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Abstract: Recognizing how a vehicle is steered and then alerting drivers in real time is of utmost
importance to the vehicle and driver’s safety, since fatal accidents are often caused by dangerous
vehicle maneuvers, such as rapid turns, fast lane-changes, etc. Existing solutions using video or
in-vehicle sensors have been employed to identify dangerous vehicle maneuvers, but these methods
are subject to the effects of the environmental elements or the hardware is very costly. In the mobile
computing era, smartphones have become key tools to develop innovative mobile context-aware
systems. In this paper, we present a recognition system for dangerous vehicle steering based on
the low-cost sensors found in a smartphone: i.e., the gyroscope and the accelerometer. To identify
vehicle steering maneuvers, we focus on the vehicle’s angular velocity, which is characterized by
gyroscope data from a smartphone mounted in the vehicle. Three steering maneuvers including
turns, lane-changes and U-turns are defined, and a vehicle angular velocity matching algorithm
based on Fast Dynamic Time Warping (FastDTW) is adopted to recognize the vehicle steering. The
results of extensive experiments show that the average accuracy rate of the presented recognition
reaches 95%, which implies that the proposed smartphone-based method is suitable for recognizing
dangerous vehicle steering maneuvers.
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1. Introduction

The factors causing traffic accidents are many, among which human factors are dominant. In a
study made by the American Automobile Association (AAA) Foundation for Traffic Safety, as many as
56% of deadly crashes involved one or more vehicle maneuvers typically associated with aggressive
driving [1]. These actions include erratic lane-changes, making improper turns and excessive speeding.
These maneuvers seriously endanger both the driver and public transport. Therefore, an important
means to reduce the probability of traffic accidents is by reminding the drivers that dangerous vehicle
maneuvers maybe exist around the road, thereby enhancing the driver’s safety awareness.

Steering-assistance systems, such as lane-departure warning or lane-keeping assistance, are
typical examples. They all exploit the advanced built-in sensors (e.g., cameras, radars, and infrared
sensors) to detect the lane for driving assistance [2–5]. However, these methods are subject to the
influence of environmental elements or the high costs of hardware so these safety solutions cannot be
applied to a wide range of type/year car models.

In the mobile computing era, smartphones have become instrumental tools to develop innovative
mobile context-aware systems because of their numerous sensors such as GPS, accelerometers,
gyroscopes. This makes them suitable enablers to capture a wide range of contextual features, like
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weather [6] and traffic [7] conditions, or user behaviors [8]. Consequently, they are key tools to develop
ubiquitous mobile solutions [9,10].

In this paper, we make use of the inertial sensors existing on smartphones to take one step
forward by developing a real-time accurate recognition system for dangerous vehicle steering
maneuvers without the driver’s involvement. The basic idea is to use the phone’s gyroscope data
to capture differences in the vehicle’s angular speed due to vehicle steering maneuvers, including
turns, lane-changes and U-turns. To facilitate such a system design, several key challenges must
be addressed:

(1) Smartphone posture alignment: we need to understand the smartphone’s posture before
proceeding to the gyroscope data collection, otherwise the vehicle state will not be
accurately derived;

(2) Steering time detection: to automate the initialization of a vehicle steering, it is critical to pinpoint
the steering time at the starting point;

(3) Vehicle steering maneuver recognition: we need to recognize the steering maneuver
of the situation that is based on the vehicle’s angular speed and the surrounding
environment conditions.

To obtain the accurate but changeable information about the angular speed of the vehicle, we first
correct the gyroscope data by rotating the matrix of the smartphone’s coordinate system so as to align
the vehicle’s coordinate system. Then we use the endpoint detection algorithm based on parameters
of the short-term energy spectrum to determine the occurrence of steering maneuver. Finally, we
choose the matching algorithm of vehicle’s angular velocity based on Fast Dynamic Time Warping
(FastDTW) to recognize the vehicle steering maneuver, unlike previous works [11–13], we also consider
the condition of turn signal, the angle change in vehicle’s heading and the real-time weather data.
Specifically, the following contributions are made in this work:

1. We propose a smartphone-based recognition system for vehicle steering maneuvers including
turns, lane-changes and U-turns, and these maneuvers are characterized by gyroscope data from
a smartphone mounted in the vehicle.

2. We design a new algorithm for the recognition of vehicle steering maneuvers. The algorithm
can recognize different steering maneuvers by combining the vehicle’s angular velocity, the
condition of turn signals, the heading angle change and the weather conditions, which improves
the recognition accuracy.

3. We align the gyro’s coordinate system with the vehicle’s coordinate system by rotating the gyro’s
coordinate system twice.

4. Extensive experiments are conducted and the experimental results demonstrate the feasibility
and efficiency of our recognition system.

The remainder of this paper is organized as follows: Section 2 provides an overview of the state
of the art of vehicle-maneuver recognition. The system overview and its related algorithms will be
described in detail in Section 3. Then, Section 4 shows the final evaluation of the system. Finally,
Section 5 puts forward the main conclusions of the work.

2. Related Work

Recognition technology for vehicle maneuvers has emerged in recent years. With the growing
influence of intelligent transportation, this technology has developed rapidly for its own various
availability in recent years, and has attracted many researchers’ attention. Existing recognition
technology for vehicle maneuvers mainly includes three categories: video-based, vehicle sensor-based
and smartphone sensor-based.
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2.1. Based on Video

Video-based recognition technology achieves the goal of identifying vehicle maneuvers through
cameras which can capture images of the inside and outside environment of vehicles and the facial
features of the drivers, through appropriate image segmentation processing technology. Jain from
Cornell University installed a video camera and mobile computing devices around the rear-view
mirror of a car [2]. The video camera can be used to capture traffic information and drivers’
facial characteristics during steering or lane-changes. Combined with vehicle GPS information,
Hidden Markov Models (HMM) can successfully predict vehicle maneuvers. Video-based recognition
technology is rather mature at present, displaying a relatively high recognition accuracy, but it is
easily affected by the environmental conditions. If applied in a shadow covered, or damaged road,
or in a backlit environment, its recognition rate will decline quickly, what’s more, it can’t be used for
night driving. Due to the high environmental dependence of the video-based recognition technology,
researchers have turned to look for other recognition strategies.

2.2. Based on Vehicle Sensors

Jiang’s CARLOG system is a framework between the built-in sensors of vehicles and a phone
app [3,4]. Though collecting the data from vehicle sensors and using the Datalog language, the
system outputs the form of predicates defining dangerous vehicle maneuvers to the computer, so as to
identify vehicle maneuvers. In the early years when relying on external sensors to identify the vehicle
maneuvers, Mitrovic took advantage of the acceleration sensor, a circuit board with a gyroscope and
the HMM model, to recognize driver behavior, and achieved a better recognition accuracy [6]; however,
circuit devices based on external sensors not only increase the hardware costs, but also cause some
disturbances to the driver when placed in a specific position (for example, in front of the driver or on
the steering wheel).

