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Chronic kidney disease (CKD) has become a global public health problem. Tubular epithelial cell injury plays a vital role in the
progression and prognosis of CKD.-erapies to protect tubular cells is the key to delaying CKD progression. Our study found that
verbena, a natural traditional Chinese herb, has a potential reno-protective role in kidney diseases. However, the detailed
mechanism remains unknown. In the current study, we employed adriamycin (ADR)-induced renal tubular cell injury to mimic
the conditions of tubular injury in vitro. Results showed that total aqueous exact of verbena (TAEV) ameliorated ADR-induced
cell disruption, loss of cellular viability, and apoptosis via inhibition of ROS-ERK1/2-mediated activation of NLRP3 signal
pathway, suggesting that TAEV serves as a promising renoprotective agent in delaying the progression of CKD, while ROS-ERK1/
2-mediated NLRP3 signal pathway might be a novel target in treating kidney diseases.

1. Introduction

Chronic kidney disease (CKD) has become a global public
health problem [1]. During the process, tubular epithelial cell
injury was considered a direct cause of acute renal failure
and the vital factor leading to irreversible progression of
CKD [2]. Tubular epithelial cell injury destroys the tubu-
lointerstitial structure, significantly enhances the migration
and secretion of inflammatory cells and results in massive
generation of chemokines, proinflammatory factors, profi-
brogenic factors, and matrix proteins, leading to the for-
mation and development of renal interstitial fibrosis [3].
Hence, protection of tubular epithelial cells plays a vital role
in delaying the progression of renal fibrosis and CKD.
Exploring effective renal tubular protective medicines has
become a common pursuit for nephrologists.

Verbena is a natural traditional Chinese herb widely
used in hepatitis, gonorrhea, dysentery, nephritis edema,

and so on [4]. Several studies reported the extensive bi-
ological activities of verbena, such as antitumor, analgesic,
neuroprotective, immunoregulatory, and antioxidative
properties [5–9]. Our clinical practice discovered that
a prescription mainly composed of verbena significantly
delayed the progression of renal function and reduced
proteinuria in patients with diabetic nephropathy, indicating
that verbena may play a promising role in renal protection.
However, the concrete mechanism remains unclear. -e
study of the exact mechanism contributes to develop more
novel therapeutics in renal diseases.

Adriamycin nephropathy (AN) is a classic pharmaco-
logical disease researchmodel simulating the occurrence and
development characteristics of tubular injury during the
progression of CKD [10]. Accumulated evidence indicates
that oxidative stress injury and inflammatory response
underline the toxicity of ADR in tubular injury. Among
them, activation of NLR family pyrin domain containing 3
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(NLRP3) inflammasome and mitogen-activated protein
kinases (MAPKs) have been demonstrated to be involved in
the process [11]. Whether they participate in the protection
of verbena against ADR-induced tubular injury remains
unknown. Herein, our study aims to demonstrate the po-
tential effects of verbena in ADR-elicited renal tubular in-
juries and explore possible mechanisms involved.

2. Materials and Methods

2.1. Reagents. Adriamycin (ADR) and N-acetylcysteine
(NAC) was purchased from MCE (Shanghai, China). Ver-
benalin, hastatoside, and acteoside were obtained from
Macklin (Shanghai, China).

2.2.PreparationofTotalAqueousExtracts ofVerbena (TAEV).
Verbena (batch number: 210726010) was purchased from
Suzhou Tianling Chinese Herbal Medicine Co. Ltd., and
identified as authentic by the Chinese Pharmacist, Director
Yu Hui of Zhangjiagang Hospital of traditional Chinese
medicine. TAEV is a botanical extract of the parts above the
verbena ground after drying. 0.5 kg of dried verbena was
soaked in 2 L of water for 0.5 h and decocted for 1 h. After
filtration, the aqueous decoction was made into a dry ex-
traction powder under a vacuum concentration tank. -e
dried powder was then dissolved in ddH2O for experiments.
-e quality of TAEV was controlled using high performance
liquid chromatograph analysis.

