i.e., deep learning, with a vast amount of data, numerous applications
adopt the deep learning techniques to enhance the performance of their classification accu-
racy. However, the purpose of this study is to check the availability of the proposed data
glove (or the EGaIn-silicone soft sensors) through the simply implementable algorithms,
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behaviors of which are easily interpretable as well. For the purpose, the traditional machine
learning techniques used in the study were enough to evaluate the performance of the
glove. However, for the further improvement in the gesture classification, should consider
deep learning based classification approaches, e.g., one-dimension data based convolution
neural network (1D CNN) [54], should be studied as well.

Moreover, we only used the steady state section of the gestures, which was visually
identified, to evaluate the functionality of the proposed sensor as minimizing the effect
of transient motions. However, this is not an applicable way to real-world applications.
A future study needs to examine the transient motions as well as to recognize gesture
sequences in real-time for practical applications. Additionally, we did not optimize the
length of the sliding window, 200 ms, in this study. The length is perhaps able to affect
the classification performance because the shorter sliding window can achieve the quicker
response rate of the classification, but it is more vulnerable to motion artifacts and transient
motions. This parameter is a tunable parameter to be optimized for practical applications.
However, the results of the classification accuracy showed that 200 ms for the sliding
window was an appropriate parameter for the reasonable classification performance.
Surveying the effect of the parameter in the classification is slightly out of the topic of this
study.

Another limitation is the fabrication capability to reduce the thickness of the sensor.
The smaller cross-section of the EGaIn microchannel sensor causes the higher sensitivity. It
means that the changes in resistance of the soft sensor increases as its microchannel cross-
section decreases. We speculated that the misclassification of the specific gestures is likely
to be alleviated by using the higher sensitivity sensor because we observed some cases
where the finger were bent, but the voltage change of the soft sensor was not noticeable. To
detect the voltage changes in the sensor, we used the simple voltage divider circuit with a
relatively low resistance, but this was not an effective method because the current used in
the circuit was slightly high. This high current issue can be resolved by using advanced
voltage amplifier circuits in practical applications. In this study, we did not employ the
amplifier circuits because our DAQ system was able to capture these low voltage changes in
high resolution. However, this perspective should be considered so that it can be efficiently
used in real applications.

Additionally, we did not independently account for the ability of measuring the
pressure the sensor has in this study. The proposed sensor reacts to the pressure provided
on the normal direction of the sensor and the stretching along the length direction as well.
We used both abilities in a synthetic way to recognize the hand gestures. However, if these
abilities are separately explained, the applicable fields using the proposed sensor may be
broadened. A further study must consider this aspect of the proposed sensor.

Note that the proposed data glove did not take into account the measurements of the
longitudinal forces in the palm generated during the stretching and squeezing motions of
the palm for hand gestures. To integrate this component, additional sensors are required
to be embedded to the palm area of the data glove. The relevant additional information
is expected to help recognize a wider variety of hand gestures than the presented data
glove. Using the advanced data glove to analyze the change in the palm side during hand
gestures will be a valuable further study.

5. Conclusions

This study demonstrated the manufacturing procedure of EGaIn-silicone based soft
sensors and developed a fabric data glove embedded with the proposed soft sensors. To
evaluate the performance of the proposed data glove, 15 human subjects were recruited
and 12 static hand gestures were tested. With the collected hand gesture dataset, the
performance of the data glove in the hand gesture recognition was determined by the
6 traditional machine learning classifiers: K-Nearest Neighbors, Support Vector Machine,
Linear Discriminant Analysis (LDA), Random Forest (RF), Naïve Bayes, and Quadratic
Discriminant Analysis. LDA showed the lowest accuracy (87.4% ± 5.6%) and RF demon-
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strated the highest accuracy (97.3% ± 2.4%). The accuracy of LDA seems to be reduced
due to the non-linear nature of the proposed soft microchannel sensor. However, the other
traditional machine learning classifiers were able to overcome the non-linear characteristics
of the sensor. This apparently states that a high computational deep learning technique is
not needed to classify the hand gestures via the proposed sensors. Even though there still
exists the performance degradation at classifying the similar gestures like Gesture #2 (hand
close) and Gesture #8 (Num 5, thumbs-up), the recognition system using the proposed data
glove shows sound classification accuracy for the rest of the hand gestures. In a future
work, it is expected that the classification accuracy of a simple linear classification method
can be improved by developing a closed-form equation that mathematically describes the
non-linear behavior of the soft sensor.
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