2.3. Based on Smartphone Sensors

WreckWatch [14] detects traffic accidents using the accelerometer and microphone of a smatphone.
With the Dynamic Time Warping (DTW) algorithm, Johnson made full use of a smartphone’s
accelerometer, gyroscope and magnetometer to compare the similarity of the sensor waveforms
in its MIROAD system, so as to identify vehicle maneuvers [15]. The MIROAD system achieves high
accuracy in the recognition of vehicle maneuvers, such as steering, U-turns and lane-changes. Chen
estimated the real-time speed of a vehicle through the acceleration sensor and the gyroscope sensor
of a mobile phone and judged whether the driver is using the mobile phone while driving based
on the different centripetal acceleration of the mobile phone in the driving position and the co-pilot
position [11,12]. In research for identifying drunk driving by using smartphone sensors, Dai identified
drunk driving with the help of the drunk-driving characteristics [13]. The V-Sense designed by Chen
identifies the vehicle maneuvers with a mining algorithm in the time domain which is based on the
vehicle’s angular velocity data [16]. V-Sense determines the vehicle maneuvers of a given angular
velocity waveform by setting the maximum and the minimum angular velocity, the shortest duration
and the minimum waiting time. In addition, the smartphone sensor is also used to monitor road
conditions [17–19], for example, when the vehicle passes through bumps or potholes on the road,
the accelerometer in the smartphone can detect large accelerations perpendicular to the road. These
studies confirm the feasibility of using smartphone sensors to sense the dynamics of the vehicle, which
can be further used to automatically determine the use of the driver’s telephone.

These works have fully confirmed the feasibility and accuracy of the use of smartphone sensors
for identifying vehicle maneuvers, but there are still some shortcomings. For example, MIROAD is
based on three sensors (accelerometer, gyroscope and magnetometer), which undoubtedly increases
the computational complexity and energy consumption of the mobile phone. When there is a strong
magnetic field near the vehicle, the magnetometer will be susceptible to interference, resulting in
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inaccurate data and an increasing false positive rate. By setting the threshold value of angular velocity
in the time domain, the V-Sense can identify the vehicle maneuvers, but due to the differences in the
mastery and proficiency of each driver, the vehicle angular velocities will be different, and the vehicle
angular velocity may be different even if the same person performs the same driving maneuver several
times, which will affect the driving recognition accuracy.

3. Vehicle Steering Recognition

3.1. Steering Maneuver Modeling

In order to achieve the goal of recognizing dangerous steering maneuvers, we first need to
recognize different steering maneuvers. On the real road, the complex and changing traffic conditions
also result in a variety of dangerous maneuvers. The dangerous vehicle maneuvers, as defined by the
US National Highway Safety Administration (NHTSA) [20], include incorrect signals and lane-changes,
as well as frequent and rapid lane-changes. Of course, the dangerous vehicle maneuvers not only
include the abovementioned. Several vehicle maneuvers that need to be recognized in this paper are
listed in Table 1, where vehicle maneuvers number 1 to number 3 are normal (non-dangerous) vehicle
maneuvers, and maneuvers number 4 to number 9 correspond to dangerous vehicle maneuvers.

Table 1. Classification of Driving Behaviors.

No. Names Description

1 Normal turns Normal maneuvers of turns
2 Normal lane-changes Normal maneuvers of changing lanes
3 Normal U-turns Normal maneuvers of U-turns
4 Sudden turns Sudden turns with turn signal on
5 Sudden lane-changes Sudden lane changes with turn signal on
6 Sudden U-turns Sudden U-turns with turn signal on
7 Turns without scruple Normal turns or Sudden turns with turn signal off
8 Lane-changes without scruple Normal lane-changes or Sudden lane-changes with turn signal off
9 U-turns without scruple Normal U-turns or Sudden U-turns with turn signal off

To identify vehicle steering maneuvers, we focus on the vehicle’s angular velocity, which is
characterized by gyroscope data obtained from a smartphone mounted in the vehicle. An existing
study [15] verified the feasibility of using smartphone sensors to identify vehicle maneuvers by
comparing the mobile sensor data and the vehicle sensor differences between the results of vehicle
maneuver data acquisition.

As shown in Figure 1, when the vehicle changes lanes from the right to the left, the state of the
vehicle during the process of moving can be roughly divided into two parts. First, when the vehicle
turns to the left at time T1, the direction of turning left and that of the road form an angle θ1, and the
gyroscope data shows a positive angular velocity change. Second, when the vehicle turns to the right
at time T2, the direction of turning right is parallel to the direction of the road, and it forms an angle
of θ2 with the direction of the vehicle’s heading and the gyroscope data shows a negative angular
velocity change, while the waveform is completely the opposite when the vehicle changes lanes from
left to right.

The vehicle turns can be divided into left-turns, right-turns and U-turns. When the vehicle turns
to the left, the gyro data shows a positive change in angular velocity, and when turning to the right, it
shows just the opposite. In countries with right-hand traffic flow, a U-turn normally means a left-turn.
The gyro data is similar to that of turning to the left, as shown in Figure 2.
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3.2. System Overview

In this section, we describe the architecture of the proposed system aiming at recognizing steering
maneuvers described above. As shown in Figure 3, the system consists of three parts as follows:

1. Data Collection and Correction Module: Due to the non-fixed location of the smartphone in
the vehicle, the inertial sensor data can’t directly reflect the angular velocity information when
the angle of the vehicle’s body changes. We obtain the correct angular velocity by aligning the
three-axis gyroscope coordinate system with the vehicle’s coordinate system with the help of the
accelerated velocity data.

2. Turn Signal Detection Module: Many traffic accidents are caused by drivers who don’t use
the signal lights when turning or changing lanes. Therefore, we use the microphone sensor to
determine whether the driver turned on the turn signal by detecting the audio of the turn signal.

3. Steering Recognition Module: The current recognition algorithm for vehicle maneuvers is not
comprehensive enough. Therefore, in this part, we first design a reasonable endpoint detection
algorithm to determine the occurrence of steering maneuvers. Then we get the recognition
algorithm based on waveform matching of the vehicle’s angular velocity, steering angle of the
vehicle’s heading, the audio frequency of turn signals and weather conditions.
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3.3. Data Collection and Correction

The inertial measurement unit (IMU), also called the inertial sensor, is a three-axis gyroscope
and a three-axis accelerometer. The gyroscope sensor is used to measure the angular movement
of a smartphone. The accelerometer sensor is used to measure the acceleration of a smartphone.
If the smartphone is placed in a vehicle and remains motionless, the inertial sensor can collect the
information of the vehicle’s movement in the three-dimensional space, but due to the unfixed state
of the smartphone in the vehicle, the gyroscope data can’t directly reflect the angular velocity of the
vehicle, so this section mainly focuses on the data collection and correction of the inertial sensor. Firstly,
we use low-pass filter to filter out high-frequency noise, then the acceleration data is used to align the
gyroscope with the vehicle’s coordinate system. Finally, the gyroscope data is the angular velocity data
when the vehicle changes its angle.