2.3. High Performance Liquid Chromatograph Analysis.
Control standard samples including verbenalin (4.86mg),
hastatoside (4.13mg), and acteoside (5.17mg) were dis-
solved in 5mL methanol. Take 1ml each, add them together
and quantify to 10ml with methanol. TAEV (20mg) was
dissolved in 10ml methanol. Concrete chromatographic
conditions: chromatographic column: thermoC18 chro-
matographic column (250mm× 4.6mm, 5 μm); detection
wavelength: 238 nm; column temperature: 30°C; mobile
phase: acetonitrile (A) −0.05% phosphoric acid aqueous
solution (B); gradient elution: 0∼30min, 14%∼40% A; flow
rate: 1ml/min, sample size 10 μl.

2.4. Cells Culture. Normal rat proximal tubular epithelial
cells (NRK-52E) were incubated in DMEM/F12 medium
added penicillin G (100U/mL), streptomycin (100mg/mL),
amphotericin B (0.25mg/mL), and fetal bovine serum (5%)
at 37°C with 5% CO2.

2.5. Animals. Eight-week-old male Sprague–Dawley rats
(n� 24, 200–250 g) were obtained from the Animal Center of
Yangzhou University (Yangzhou, China). After adaptive
feeding for a week, rats were randomized into four groups:
normal control (n� 6), adriamycin model (AN) (n� 6),
TAEV (n� 6), and adriamycin +TAEV (AN+TAEV)
(n� 6). -is work was conducted in conformity with the
guidelines for the Care and Use of Laboratory Animals of the
Affiliated Hospital of Nanjing University of Chinese

Medicine’s Research Ethics Committee. -e Research Ethics
Committee of the Affiliated Hospital of Nanjing University
of Chinese medicine authorized the protocol. -e right
nephrectomy was performed on the rats in the AN and
AN+TAEV groups under isoflurane gas anesthesia. After
surgery, each animal was injected with 200,000 units of
penicillin every day for three days. On day 14, the AN and
AN+TAEV groups received a tail vein injection of 4mg/kg
adriamycin. TAEV (2 g/kg) was administered through ga-
vage once daily to rats in the TAEV group, whereas rats in
the AN and TAEV groups received 2mL of normal saline via
gavage daily for two weeks. On day 21, the second adria-
mycin (2mg/kg) injection was delivered. On day 28, every
animal was slaughtered and blood, urine, and kidney
samples were taken.

2.6. Assessment of Cell Viability. Cells were insulted with
different stimuli as planned. After incubation, the medium
was replaced with fresh one and added cell counting kit-8
(CCK-8) reagent for 45min. Optical density (OD) was
detected with a spectrometer at a wavelength of 450 nm.

2.7. Detection of ROS. Cells were exposed to various stimuli
as plans and rinsed twice with PBS. -en, the oxidation-
sensitive fluorescent probe (DCFH-DA) was added and
incubated at 37°C for 30min. Fluorescence images were
captured using an inverted fluorescence microscope.

2.8. Assessment of Protein Oxidation. Protein lysates were
prepared by sodium dodecyl sulfate (SDS) lysis buffer mixed
with protease inhibitor cocktail (-ermo Fisher Scientific)
and 50mM DL-dithiothreitol. 5 μL of 12% SDS and 10 μL of
2,4-dinitrophenylhydrazine solution were added to each test
tube (5 μL). After incubation for 15min at room tempera-
ture, each tube was then added 7.5 μL of neutralizing so-
lution. Carbonyl groups were detected by western blot to
evaluate levels of oxidative modification of proteins.

2.9. TUNEL Assay. Cells permeabilized with 0.1% TritonX-
100 were cultured with TdT-UTP nick end labeling
(TUNEL) for 1 h at 37°C. FITC-labeledTUNEL-positive cells
were observed using a fluorescence microscope. Red fluo-
rescent cells were considered apoptotic cells.

