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Ion disturbances are among the most remarkable deficits in spinal cord injury

(SCI). GABA is an integral part of neural interaction. Action of theGABAA receptor

depends on the amount of intracellular chloride. Homeostasis of chloride is

controlled by two co-transporters, NKCC1 and KCC2. Previous studies revealed

that NKCC1 are disturbed in SCI. In this study, NKCC1 is highly expressed in the

epicenter of the lesioned spinal cord at 3 hours after induction of the lesion and

reached the peak around 6 hours after SCI. Bumetanide (2 and 4 mg/day), as a

specificNKCC1 inhibitor,wasusedat 3 hourspost SCI for 28 days. The functional

recovery outcomes were measured by the Basso–Beattie–Bresnahan (BBB)

locomotor rating scale, ladder walking test, and hot plate test. The rats that

received bumetanide 4 mg/day exhibited improved recovery of locomotor

function, reduction of NKCC1 gene expression, and upregulation of GAP

protein levels 28 days post SCI. Histological tissue evaluations confirmed

bumetanide’s neuroprotective and regenerative effects. This study provides

novel evidence for the benefits of bumetanide in early administration after SCI.
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1 Introduction

Spinal cord injury (SCI) causes damage to the axonal pathways controlling sensory

and motor function (O’Shea et al., 2017). Delayed secondary damage following primary

injury to the spinal cord is responsible for progressive degeneration of the structure and

results in neurological impairment below the injury level. The secondary injury phase

consists of vascular change, ionic-imbalance, excitotoxicity, oxidative stress, and
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inflammation that lead to further neuronal and glial loss and scar

formation (Quadri et al., 2020).

EarlymanagementofacuteSCIismuchmorecomplex(Sánchez

et al., 2020). Current standard strategies, including early

decompression surgery, acute immunosuppressive with high-

dose methylprednisolone (MP), and later rehabilitation therapy,

alleviatespinaldamageandimprovepatients’qualityof life(Galeiras

Vázquez et al., 2017; Hachem et al., 2017). In contrast, MP

administration may increase the risk of adverse events in SCI

patients, such as infection (Liu Z. et al., 2019b). The

pharmacological approach applied to treat SCI targets secondary

cascades to reduce neuronal cell loss and preserve motor function

(Karsy and Hawryluk, 2019). Thus, recent advanced research

focused on discovery of novel therapeutic agents to overcome the

complexityof thesecondarymechanism(Sunetal.,2018;Venkatesh

et al., 2019; Zavvarian et al., 2020).

Ion disturbances are one of the first events that occur after

SCI. Dysregulation of ionic homeostasis plays an essential role in

pathological changes post SCI, resulting in edema and

excitotoxicity (Kwo et al., 1989). Specifically, intracellular or

extracellular accumulation of Na+, K+, Ca2+, and Mg2+ ions

disrupts ion gradients, which is associated with impairment of

specific ion channels and related transporter activity (Young and

Koreh, 1986; Young, 1992). So, based on these findings, ion

channel blockers are possible strategies to treat SCI-induced

dysfunction (Liu et al., 2011; O’hare Doig et al., 2020).

The inwardly directed Na +-K +-Cl- co-transporter isoform

1(NKCC1) is present in neuronal and non-neuronal cells (Luo

et al., 2021) and plays a vital role inmaintenance of ion hemostasis

(Zhanget al., 2021).Previous studieshavedemonstrated the roleof

NKCC1 in neurological diseases, including epilepsy (Liu R. et al.,

2019a; Gharaylou et al., 2019b), neuropathic pain (Zarepour et al.,

2020), traumatic brain injury (Zhang et al., 2017), stroke (Huang

et al., 2019), neurodegenerative and psychiatric diseases

(Hadjikhani et al., 2018), and SCI (Huang et al., 2021).

Importantly, bumetanide is a selective NKCC1 inhibitor

approved by the U.S. Food and Drug Administration (FDA) to

treat cardiac failure and renal disease (Sidhu and Puckett, 2021).