3.3.1. Data Collection of the Inertial Sensor

Sampling rate has a direct impact on the recognition of steering maneuvers. If the sampling
rate is too low, it will cause signal distortion, while if the sample rate is too high, it will increase the
power consumption and memory footprint of the smartphones. Given that the duration of a certain
steering maneuver of a vehicle is 2 s [2], the complete waveform cycle recorded by the gyroscope is
2 s and the waveform frequency is 1/2 Hz. According to the Nyquist sampling theorem, when the
sampling frequency is twice as high as that of the signal, the digital signal after sampling can retain
the information of the original signal. In real-world applications, we need to ensure that the sampling
frequency is five to ten times as much as the highest frequency of the signal. To ensure that the signals
collected by the gyroscope can completely restore the information of vehicle’s steering maneuver, we
will set the sampling rate as 20 Hz by allowing for the consumption of smartphone’s battery and
memory at the same time.

3.3.2. Data Filtering of the Inertial Sensor

In the course of driving, due to the conditions of the road and the vehicle itself, there will be some
high-frequency noise interfering with the inertial sensor data. Figure 4 shows the data collected by the
three-axis gyroscope and the accelerometer of the smartphone in the car.
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To avoid the interference from the noise on the data collection, we use a Butterworth low-pass
filter to filter out and block any high-frequency noise, so as to obtain an effective signal. The filtering
effect is shown in Figure 5.
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3.3.3. Coordinate Alignment

A smartphone’s coordinate system actually describes the coordinate system of its internal inertial
sensor. Therefore, the alignment of the gyro’s coordinate system and the vehicle’s coordinate system is
equivalent to that of the smartphone’s coordinate system and vehicle’s coordinate system. As shown
in the left subfigure of Figure 6, the standard coordinate system of a smartphone is designed with
the screen set as a reference object, when the smartphone is motionless. When the smartphone is in a
horizontal situation, the x-axis represents the horizontal direction from left to right, the y-axis represents
the vertical direction from bottom to top, and z-axis represents the direction perpendicular to the
screen from the inside out, relative to the screen surface. When the smartphone rotates, the three-axis
can change as the direction of the screen changes. The three-axis data follows the right-hand rule. The
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right subfigure of Figure 6 shows the vehicle’s coordinate system, which is similar to the smartphone’s
coordinate system, and can be also called a three-axis coordinate system. Because vehicles often drive
on a horizontal road, the z-axis is aligned with the direction of gravitational acceleration of the Earth
coordinate system, and the x-axis and the y-axis of the vehicle coordinate system and the x-axes and
y-axes of the Earth coordinate system are at an angle. The vehicle coordinate system is aligned with
the Earth coordinate system when the vehicle is moving toward the geomagnetic north.
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In the process of driving, the driver’s smartphone is generally placed in the vehicle’s bracket or a
groove of the instrument panel. The z-axis of the vehicle’s coordinate system is always aligned with
the direction of gravitational acceleration (the slope will temporarily not be considered). Therefore,
when the smartphone is in an uncertain position of the vehicle, the data recorded by the three axes
of the gyroscope often is the sub-vector data [21] distributed in that three axes, which can’t visually
reflect the changes of vehicle’s angular velocity. Therefor we need to align the smartphone’s coordinate
system with the vehicle’s one.

Before studying the method of alignment of coordinate systems, we briefly explain the concept
of coordinate rotation. In the Cartesian coordinate system, we let a unit vector (1, 0, 0) along the
x-axis multiply by a 3 × 3 rotation matrix, and then we get the first column of elements of the matrix.
Similarly, when the unit vectors of y-axis and z-axis multiply the rotation matrix, respectively, the
results are the elements in the second and third column, respectively. Besides, each column of the
rotation matrix is expressed as the fixed axis after rotation. For example, the first column means
rotating around the x-axis, the second column means rotating around the y-axis, while the third
column means rotating around the z-axis.

As shown in Figure 7, a coordinate system unit rotates around the x-axis. The initial situations
of the y-axis and the z-axis are (0, 1, 0) and (0, 0, 1), respectively. When the rotation angle is θx, the
y-axis changes from (0, 1, 0) to (0, cos θx, sin θx) Similarly, the z-axis also changes from (0, 0, 1) to
(0,− sin θx, cos θx). The changeable y and z axes can be treated as the column vectors of the 3 × 3
rotation matrix, so the rotation matrix can be expressed as follows:

Rx(θx) =

 1 0 0
0 cos θx − sin θx

0 sin θx cos θx

 (1)

Similarly, as shown in Figure 8, when a unit of the coordinate system rotates around the y-axis,
the initial positions of the x-axis and the z-axis are (1, 0, 0) and (0, 0, 1), respectively. When the rotation
angle is θy, the x-axis changes from (1, 0, 0) to

(
cos θy, 0,− sin θy

)
. Similarly, the z-axis also changes

from (0, 0, 1) to
(
sin θy, 0, cos θy

)
. The changeable x and z axes can be treated as the column vectors of

the 3 × 3 rotation matrix, so the rotation matrix can be written as:
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Ry(θy) =

 cos θy 0 sin θy

0 1 0
− sin θy 0 cos θy

 (2)

Finally, when the axis rotates around the z-axis, the rotation matrix is as follows:

Rz(θz) =

 cos θz − sin θz 0
sin θz cos θz 0

0 0 1

 (3)

Equations (1)–(3) are the rotation matrices in which the three-axis coordinate system rotates
around a fixed axis. Any rotation of the coordinate system can be disassembled into the above three
kinds of combinations rotating around the fixed axis, but the sequence of rotation around the fixed
axis can’t be changed. For example, the coordinate system rotates around the z, y and x-axes, and the
attitude A rotates to the attitude B, so the rotation matrix R is:

R = Rz(θz)Ry(θy)Rx(θx) (4)

After the matrix inversion, we can also achieve the goal of rotating the attitude B to the attitude A
in turn, then the rotation matrix R′ is:

R′ = Rz(θz)
T Ry(θy)

T Rx(θx)
T (5)
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Therefore, the alignment of the coordinate system of this paper is based on the rotation of the
coordinate system, namely, the smartphone aligns with the vehicle’s coordinate system after the
rotation. How to know the angle between the current posture of the smartphone and the post-rotation
posture has become an urgent problem that needs to be solved. Fortunately, most of the current smart
phones provide this kind of data interface. For example, the Rotation Matrix [22] of the Apple iPhone
can provide the rotation matrix from the reference coordinate system to the current position. Given that
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the reference coordinate system is the alignment between the smartphone’s z-axis and the direction of
gravity, and x-axis and y-axis are in any directions of the horizontal plane. Therefore, the alignment of
the coordinate system will be divided into two parts:

1. The first rotation: at first, rotating the smartphone from the current posture to the reference
coordinate system through the Inverse Matrix of the Rotation Matrix. Assuming the original
reading of the accelerometer as a, while the original reading of three-axis gyroscope as w, then
we can obtain the acceleration and angular velocity as shown in Figure 2c after the first rotation:

â1 = Rx(θx)
T Ry(θy)

T Rz(θz)
T · a

ω̂1 = Rx(θx)
T Ry(θy)

T Rz(θz)
T ·ω

(6)

2. With the second rotation: we can achieve the goal of the second alignment by obtaining the angle
between the x, y-axis of the smartphone’s coordinate system and the vehicle’s. The process of
rotation is shown in Figure 9.
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In the second rotation, we need to get the angle between the x, y-axis of the smartphone’s
coordinate system and the vehicle’s, so as to get the rotation matrix around the z-axis. Therefore,
we assume that there is a known acceleration. When the vehicle is accelerating, the direction of
acceleration is along the vehicle’s driving direction. The acceleration has less influence on the side
of the vehicle, namely, we can think that the acceleration at this time is increasing along with the
vehicle’s y-axis. We found that the vehicle satisfies this assumption when it’s accelerating or at startup.
Therefore, after the initial rotation, we can use the acceleration of the vehicle to calculate its mobile
phone coordinate system x, y-axis component angle and then the second rotation. As shown [21]:

θ = −a tan 2
( →

â1y,
→
â1x

)
(7)

In that equation,
→
â1y,

→
â1x means the components’ average value of the accelerometer in the x-axis

and y-axis of the smartphone’s coordinate system after the first rotation. a tan 2() is an inverse
trigonometric function, and we can determine the quadrant of the angle from the two input values.
Therefore, we can get the rotation matrix which rotates θ degrees around the z-axis of the smartphone’s
coordinate system:

R′z(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (8)
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According to the angular velocity, we can obtain the rotation matrix after the rotation around
the z-axis:

ω̂2 = R′z(θ) · ω̂1 (9)

ω̂2 denotes the angular velocity after the second rotation, namely, the vehicle’s steering angular
velocity. In the smartphone’s interface, we can set the smartphone’s coordinate system at this time
as the reference coordinate system. Hereafter, during the data collection process, an alignment of
reference frames can be completed according to the reverse rotation of the rotation matrix in the
smartphone’s interface, so as to eliminate the trouble of completing the second alignment.

3.4. Turn Signal Detection

Drivers need to use the turn signals when the vehicle turns, changes lanes or makes U-turns,
otherwise these behaviors are considered dangerous vehicle maneuvers. In order to detect whether
the driver has turned on the turn signal, we take the following steps: (1) using the smartphone’s
microphone to collect sound samples when the vehicle’s turn signal has been turned on; (2) using
a z band-pass filter to extract the signal of the turn signal use; (3) combining the threshold of audio
amplitude from the turn signal and the threshold of time interval, so as to determine whether the turn
signal is turned on.

3.4.1. The Features of Turn Signals

By recording the audio signal of a turn signal, we can find that the sound of modern vehicles is
a regular signal with a fixed frequency. As shown in Figure 10, the waveform reflects that the audio
amplitude of the turn signal increases and decreases in a regular way, while its cycle remains consistent.
The audio amplitude is about 0.36 dB, which is similar to a kind of “Pata” sound as heard by the
human ear.Sensors 2017, 17, 633 11 of 28 
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3.4.2. Collect the Audio Signal

First of all, two different vehicles are used to collect the audio signals from the turn signals without
interference. The two vehicle models were a Nissan Novelty and a Honda Si Core Rui. In order to
ensure the authenticity of the experimental environment, we collected the audio signal from the turn
signal while people were chatting and music was played on the speakers in the vehicle.

3.4.3. Extract the Audio Signal

In the driving process, noise from the environment will interfere with the smartphone’s
microphone to judge whether the turn light is turned on. That noise may come from people talking
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inside the vehicle, the vehicle speakers, the noisy environment around the road, and the internal noise
of driving. As shown in Figure 11, due to the interference of music from the vehicle’s audio and chatting
voices, the sound signal from turn signals recorded by the smartphone lost its characteristic profile.
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With the help of a lot of experiments, we found that the audio signal of the turn signal is cyclical
and its amplitude never changes, and the frequency of turn signals is mainly distributed between
3400 Hz~10,000 Hz. As shown in Figure 12, the voice frequency ranges from 300 Hz to 3300 Hz when
talking with a normal voice, while the internal noise of the vehicle is mainly from the external noise
entering through the air or through the shaking of the car body, and the frequency of these noises
ranges from between 125 Hz~1200 Hz [23], so we can use a band-pass filter to extract the turn signal.
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Eventually, after the noise reduction processing, the audio signal from the turn signal is shown in
Figure 13.
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3.4.4. Turn Signal Detection

With the help of a large number of experiments, we found that the threshold value of the turn
signal’s amplitude At is 0.04 dB. In order to avoid mistaking the noise for the audio signal from the
turn signal, we added the threshold of time interval of Tt, which is greater than the waveform period
of 0.05 s. Therefore, it is possible to determine whether or not the driver turned on the turn signal
when the thresholds At and Tt are satisfied.

3.5. Vehicle Steering Recognition

At present, some vehicle steering maneuver recognition methods adopt a single vehicle’s angular
rate matching method and jointly use a multi-sensor system for recognition. Based on the time domain
characteristics of vehicle angular velocity, other methods perform data mining to recognize the driving
behavior. All of these methods not only increase the computational complexity and the misjudgment
rate, but also recognize the driving behaviors without a comprehensive consideration. The main
purpose of this paper was to recognize the different steering maneuvers. However, without sufficient
characterization, the vehicle angular velocity data can’t distinguish between vehicle turns and U-turns.
Meanwhile, there are various conditions for measuring dangerous vehicle maneuvers. For example,
in severe weather conditions (such as rainy or snowy weather), some normal vehicle maneuvers
can also lead to traffic accidents on the slippery roads. In this paper, we combined the matching
of angular velocity, steering angle of a vehicle’s heading, weather factors and the detection of the
vehicle’s turn signals together to recognize the vehicle maneuvers, and we also designed a reasonable
endpoint detection algorithm to determine the occurrence of particular steering maneuvers. As shown
in Figure 14, we first determine the occurrence of steering maneuvers through an endpoint detection
algorithm. Then the turns, lane changes and the U-turns of the vehicle are preliminarily distinguished
according to the matching of the vehicle angular velocity and the steering angle of the vehicle’s head.
Finally, by setting the threshold of the angular velocity based on different weather conditions and
using the result of whether the turn signals are turned on, we can further determine whether the
steering maneuver is dangerous driving or not.
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3.5.1. Steering Maneuver Detection

In order to detect the beginning and the end of different vehicle maneuvers (such as steering
and U-turns), the starting point and end point of the waveform of the vehicle’s angular velocity
are determined by the endpoint detection method. The endpoint detection method [24,25] mainly
takes advantage of the time-domain characteristic parameters of signals, such as short-time energy,
zero-crossing rate, correlation and so on. In the time domain, the common endpoint detection method
is often determined on the basis of several of the parameters proposed above. In this paper, we adopt
the endpoint detection scheme based on the parameters of the short-term energy spectrum. With this
method, it is easy to distinguish the effective signal segment from noise when the Signal to Noise Ratio
(SNR) is very high. Now the short-term energy will be introduced as follows:

Short-term energy: the main difference between signal and noise lies in their energy. Signal energy
equals the sum of the superposition of the effective signal energy and the noise segment, and the
energy of the signal segment is more than that of the noise segment [24,25]. The energy of the signal
changes obviously along with time, and for the sequence {x(m)}, the energy is defined as:

E =
∞

∑
m=−∞

x2(m) (10)

Equation (10) shows the energy of an infinitely long signal, and such a long-term energy
accumulation can’t help to distinguish the signal from the noise energy. We usually intercept a
time slice from the signal, so as to analyze and process that signal. Therefore, we can use different
truncated functions to intercept signals, and the truncated function is also known as the window
function. In the calculation of short-term energy, by relying on the sliding window function to
accumulate the computational energy, we can obtain a reliable short-term energy spectrum. We use
the rectangular window function in this paper with its formula as follows. N of that equation denotes
the window length:

WR =

{
1 (0 ≤ n < N − 1)
0 (other)

(11)

Then the signal variation of the gyroscope corresponding to a vehicle maneuver is:

xn(m) = x(m)w(n−m), n− N + 1 ≤ m ≤ n (12)
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w(n−m)denotes the window function, N is the window’s length, and the value ranges of n are 0,
T, 2T, ..., finally, T is the sliding distance of the window. Therefore, the short-term energy spectrum of
the vehicle’s angular velocity corresponding with a vehicle maneuver can be expressed as:

En =
n

∑
m=n−N+1

[x(m)w(n−m)]2 (13)

We need to set the high energy threshold of Ehigh and the low energy threshold of Elow before the
testing. The short-term energy spectrum of the vehicle’s angular velocity is divided into three parts:
static segment, transition segment and vehicle maneuver segment. If the energy value exceeds the low
energy threshold in the stationary segment, it is considered to have entered a transition section. In the
transition section, if the energy spectrum can’t reach the high energy threshold, we can’t judge whether
it has entered the vehicle maneuver section, and if the energy value is below the low energy threshold,
it will come back to the stationary segment. When the energy value exceeds the high energy threshold,
we need to introduce a minimum time interval Tshort to distinguish between noise and real vehicle
maneuvers. Namely, when the energy duration is less than the minimum time interval, it is considered
to be noise and comes back to the stationary section, but when the energy duration is greater than the
minimum time interval, it is considered to have entered the vehicle maneuver section. After recording
the energy duration and marking the start point and the end point, the program will be back to the
static section, waiting for the arrival of the next waveform. Now, we will analyze the effectiveness of
the endpoint detection method in this paper based on the vehicle’s angular velocity waveforms.

The waveforms of a vehicle’s angular velocity and its short-term energy spectrum are shown in
Figure 15. By observing the short-term energy spectrum, we can clearly see that the noise and effective
signal are distinguished and we can accurately distinguish between the start and end points of the
waveforms by setting the high-energy threshold of Ehigh and the low energy threshold of Elow, and the
shortest duration of Tshort.
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Figure 16 shows the waveforms of the vehicle’s angular velocity of a left-turn driving maneuver,
and its energy spectrum. In the rectangle frame of that figure, we can get the starting point and end
point of the steering driving behaviors by the endpoint detection method. From the waveforms of the
vehicle’s angular velocity, we can see that the angular velocity is no more than 0.5 rad/s during the
vehicle’s normal steering, with a duration of 4 s.

Figure 17 shows the waveforms of the vehicle’s angular velocity of a U-turn driving vehicle, and
its energy spectrum. We can see that the peak value of vehicle’s angular velocity in the U-turn is
close to that of the left-turn driving, but the duration of the angular velocity is more than 8 s during
the U-turn, which takes longer than a left-turn. In a left-side-of-the-road driving country, the vehicle
turns to the right to make a U-turn. Therefore, the waveform of the gyroscope is similar to that of the
right-turn waveform.



Sensors 2017, 17, 633 16 of 29

Sensors 2017, 17, 633 15 of 28 

 

vehicle’s angular velocity, we can see that the angular velocity is no more than 0.5 rad/s during the 
vehicle’s normal steering, with a duration of 4 s.  

 
Figure 16. Gyro and short time energy during a left turn. 

Figure 17 shows the waveforms of the vehicle’s angular velocity of a U-turn driving vehicle, and 
its energy spectrum. We can see that the peak value of vehicle’s angular velocity in the U-turn is close 
to that of the left-turn driving, but the duration of the angular velocity is more than 8 seconds during 
the U-turn, which takes longer than a left-turn. In a left-side-of-the-road driving country, the vehicle 
turns to the right to make a U-turn. Therefore, the waveform of the gyroscope is similar to that of the 
right-turn waveform. 

 

Figure 17. Gyro and short time energy during a U-turn. 

The vehicle’s angular velocity data recorded by the gyroscope can clearly express the steering 
maneuvers, and its short-term energy spectrum can accurately reflect the steering maneuvers. All of 
these prove the feasibility of using the gyroscope to identify steering maneuvers, and the validity of 
the endpoint detection method we designed in this paper. 

3.5.2. Matching Vehicle’s Angular Velocity 

After the analysis above, we can find that the waveform of a vehicle’s angular velocity can clearly 
reflect its steering maneuvers. What we need to do is match and recognize the data of the vehicle’s 
angular velocity, then, we can initially distinguish the steering maneuvers such as turns, lane-changes 
and U-turns. Because the vehicle angular velocity is a kind of time series, at present, the research 

Figure 16. Gyro and short time energy during a left turn.

Sensors 2017, 17, 633 15 of 28 

 

vehicle’s angular velocity, we can see that the angular velocity is no more than 0.5 rad/s during the 
vehicle’s normal steering, with a duration of 4 s.  

 
Figure 16. Gyro and short time energy during a left turn. 

Figure 17 shows the waveforms of the vehicle’s angular velocity of a U-turn driving vehicle, and 
its energy spectrum. We can see that the peak value of vehicle’s angular velocity in the U-turn is close 
to that of the left-turn driving, but the duration of the angular velocity is more than 8 seconds during 
the U-turn, which takes longer than a left-turn. In a left-side-of-the-road driving country, the vehicle 
turns to the right to make a U-turn. Therefore, the waveform of the gyroscope is similar to that of the 
right-turn waveform. 

 

Figure 17. Gyro and short time energy during a U-turn. 

The vehicle’s angular velocity data recorded by the gyroscope can clearly express the steering 
maneuvers, and its short-term energy spectrum can accurately reflect the steering maneuvers. All of 
these prove the feasibility of using the gyroscope to identify steering maneuvers, and the validity of 
the endpoint detection method we designed in this paper. 

3.5.2. Matching Vehicle’s Angular Velocity 

After the analysis above, we can find that the waveform of a vehicle’s angular velocity can clearly 
reflect its steering maneuvers. What we need to do is match and recognize the data of the vehicle’s 
angular velocity, then, we can initially distinguish the steering maneuvers such as turns, lane-changes 
and U-turns. Because the vehicle angular velocity is a kind of time series, at present, the research 

Figure 17. Gyro and short time energy during a U-turn.

The vehicle’s angular velocity data recorded by the gyroscope can clearly express the steering
maneuvers, and its short-term energy spectrum can accurately reflect the steering maneuvers. All of
these prove the feasibility of using the gyroscope to identify steering maneuvers, and the validity of
the endpoint detection method we designed in this paper.