2.10. siRNA Transfection. -e siRNA specifically targeting
ERK1/2 (-ermo Fisher Scientific) mixed in HiPerFect
transfection reagent (Qiagen) at a final concentration of
40 nM was used to transiently transfect cells. -e transfected
cells were treated with or without various stimuli and then
subjected to western blot analysis.

2.11. Western Blot Analysis. Extracted protein lysates were
separated by SDS-polyacrylamide gels and electrotransferred
onto polyvinylidene difluoride membranes. Membranes
were blocked with TBST containing 5% nonfat milk. -en,
membranes were probed with primary antibodies against p-
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ERK, p-JNK, p-P38, β-tubulin, NLRP3, and IL1β (Cell
Signaling Technology, Shanghai, China) (1 :1000) at 4°C.
After incubating overnight, membranes were washed and
probed with second antibody for another 1 h. Finally,
western blot bands were captured and visualized using the
ChemiDoc imaging system.

2.12. Statistical Analysis. All data were analyzed using SPSS
23.0 software. T-test was used to compare the difference
between the two groups. Results are expressed as mean-
± standard deviation. P< 0.05 indicates a statistically sig-
nificant difference.

3. Results

3.1. Verbenalin, Hastatoside, and Acteoside Are the Main
Active Ingredients of TAEV. Medicine fingerprint analysis
by HPLC showed that TAEV was mainly consisted of ver-
benalin, hastatoside, and acteoside (Figures 1(a)–1(c)).
Among them, verbenalin accounts for the largest proportion.

3.2. TAEV Attenuates ADR-Induced Renal Injury In Vivo.
Verbena is extensively used in the treatment of renal
diseases in traditional Chinese medicine. An ANN model
was established to examine the effect of verbena on renal
injury in vivo. According to the histological investigation,
DOX significantly produced tubular atrophy, necrosis, and
strong desquamation in kidneys, as well as increased
collagen deposition, resulting in renal tubulointerstitial
fibrosis, whereas TAEV reduced these tubular lesions
(Figure 2(a)). In addition, TAEV reduced the ADR-
induced worsening of renal function, as evidenced by
lower Scr and BUN in the treatment groups (Figure 2(b)).
-ese findings revealed that TAEV minimized ADR-
induced renal injury in vivo, with a particular protective
impact on renal tubules.

3.3. TAEV Ameliorates ADR-Induced Renal Tubular Epi-
thelial Cell Injury In Vitro. To further determine the impact
of TAEV on renal tubules, an ADR-induced renal tubular
epithelial cell injury model was developed in vitro. As shown
in Figures 3(a) and 3(b), ADR induced a disruption of cells
and loss of cellular viability, while TAEV improved the
morphological damage changes of cells and rescued the
decreased cellular viability (Figures 3(c)–3(e)). In addition,
TUNEL staining showed that TAEV mitigated ADR-
induced cell apoptosis (Figure 3(f)), suggesting that
TAEV might be a novel protective drug against ADR-
induced renal tubular epithelial cell injury.

3.4. TAEV Attenuates ADR-Induced Oxidative Injury in
Tubular Cells. Accumulated evidence showed that oxidative
stress injury underlies the cytotoxicity of ADR. As shown in
Figure 4(a), ADR-induced overproduction of ROS, while
TAEV significantly inhibited the changes, similar to the effect
of NAC, a classic antioxidant (Figure 4(b)). In addition,
TAEV suppressed ADR-induced oxidative modification of

proteins as same as the role of NAC (Figure 4(c)), suggesting
that TAEV attenuated ADR-induced oxidative stress injury in
renal tubular epithelial cells.