Recent work demonstrated that acute high-dose pharmacological

blockade of (30 mg/kg) ofNKCC1 is essential toH-reflex recovery

after the transection SCI model (Côté et al., 2014). Moreover,

pretreatment with low-dosage (0.3 mg/kg) NKCC1-blockade

combined with the blocking of AQP4 reduces edema and tissue

loss following spinal cord injury (Yan et al., 2018). Clinically

speaking, the optimal time for treatment to target secondary

cascades is a crucial consideration following SCI. However, no

experimental data are currently available to examine the timing of

the beneficial effect of bumetanide treatment to inhibit

NKCC1 transporters after SCI. Therefore, first, we select the

optimal treatment time depending on the expression level of

NKCC1. In this study, we determined the time course of

NKCC1 expression following induction of SCI and provide the

best starting time to use bumetanide.

2 Materials and methods

2.1 Animal preparation

Male Wistar adult rats weighing 250 ± 10 g were used for all

experiments. The rats were group-housed in a temperature-

controlled room (22 ± 2°C) and maintained on a 12-h light-

dark cycle with ad libitum access to water and food. All animals

used in the study were obtained from the Faculty of Pharmacy,

Tehran University of Medical Sciences. All procedures of animal

care and protocols were confirmed by the Animal Ethics

Committee of Tehran University of Medical Science Center

(Protocol number: IR.TUMS.VCR.REC.1397.904) and

conducted in accordance with the Guiding Principles for the

Care and Use of laboratory animal and followed the ARRIVE

2.0 guidelines (Percie Du Sert et al., 2020) (Figure 1A).

2.2 Experimental design

2.2.1 Experiment 1: time course for
NKCC1 expression change

We want to evaluate the beneficial effect of bumetanide as a

selective NKCC1 inhibitor after SCI. Twenty-four rats were

randomly selected to establish a contusion spinal cord injury

model. The injured segment at 0 h, 3 h, 6 h, 15 h, 1 day, 3 days,

and 7 days after SCI was evaluated to determine the changes in

NKCC1 mRNA and protein levels within the lesion center using

real-time polymerase chain reaction and Western blot,

respectively. The appropriate time for bumetanide treatment

was selected based on the NKCC1 expression change (Figure 1B).

2.2.2 Experiment 2: determination of the
therapeutic dose

AdultmaleWistar ratswere randomlydivided intofive groups

as follows: Group I: intact (control); Group II: rats underwent SCI

induction without receiving any treatment (SCI); Group III: SCI

treated with intraperitoneal injection of bumetanide 2 mg/kg

started at 3 h after SCI and subsequently every 24 h for 28 days

(SCI+Bum 2 mg/kg); Group IV: SCI treated with intraperitoneal

injection of bumetanide 4 mg/kg started at 3 h after SCI and

subsequently every 24 h for 28 days (SCI+Bum 4 mg/kg); and

Group V: SCI treated with ethanol 3 h after SCI and subsequently

every 24 h as a vehicle (SCI+ vehicle) (Figure 1C).

2.3 Bumetanide injection

Bumetanide (Sigma-Aldrich, B3023) was dissolved in 50 ml

ethanol and then diluted in 0.9% saline. Bumetanide was

administrated via intraperitoneal injection starting at 3 h after

SCI and then daily until 28 days, while the vehicle-treated rats

received the same volume of ethanol in saline (Figure 1).
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2.4 Spinal cord injury model

Animals were subjected to SCI using a contusion injury

model. All surgical procedures were conducted under aseptic

conditions. The rats were anesthetized with an intraperitoneal

(i.p) injection of ketamine and xylene and checked for pain

reflexes. Under deep anesthesia, their spinal cord was exposed by

dorsal laminectomy at the T9–T11 level. For the contusion

injury, we applied a custom-made device model (Borj Sanat

company, Iran). A 10-g metal rod was dropped from 25 mm

height through a guide tube positioned perpendicular to the

exposed spinal cord (Hashemizadeh et al., 2021). After the

contusion injury, the muscles and skin were sutured using

3–0 silk sutures. The animals were placed in a temperature-

controlled room. Manual expression of the bladder was applied

twice per day until spontaneous reflex was observed. Antibiotic

therapy was given for 5 days to avoid complications. Under these

conditions, two SCI rats were found dead after 10 days, one

(vehicle-treated) rat after 7 days, and one (bumetanide 2m/kg-

treated) after 14 days post SCI. One rat in the bumetanide

2m/kg-treated group died early in the experiment due to

bladder rupture during the early post-operative care regimen.