3.5.2. Matching Vehicle’s Angular Velocity

After the analysis above, we can find that the waveform of a vehicle’s angular velocity can clearly
reflect its steering maneuvers. What we need to do is match and recognize the data of the vehicle’s
angular velocity, then, we can initially distinguish the steering maneuvers such as turns, lane-changes
and U-turns. Because the vehicle angular velocity is a kind of time series, at present, the research
ideas about time series recognition are divided into two kinds: (1) using data mining technology
to extract features in the time sequence, so as to recognize the vehicle maneuvers; (2) recognizing
vehicle maneuvers on the basis of common speech recognition algorithms. In the recognition of vehicle
maneuvers, the data of gyroscopes and speech signals have some similarities; different drivers have
different driving habits and proficiency, and with the different road conditions and other reasons, the
length of the duration of the data of gyroscope will be different. Therefore, in the recognition of vehicle
maneuvers, we consider the use of dynamic time wrapping (DTW) algorithm.
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The DTW algorithm is a method to measure the similarity of two different time series [26,27], and
it is often used in isolated speech recognition, gesture recognition and information retrieval. As shown
in Figure 18 the two times series of different lengths, in terms of direct matching or linear matching
method to calculate the Euclidean distance will lead to a significant error (shaded), DTW minimizes
the matching error by extending or shrinking the time series nonlinearly and then calculating the
similarity between the two time series [28].
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Let the time series R = r1, r2 . . . , ri, . . . , rm be the reference template sequence, the time series
T = t1, t2 . . . , tj . . . , tn is the template sequence to be tested, and m 6= n. The principle of the algorithm
is shown in Figure 19.
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The matrix in Figure 19 is a m× n matrix, the y-axis is m elements of the reference template, the
x-axis is the n elements of the template to be tested. The matrix elements (i, j) represent the Euclidean
distance between ri and tj:

d
(
ri, tj

)
=

√√√√ n

∑
i=1,j=1

(
ri − tj

)2 (14)
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The DTW algorithm first computes the distance between the elements of the two sequences,
finds the matching distance matrix, and then searches for a path where the cumulative distance is the
smallest, and defines the path W as:

W = w1, w1, . . . , wk, . . . wN max(m, n) ≤ N ≤ m + n− 1 (15)

In searching for the path W, the following constraint conditions must be satisfied, otherwise the
searched path may make the similarity of two fundamentally different time series high.

1. Boundary Constraints: The search must occur between the start and end points, since the order
of the time series does not change, therefore, in Figure 19 it appears from the lower left corner to
the upper right corner of the end, which is:{

w1 = (1, 1)
wN = (m, n)

(16)

2. Continuity Constraints: in the search process, it can’t cross a certain element to match, so as to
ensure that the reference template R and the template T to be tested for each coordinate in W
appear. Suppose wk−1 = (a′, b′), wk = (a, b), need to meet:{

a− a′ ≥ 0
b− b′ ≥ 0

(17)

3. Monotonic Constraint: To ensure that the search process is monotonically increasing with time.
Suppose wk−1 = (a′, b′), wk = (a, b), need to meet Equation (17).

After the above three constraints, the process of searching for the best path can be described as
follows: the path of each point in the template matrix has only three directions, for example, the path
has passed the point (i, j), then its previous grid point can only be (i− 1, j), (i, j− 1), (i− 1, j− 1), and
finally get their regularization of the shortest cumulative distance. We define the cumulative distance
as shown below:

D(i, j) = Dist
(
ri, tj

)
+ min{D(i− 1, j− 1), D(i− 1, j), D(i, j− 1)} (18)

The calculated distances of all points in the template matrix are summed up according to the
abovementioned constraints from (0,0), and when the end point (m,n) is reached; the smaller the
cumulative distance is, the higher the similarity is, so the time complexity of the DTW algorithm
is O(mn).

In the recognition of driving behavior, the gyroscope data and the voice signals have some
similarities. For example, different driving habits, proficiency and road surface during the driving
process can cause the gyroscope data duration to be different. Therefore, in the recognition of driving
behavior, we consider the use of a dynamic time regularization algorithm. However, in the face of a
number of vehicle maneuvers data for a long time, the high time complexity of the DTW algorithm
will affect the efficiency of the system. How to reduce the time complexity of DTW algorithm will be
the problem we need to solve in the system design.

The conventional DTW uses the idea of dynamic programming to compute the similarity of
two time series. Let m, n be the length of the reference sequence template and the sequence template
to be measured respectively. If m = n, then the DTW algorithm calculates the optimal routing path
corresponding to the time and space complexity of O(n2). The traditional DTW algorithm has a high
time complexity, and when the system stores a large amount of driving behavior data, the efficiency
of the algorithm is obviously slowed down. To this end we need to improve the DTW algorithm to
improve its operating efficiency. Common DTW algorithm acceleration methods include limiting
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the path search width, data abstraction and indexing [29–31]. We will use the FastDTW algorithm
proposed by Salvador [32], which the core idea of improved DTW algorithm draws on both limiting
search width and data abstraction. The algorithm is divided into three steps:

(1) Reduce the resolution: contraction time series as far as possible with smaller data points to
represent the original time series, so that one can reduce the dimension of the template matrix,
that is to reduce the resolution.

(2) Projection: Perform a DTW algorithm on a lower-resolution template matrix. The optimal path is
searched for.

(3) Increasing resolution: The template matrix cells that pass through the regular path, obtained at
low resolution, are further refined to a higher resolution on the template matrix. As shown in
Figure 20, in order to find the optimal regular path, we need to add search radius r at higher
resolution, that is to extend K cells to both sides of the regular path.
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Due to the limitations of the search radius, the FastDTW algorithm is actually only the shadow
of the above part of the cell search. In Figure 20, from the low resolution to the high resolution, the
FastDTW algorithm calculates 4 + 16 + 44 + 100 = 164 cells, whereas the traditional DTW algorithm
calculates 162 = 256 cells. Search radius r also determines the accuracy of FastDTW, when r increases,
FastDTW can search for more cells to improve the accuracy of the algorithm itself, but it also increases
the time and space overhead, when r is reduced, the FastDTW algorithm reduces the time and space
complexity, but the accuracy will decrease, so the choice of parameter r will determine the efficiency of
FastDTW algorithm. Normally, r is set to 1 or 2.

To sum up, we chose the FastDTW algorithm for vehicle angular velocity matching recognition.
However, due to the different road conditions, different vehicles, and driver’s different driving habits,
the waveforms of the vehicle’s angular velocity from the left-turn and U-turn will be different, as
shown in Figure 21.

We can see the two waveforms, whose amplitudes are more than 0.7 rad/s, are similar. The
waveforms of the duration of the U-turn are not much higher than those of the left-turn. If the
waveform of a U-turn is more similar with that of a left-turn, the matching error rate of FastDTW
algorithm will increase quickly. In order to distinguish the left-turn and the U-turn, we added the
criterion on the basis of recognizing the similarity between the two waveforms, namely, to further
distinguish the left-turn and the U-turn by the turning angle of the vehicle’s heading.