3.5. TAEVAmeliorates ADR-InducedRenal Tubular Injury by
Inhibiting Oxidative Stress-Mediated Phosphorylation of
MAPK/ERK1/2 and Activation of NLRP3. Enough evidence
revealed that MAPK and NLRP3 signaling pathways were
under the trigger of oxidative injury in cells.-e western blot
analysis showed that ADR induced the phosphorylation of
MAPKs (ERK1/2, JNK, P38) and activation of NLRP3
(Figures 5(a) and 5(b)). Interestingly, TAEV inhibited the
phosphorylation of ERK1/2 and activation of NLRP3 similar
with the role of NAC, but not the phosphorylation of JNK
and P38 (Figures 5(c) and 5(d)). Similar to the protective
effect of TAEV, the antioxidant NAC as well as inhibitors of
ERK (U0126) and NLRP3 (INF39) both ameliorated ADR-
induced cell disruption and recovered the loss of cell viability
(Figures 5(e) and 5(f )), suggesting that the inhibition of
ROS-mediated activation of ERK1/2 and NLRP3 might play
a vital role in the improvement of TAEV against ADR-
induced renal tubular injury.

3.6. Inhibition of the ERK1/2-mediated NLRP3 Signaling
Pathway Participates in the Protection of TAEV against ADR-
Induced Renal Cell Injury. To better understand the re-
lationship between ERK1/2 and NLRP3 in ADR-induced tu-
bular cell injury, we observed the changed expression of NLRP3
in injured cells treated with ERK1/2 siRNA (Figure 6(a)). As
shown in Figure 6(b), silence of ERK1/2 by siRNA and in-
hibition of phosphorylated ERK1/2 by specific inhibitor U0126
both suppressed the activation of NLRP3, similar to the role of
TAEV (Figure 6(c)). It has been found that activation of NLRP3
contributes to the mature and release of IL1β in cells leading to
inflammatory response. As shown in Figure 6(d), TAEV
inhibited the ADR-induced activation of IL1β as same as the
role of NLRP3 inhibitor INF39. All outcomes indicated that
TAEV couldmitigate ADR-induced renal tubular cell injury via
ERK1/2-mediated NLRP3 signaling pathway.

4. Discussion

In the current study, we confirmed that ROS-mediated
phosphorylation of ERK1/2 followed by activation of
NLRP3 plays a vital role in ADR-induced renal tubular
epithelial cell injury. Our study firstly determined that
TAEV attenuates ADR-induced tubular injury via sup-
pressing ROS-ERK1/2-mediated NLRP3 signaling pathway.

Tubular epithelial cells usually bear the brunt of various
injuries, leading to the progression of CKD [12].-erapies to
ameliorate tubular epithelial cell injury is the key to delay
CKD progression. ADR has significant nephrotoxicity and
can be used to mimic renal injury during CKD progression
[13]. Our study confirmed that ADR triggers severe renal
tubular epithelial cell injury and induces markedly oxidative
stress injury in cells. Moreover, we discovered that TAEV, an
extract of a natural herb-verbena, significantly improved
ADR-induced tubular cell injury.
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Figure 1: Fingerprint analysis of TAEV by HPLC. (a) Chromatograms of mixed standards. (b) TAEV samples. (c) Molecular structures of
verbenalin (C17H24O10, CAS: 548-37-8), hastatoside (C17H24O11, CAS: 50816-24-5), and acteoside (C29H36O15, CAS: 61276-17-3) were
gained from PubChem.
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Figure 2: TAEV attenuates ADR-induced renal injury in vivo. (a) Renal histological changes were identified using H&E and Masson
staining. Bar� 100 μm. In H&E staining, red arrows showed tubular atrophy and black arrows showed tubular necrosis and strong
desquamation. In Masson stain, arrows showed increased collagen deposition in the renal tubule interstitium. (b) -e changes of renal
functions (BUN and Scr). P values are indicated at the top of the spots. ∗∗∗∗P< 0.0001.
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Figure 3: TAEV ameliorates ADR-induced renal tubular epithelial cell injury. (a and b) Cells were insulted with ADR (0, 0.5, 1 μg/mL) for
24 h (bar� 100 μm). Cell viability was measured using CCK-8. (∗∗∗P< 0.001 and ∗∗∗∗P< 0.0001) (c) IC50 of TAEV on NRK-52E cells. IC50
was calculated according to the cell viability of cells treated with different concentrations (0, 0.0390625, 0.078125, 0.15625, 0.3125, 0.625,
1.25, 2.5, 5, and 10mg/mL) using Graphpad prism software. (d and e) Cells pretreated with TAEV (1mg/mL) were challenged with ADR
(1 μg/mL) for 24 h (bar� 100 μm). Cell viability was tested. (##P< 0.01 versus control and ∗∗P< 0.01 versus ADR). (f ) Cells were treated with
ADR (1 μg/mL) and TAEV (1mg/mL) for 24 h and then stained with TUNEL and DAPI to detect the apoptotic cells.