Under these conditions, no animal had to be killed due to

sickness or urinary infection.

2.5 Real-time reverse transcriptase-
polymerase chain reaction

Total RNA was isolated from the center of the lesion or the

uninjured spinal cord using TRIzol (Sigma). The first-strand

cDNA was synthesized with the TaKaRa Prime Script RT reagent

Kit (TaKaRa Bio, Kusatsu, Japan). According to each

manufacturer’s protocol, real-time PCR was performed using

BioFACT™ 2X Real-Time PCRMaster Mix (High ROX) with an

ABI system. Real-time PCR was conducted in triplicate with each

RNA sample at 95°C for 15 min, followed by 45 cycles of 15 s at

94°C, 60°C for 15 s, and 72°C for 30 s in sequence. The forward

and reverse primers used for RT-qPCR were designed using the

online software NCBI/Primer-BLAST. GAPDH was used as an

internal control. The relative expression level of the target gene

was analyzed using the ΔCt method. Primer sequences used for

RT-qPCR:

NKCC1-F: 5′-GATACTAGGGCATGGGCTGA-3′
NKCC1-R 5′-GGTGCGTTGAGATCCATTTT-3′
GAP-43-F:5′-CGACAGGATGAGGGTAAAGAAGA-3′
GAP-43-R: 5′-GTGAGCAGGACAGGAGAGGAA-3′
GAPDH-F: 5′-CGTGTTCCTACCCCCAATGT-3′
GAPDH-R: 5′-TGTCATCATACTTGGCAGGTTTCT-3′

FIGURE 1
(A) Experimental plan and treatment groups. (B) Experiment 1 designed to indicate time course for NKCC1 expression change. Rats were
subjected to the spinal cord injury and rats were sacrificed in 0, 6, and 15 h, 1, 3, and 7 days after SCI and subjected to the NKCC1 expression level
analysis. (C) experiment 2 designed to determine the therapeutic effect of bumetanide .Rats were treated by bumetanide or vehicle for 28 days, and
rats of each subgroup were successively performed with behavioral test, and the subsequent decapitation for molecular and
immunohistochemical analysis 4 weeks after SCI.
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2.6 Immunoblotting assay

Spinal cord segments at the middle of the lesion site (1 cm

approximately) were collected and homogenized with a cold RIPA

lysis buffer containing 1 mM proteinase inhibitor. The lysate was

centrifuged at 13,000 x g at 4°C for 20 min, and the supernatant was

collected. The protein concentration was measured according to

Bradford’s method. Equal amounts of the protein (40 μg per well)

were separated on a 10% SDS-PAGE and transferred onto

polyvinylidene difluoride membranes. Then, the membranes were

blocked with 7% bovine serum albumin (BSA) in TBS-T (Tris-

buffered saline containing 0.1% Tween 20) for 2 h at room

temperature. After blocking, the membranes were incubated with

primary antibodies against NKCC1 (Gharaylou et al., 2019b)

(Abcam, ab59791, 1:2000 in 3% BSA/TBS-T) and GAP-43

(Asgari Taei et al., 2021) (Cell Signaling Technology, 8945, 1:

1000 in 3% BSA/TBS-T) overnight at 4°C. After washing with

TBS-T six times for 5 min each, the membranes were incubated

with the HRP-conjugated secondary antibody (anti-Rabbit, Abcam,

ab6721, 1:5000 in 3%milk/TBS-T) for 1 h at room temperature and

then washed six times with TBS-T for 5 min each. Immunoreactivity

was detected by an ECL kit (Amersham Biosciences, Freiburg,

Germany) on radiography films (Fujifilm, Madrid, Spain). The

membranes were stripped and incubated with a primary antibody

against β-actin (Padza, PB 103, 1:2500 in 3% BSA/TBS-T). The

densities of each band were standardized to their corresponding β-
actin levels. Finally, a densitometry analysis was conducted by using

ImageJ analysis software (Hosseindoost et al., 2020).