3.5.3. Heading Angle Change

The steering angle of the vehicle’s heading is about 90◦ before and after a left-turn, and it is about
180◦ before and after a U-turn of the vehicle. The steering angle of the vehicle’s heading will help us to
distinguish between a left-turn and a U-turn. The MIROAD system makes use of the magnetometer
(compass) in the smartphone’s sensor to obtain the observed data from the steering angle of the
vehicle’s heading. However, the magnetometer is subject to environmental effects, resulting in some
errors in the magnetometer’s readings if it is in a strong magnetic field. Besides, if the angle of the
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vehicle’s heading changes very fast, the magnetometer can’t quickly sense the steering angle of the
vehicle’s heading, which will not allow us to get accurate data. In this paper, we use the data of
vehicle’s angular velocity to calculate the vehicle’s heading steering angle. Given the vehicle’s angular
velocity as ‘g’, then the steering angle of vehicle’s heading is expressed as follows:

θ = θ0 +
n

∑
i=0

gi · ∆t (19)
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Formula gi denotes the vehicle’s angular velocity at any time, while ∆t is the interval of sampling
time. Since we found that some errors may exist between θ of the steering angle of a vehicle’s heading
in a practical situation, we set the range of change between the vehicle’s left-turn and U-turn. When
the obtained value of θ, the small angle of vehicle, falls in one of the intervals, we can determine which
vehicle maneuver it belongs to. Assuming that the vehicle maneuver ‘a = 0’ stands for a turn, and
‘a = 1’ for a U-turn, then we can get the corresponding formula as follows:

a =

{
0

[
70
◦ ≤ θ ≤ 120

◦]
1

[
160

◦ ≤ θ ≤ 210
◦] (20)

3.5.4. Determine the Dangerous Steering Maneuvers Based on Weather Conditions

The difference between a dangerous steering maneuver and a normal steering maneuver lies
in the peak of the vehicle’s angle. As shown in Figure 22, it can be clearly seen that the value of
vehicle’s angular velocity of a sudden left-turn is much larger than that of a normal left-turn. Therefore,
after determining the situation of turns, lanes-changes and U-turns by matching the vehicle’s angular
velocity and the steering angle of vehicle’s heading, we can move on to recognizing dangerous vehicle
maneuvers by the method of setting the vehicle’s angular velocity thresholds. However, when setting
of this threshold one needs to consider many factors, including the impact of road conditions, as a
particularly important element. For example, the slippery roads or bad road visibility caused by rain,
snow or fog and some other behaviors, including normal turns or lane-changes, may lead to traffic
accidents. In those conditions, the definition of the threshold of angular velocity for dangerous vehicle
maneuvers should be lower than for normal weather.

It is very important to determine the threshold of the vehicle’s angular velocity according to
the different weather conditions. After collecting and averaging the data of the vehicle’s angular
velocities of sudden turns, sudden lane-changes and sudden U-turns, and with numerous experiments,
we define the thresholds of sudden turns, sudden lanes-changes and sudden U-turns in sunny days



Sensors 2017, 17, 633 21 of 29

(under good road conditions) as 0.65, 0.45, and 0.75 rad/s, respectively. When the peak of the vehicle’s
angular velocity is greater than the above thresholds, it is possible to further recognize the sudden
turn, sudden lane-change and sudden U-turn maneuvers.Sensors 2017, 17, 633 20 of 28 
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Similarly, we conducted the same experiment on rainy days, snowy days and foggy days, and
then obtained the corresponding threshold by averaging the angular velocity. Based on the above data,
we can preliminarily set the corresponding thresholds of a vehicle’s angular velocity under different
weather conditions. The situation is summarized in Table 2.

Table 2. Dangerous driving behavior angular velocity thresholds.

Driving Behaviors Sunny Days Rainy Days Sonwy Days Foggy Days

Sudden Turns 0.65 rad/s 0.5 rad/s 0.35 rad/s 0.45 rad/s
Sudden lane changes 0.45 rad/s 0.35 rad/s 0.15 rad/s 0.3 rad/s

Sudden U-turns 0.75 rad/s 0.4 rad/s 0.2 rad/s 0.35 rad/s

3.6. Steering Maneuver Recognition Process

The steering maneuver recognition process can be described as follows: first, the occurrence of
steering maneuvers is judged by the endpoint detection algorithm. Second, the turns, the lane-changes
and the U-turns are determined by the matching algorithm of vehicle’s angular velocity and the
steering angle of the vehicle. Meanwhile, whether the results belongs to the irresponsible steering
maneuvers depends on the result of the turn light detection. Finally, we further recognize the conditions
of sudden turns, rapid lane-changes and sudden U-turns according to the real-time weather, and the
peak of the vehicle’s angular velocity, so as to output the recognition results. Examples of the necessary
pseudo-code are as follows (Algorithm 1).

In the above recognition progress, the input parameters are the waveform’s short-term energy
state state value, the vehicle’s angular velocity data Gyro, the short-term energy data En, the number
of templates numsModule, the steering angle of vehicle’s heading Yaw, the threshold of vehicle’s
angular velocity Gyro_t and the sign of turning on the turn light Turn_flag. Three states of the En

in the part of endpoint detection are shown in the 4th and 14th line, that is, the static section, the
transition section and the driving sections mentioned in Section 3.5.1. Through the high Ehigh and
low thresholds Elow and the interval of shortest time MinHoldTime, we can switch the three states
above, and record the start and end points of the energy waveform. In the process of matching the
vehicle’s angular velocity, the distance data distArray is defined as the 23rd line. The purpose is to
store the matching results between the testing template to be measured and reference template of
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the vehicle’s angular velocity, that is, the cumulative distance of D(i, j) of the matching between the
testing template to be measured and the reference template. The fast DTW method in the 26th line is
the fast and dynamic time warping algorithm. The input parameters are the starting point and the
ending point of the data of vehicle’s angular velocity. The minimum matching distance is output from
the distArray in the 28th line. It is the reference corresponding with the reference template, which is
mostly similar to the testing template to be measured, that is, it’s the matching result of the vehicle’s
angular velocity. In the 29th line, we use the method of weather() to obtain the real-time weather
data, so as to determine the angular velocity thresholds. According to the data in the 30th line, we can
determine whether the turn signal is turned on, in accordance with the turn signal mark. According
to the vehicle’s angular velocity threshold data in the 31st–34th lines, we can determine whether it is
an instance of unscrupulous dangerous driving behavior, while the data of the 31st to 34th line are
the thresholds of vehicle’s angular velocity, determining whether it is a dangerous vehicle maneuver,
while the 34th–38th lines indicate that when the turn signal is turned on, we can determine whether
the vehicle maneuver is a normal vehicle maneuver or a dangerous vehicle maneuver, through the
vehicle’s angular velocity threshold.