6 Evidence-Based Complementary and Alternative Medicine



ADR
0 1 3 6 9Time (h)

p-ERK1/2

p-ERK

0.6

0.4

0.2

0.0

p-JNK

p-JNK

p-P38

p-P38

-tubulin

Ctrl
9 h1 h

3 h

6 h

Pr
ot

ei
n/


-tu

bu
lin

*

**
**

**

(a)

NLRP3

-tubulin

ADR
0 1 3 6 9 12Time (h)

1.5

1.0

0.5

0.0

N
LR

P3
/

-tu
bu

lin
Pr

ot
ei

n

0 1 3 6 9 12Time (h)

***
***

(b)

Figure 5: Continued.

− +

Ctrl

− +

TAEV

− +

NAC

ADR

75

35
21

Ctrl TAEV

8

6

4

2

0
NAC

* *

#

−ADR
+ADR

O
x 

(
-tu

bu
lin

)

-tubulin

(c)

Figure 4: TAEV ameliorates ADR-induced oxidative stress injury in the cells. (a) Cells were insulted with ADR (1 μg/mL) for several times
(0, 2, and 4 h and then incubated with DHE agent for another 40min (bar� 100 μm). (b) Cells pretreated with TAEV (1mg/mL) and NAC
(10 μM) for 1 h were challenged with ADR and then detected using a ROS detection kit. (c) Cells pretreated with TAEV (1mg/mL) and NAC
(10 μM) for 1 h were stimulated with ADR (1 μg/mL) for another 4 h. -en, cellular lysates were analyzed using a OxyBlot protein oxidation
detection kit. (#P< 0.05 versus control and ∗P< 0.05 versus ADR).

Evidence-Based Complementary and Alternative Medicine 7



ADR

p-ERK1/2

p-JNK

p-P38

-tubulin

− +

Ctrl

− +

TAEV

− +

NAC

1.5

1.0

0.5

0.0
p-ERK p-JNK p-P38

Pr
ot
ei
n/


-tu

bu
lin

Ctrl
NACADR

TAEV

ADR+TAEV

ADR+NAC

** **

NSNS
##

(c)

ADR

NLRP3

-tubulin

− +
Ctrl

Ctrl

− +
TAEV

TAEV

− +
U0126

U0126

N
LR

P3
/
-tu

bu
lin

Pr
ot
ei
n

1.5

1.0

0.5

0.0

−ADR
+ADR

********

####

(d)

Ctrl TAEV NAC U0126 INF39

A
D
R

+

−

(e)

Ctrl TAEV NAC U0126 INF39

100

80

60

40

20

0(p
er

ce
nt

ag
e o

f c
on

tro
l) 

(%
)

C
el

l V
ia

bi
lit

y

* *******

##

−ADR
+ADR

(f )