Algorithm 1. Recognition Process Algorithm of Steering Maneuver

1: Begin:
2: Inputs: State, Gyro, En, numsModule, Yaw, Gyro_t, Turn_flag
3: switch State
4: case Slience and Excess
5: if En > En_low
6: State < −Excess
7: Record the holdTime and startPoint
8: else if En < En_high
9: State < −Bump
10: Record the start time and holdTime
11: else
12: State < −Slience
13: clear the holdTime
14: case Bump
15: if En > En_low
16: Record the holdTime
17: else
18: if holdTime < MinHoldTime
19: State < −Slience
20: clear the holdTime
21: endPoint = startPoint + holdTime
22:
23: distArray[numsModule]
24: for(times = 1;times < numsModule;times++)
25: {
26: distArray[times] = fastDTW (Gyro.startPoint, Gyro.endPoint, ref_Gyro)
27: }
28: driveResult = min(distArray) and Yaw
29: Gyro_t = Weather()
30: If Turn_flag == No
31: If Gyro > Gyro_t
32: driveResult = Sharp_CarelessDriving
33: else
34: driveResult = CarelessDriving
35: else
36: If Gyro > Gyro_t
37: driveResult = SharpDriving
38: else
39: driveResult = NomalDriving
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4. Experimental Results

4.1. Experimental Design

In this paper, the sensors of an iPhone6 were used for the collection of data from vehicle maneuvers.
In order to verify the recognition accuracy of the recognition algorithm designed in this paper, we
tested it by driving on the road. As shown in Figure 23, the blue part of the graph represents the
road section used for testing the turn section, while the red part represents the one for testing the
lane-changes and the U-turns.
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Here are the calculation methods for the relevant indicators:

TPR =
TP
P

=
TP

(TP + FN)
(21)

FPR =
FP
N

=
FP

(FP + TN)
(22)

True Positives (TP) denotes the number of features that are predicted to be positive samples
and are actually positive samples, while False Positives (FP) denotes the number of features that are
predicted to be positive samples and are actually negative samples, True Negatives (TN) denotes
the number of features predicted to be negative that actually are negative samples, False Negatives
(FN) denotes the number of features that are negative samples and are actually positive samples.
True Positive Rate (TPR) denotes the probability correctly predicting an actual positive sample, False
Positive Rate (FPR) denotes the probability that an actual negative sample is erroneously predicted to
be a positive sample.

4.2. Reference Template for Steering Maneuvers

In this paper, the angular velocity matching algorithm needs to store the vehicle’s angular velocity
in advance. The reference template of vehicle’s angular velocity waveforms given in Section 3.5.1 is
highly characteristic and can directly reflect a certain steering maneuver. To guarantee the accuracy of
the reference template, a single vehicle and a single driver were applied to the measurement in this
paper. A reference angular velocity template is obtained in the testing environment described above.
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Five sets of reference templates were measured for each steering maneuver. The duration of each
set of reference templates was judged by the endpoint detection mentioned in Section 3.5.1. After
obtaining the average duration, the average angular velocity corresponding to various time points was
calculated by the starting point and average duration of each group. Finally, we can obtain the average
value of the reference template. Figure 24 shows the average values of the measured and calculated
reference templates on a sunny day. These average values are for a normal left-turn, normal right-turn,
normal left U-turn, and changing to the left lane and to the right lane, respectively.
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Figure 24. Steering pattern templates. (a) Turn left normally; (b) Turn right normally; (c) U-turn
normally; (d) Left lane normally; (e) Right lane normally.

After obtaining the vehicle maneuvers reference template, in the online phase, we can use the
matching algorithm FastDTW in Section 3.5.2 to judge if a vehicle maneuver is a left turn, right turn,
turn around, left lane or right lane change. The threshold set in Section 3.5.4 can be judged to be a
sharp turn, a sudden U-turn, emergency road maneuver or other driving behavior.
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4.3. Analysis and Comparison of Experimental Results

As shown in Figure 25, our system has a pretty high accuracy rate in the recognition of dangerous
steering maneuvers. Specifically, the accuracy rate of our system reaches 96% in recognizing dangerous
left-turns, and 94% in recognizing dangerous right-turns.
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In the recognition of dangerous lane-changes to the left, the accuracy rate of our system reaches
92%; while for recognizing dangerous lane-changes to the right, the accuracy rate reaches 92.5%.
Finally the accuracy rate of our system reaches 93% in recognizing dangerous U-turns.

The angular velocity waveform characteristics are relatively strong when the vehicle changes
lanes, and we can exactly obtain the matching consequences when matching the angular velocity. The
angular velocity threshold value can be set effectively in combination with the real-time weather, so as
to make the accuracy rate and false positive rate of the steering recognition reach reasonable levels.
In the U-turn recognition, we have introduced the vehicle’s heading turning angle, bringing about a
high rate of U-turn recognition.

4.4. The Recognition Accuracy of Different Smartphone Positions

According to Section 3.3.3, we know that when the mobile phone in the car is in an uncertain
attitude, the gyro axis recorded data is often distributed in the three axis of the sub-vector data,
which cannot visually reflect the vehicle angular velocity changes, so we use the coordinate system
alignment algorithm to obtain the vehicle’s true angular velocity. We now validate the validity of
the coordinate alignment algorithm by obtaining the recognition accuracy of the driving behavior
for different positions of the mobile phone. We put the phone on the car in the dashboard slot, the
driver’s pocket, as well as during the process of changing the location of the mobile phone to simulate
the mobility of mobile phones. As shown in Figure 26, although the position of the mobile phone is
different, the accuracy of the obtained vehicle maneuvers is almost the same, which proves the validity
of our coordinate alignment algorithm.
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4.5. The Recognition Accuracy of Different Vehicles and Drivers

To ensure the adaptability of the system, we first obtained the average reference template for the
two Nissan Novelty and Honda Si Core Rui vehicle types, and recognized the vehicle maneuvers on
the two vehicles. Finally, we used the reference template to recognize vehicle maneuvers on a Polo
GTI vehicle type, and in order to take account of the differences of the driver’s operating habits, we
use three volunteers to drive in the Honda Si Core Rui car.

As shown in Figure 27, despite the fact reference templates for other types of vehicles were used
by the Polo GTI, the exact average rate of identification is 90%, indicating that our system is adaptive.
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4.6. Comparison with Other Systems

We compare our system with the compass-based MIROAD to calculate the steering angle of
vehicles and the V-Sense based on a mining algorithm of the vehicle’s angular velocity in the time
domain. As shown in Figure 28, the compass is easily affected by the environment, resulting in
measurement errors, therefore, the accuracy rate of the algorithm in this paper is higher than that
of using the compass in the recognition of U-turns, while in the recognition of turning around and
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changing lanes, V-Sense uses the mining algorithm of the vehicle’s angular velocity in the time domain,
but due to the differences in the mastery and proficiency of each driver, the waveforms of vehicle
angular velocity will be different, and as shown in the figure, the accuracy rate of our system is slightly
higher than that of the V-Sense method. Therefore, we can conclude that our algorithm for vehicle
maneuvers has higher performance than the other algorithms in the same period.Sensors 2017, 17, 633 26 of 28 
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5. Conclusions

In this paper, we mainly study recognition system for dangerous vehicle maneuvers based on
smartphone sensors. As the location of the smartphone is not fixed in the vehicle, the data of vehicle’s
steering angular velocity, which is collected by the smartphone’s inertial sensor, can’t directly reflect
the driving behaviors of the vehicles. Therefore, we design an alignment method for the coordinate
systems of the vehicle and the smartphone. Some of the methods recognizing steering maneuvers
are based on smartphones, but they only use matching of a single factor, like the vehicle’s angular
velocity, or only jointly make use of multi-sensors for the recognition, but these methods for the
recognition for driving behaviors are not comprehensive enough. On the basis of these facts, a novel
recognition algorithm for steering maneuvers is proposed in this paper. The steering maneuvers can
be recognized by combining the matching of angular velocity, steering angle of the vehicle’s heading,
weather factors and the detection of vehicle’s turn signal use together. This paper designs a recognition
system for dangerous steering maneuvers with smartphones and it proves that the recognition strategy
for steering maneuvers designed in this paper has good accuracy and low false alarm rate.
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