Figure 5: TAEV attenuates ADR-induced renal tubular injury via inhibition of ROS-mediated ERK1/2 and NLRP3 activation. (a and b)
Cells were incubated with ADR (1 μg/mL) for corresponding times (∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001). (c and d) Cells pretreated with
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Verbena is a traditional Chinese natural herb applied in
treating various inflammatory diseases such as hepatitis,
gonorrhea, dysentery, malaria, nephritis edema, and so on
[5–9]. Our clinical practice discovered that verbena signif-
icantly delayed the progression of renal function and re-
duced proteinuria in patients with diabetic nephropathy. In
the current study, we determined that the aqueous extract of
verbena attenuated ADR-induced damage and oxidative
stress injury in tubular epithelial cells. Previous studies
reported that verbena is consisted of verbenalin, hastatoside,
acteoside, luteolin, ursolic acid, oleanolic acid, and other
bioactive compounds [14]. Our study displayed that ver-
benalin, hastatoside, and acteoside are the main ingredients
of verbena. Acteoside has been reported to reduce pro-
teinuria, improve renal function, and slow down renal fi-
brosis [15]. In addition, verbenalin and hastatoside
ameliorate cerebral infarction and prostatitis through
antioxidative and anti-inflammatory properties [16, 17],
suggesting their potential renal-protective role in kidney
diseases. -e protective role of TAEV against ADR-induced
renal tubular injury might be based on the combined effects
of the three ingredients.

Accumulated evidence indicate that oxidative stress
injury is intimately associated with the development and
incidence of tubular cell injury [18, 19]. Our previous study
confirmed that oxidative stress underlines the nephrotoxi-
city of ADR [20]. Oxidative stress injury is traditionally
considered to be induced by the overproduction of ROS due
to the imbalance of oxidative and antioxidant systems in the
cells. It has been shown that ROS controls endoplasmic
reticulum stress, apoptosis, and other signaling pathways
that contribute to tubular cell damage in acute kidney injury,
indicating that the modulation of signaling pathways plays
a crucial role in ROS-mediated renal injury [21]. ROS is the
upstream trigger to various damage signaling pathways,
among which MAPKs and NLRP3 signaling pathway were
reported to play a vital role in ADR-induced renal injuries
[11]. MAPKs (including ERK1/2, JNK, and p38) is perceived
as an important sensor in the cells in response to external
stimuli and plays an important role in cell proliferation,
differentiation, transformation, and apoptosis [22]. Acti-
vation of NLRP3 inflammasome contributes to the matu-
ration and release of proinflammatory factors such as IL-1β
and IL-18, which is a vital component of inflammatory
response and plays an important role in the progression of
kidney diseases [23]. Our study confirmed that ADR sig-
nificantly induced the phosphorylation of all MAPK path-
ways and the activation of NLRP3, meanwhile TAEV
inhibited the activation of NLRP3 and the phosphorylation
of ERK1/2, but not JNK and P38. In addition, both inhibitors
of ERK1/2 and NLRP3 could improve ADR-induced renal
tubular cell injury, indicating that ERK1/2 and NLRP3 both
play a vital role in the protection of TAEV against ADR-
induced tubular injury.

NLRP3 and ERK are both the downstream activated
targets of ROS. In most cases, MAPK acts as a switch
regulating various damage signaling pathways. Herein, we
conjectured that NLRP3 might be activated following by the
phosphorylation of ERK1/2. Our data showed that the

silence or inhibition of ERK1/2 could significantly inhibit
the activation of NLRP3, suggesting that ERK1/2 was an
important upstream initiator of NLRP3 and TAEV protected
renal tubular cells against ADR via suppressing the ERK1/2-
mediated activation of NLRP3 signal pathway:

5. Conclusions

In summary, our study revealed that ROS-mediated phos-
phorylation of ERK1/2 and activation of NLRP3 play a vital
role in ADR-induced renal tubular injury and TAEV could
protect renal tubular cells against ADR toxicity via in-
hibition of ROS/ERK1/2-mediated NLRP3 signal pathway.
Due to this property, TAEV might serve as a promising
reno-protective agent in delaying the progression of CKD
and ROS/ERK1/2-mediated NLRP3 signal pathway might be
a vital target in treating kidney diseases.
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