2.7 Behavioral assessments:
Basso–Beattie–Bresnahan score, thermal
sensitivity evaluation, and ladder test

2.7.1 Basso–Beattie–Bresnahan score
Hind-limb motor function was assessed by using the

Basso–Beattie–Bresnahan (BBB) locomotor rating scale developed

by Basso et al., in which the score ranges from 0 (fully paralyzed) to

21 (complete functional recovery). The BBB score was recorded

before surgery and at days 1 and 3 post injury and subsequently once

per week for 28 days after SCI. The rats were assessed for 4 min in an

open field, and hind-limb motor function was scored by two

individuals independently, blinded to the experimental groups to

avoid interference. The left and right hind limb scores were averaged

to obtain a single value. In this experiment, scoring differences

between two blinded independent investigators were low (0–1), and

if there was disagreement in the BBB score, the lower score was

recorded for analysis (Teixeira et al., 2018).

2.7.2 Pain-related behavior: thermal sensitivity
evaluation (hot plate)

The effect of bumetanide treatment as a selective inhibitor of

NKCC1 on thermal sensitivity was evaluated by the hot plate test

once a week for 28 days (Borj Sanat, Tehran). The hot plate test

was used to assess thermal nociception. Briefly, all groups of rats

were habituated to room temperature test 1 h before the test.

During the tests, the rats were placed on a metal surface having a

constant temperature at 52°C ± 0.5°C. The time of hind paw

withdrawal, flinching, licking, or jumping behavior from the

plate was recorded. The rats were removed from the hot plate

surface once a reaction was observed or after a 20-s cut-off time if

no response was observed to prevent tissue damage at 52°C. Each

animal was tested twice, separated by a 30-min interval between

them (Batista et al., 2019).

2.7.3 Horizontal ladder test
The horizontal ladder walking test was used to evaluate the

sensorimotor function following SCI. Before the surgery, the rats

were trained to cross a ladder on a regular rung pattern in the

same direction. The test was measured at 4 weeks after the

induction of SCI. Briefly, each experimental animal was

allowed to cross a 1-m-long ladder rod designed with a 1-cm

spacing between round metal rods. The run was recorded by a

camera. The qualitative evaluation of hind-limb placement was

based on a foot scoring system using a 7-category scale

(0–6 points). The rating scale (Metz and Whishaw, 2009) (0:

total miss, 1: deep slip, 2: slight slip, 3: replacement, 4: correction,

5: partial placement, and 6: correct placement) was used for the

quantitative measurement of hind-limb position and foot errors

that occurred in placement accuracy.

2.8 Histopathology

The rats were killed 4 weeks after SCI. Subjects were deeply

anesthetized and transcardially perfused with a 4% solution of

paraformaldehyde, and the spinal cord was dissected out of the

spinal column. The spinal cords from the experimental rats were

fixed in 10% buffered formaldehyde solution and then

dehydrated in different grades of ethanol. Tissues were

embedded in paraffin wax, and sections of 7 μM thickness on

slides were obtained. The tissue sections were stained with

toluidine blue and studied by light microscopy. There were

three animals per group. The mean values of the five non-

serial, paraffin-embedded sections from each animal at the

same level of the injured spinal cord (the lesion epicenter) in

every 60th slide corresponding to every 300 m along the cord

were counted using ImageJ software. All moto-neurons were

counted in each section of the embedded spinal cord specimen.

The number of α-motoneurons was analyzed by their position in

the spinal cord (ventral horn, lamina IX) and size. Only neurons

with a diameter >25 μm and a visible nucleus were counted (Chai

et al., 2011) (substantially larger than interneurons and glial

cells). Two skilled pathologists unaware of the study groups

conducted investigations to examine the number of ventral-

moto neurons and histological alterations. All the slides were
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coded to eliminate any bias throughout the experiment, and

histological techniques were carried out after combining sections

from several groups. Sections were qualitatively assessed using

light microscopy for tissue degradation, inflammatory cell

infiltration, and hyperemia signs. Luxol Fast Blue staining was

used to identify myelinated areas and residual spared tissue in the

injured spinal cord segment. The percentage of spared white

matter was calculated by dividing the total area of spared white

matter by the total area of the spinal cord volume. Finally, an

experienced pathologist, blinded to the animal experiment,

performed analyses and scored the section for the absence

(grade 0) or presence (grade 1, 2, or 3) of tissue degeneration,

demyelination, inflammatory cell infiltration, and hyperemia,

where the histological score indicates 0=(negative); 1=(mild);

2=(moderate); and 3= (extensive) (Letaif et al., 2015).

2.9 Statistical analysis

Data were collected and stored in a database. The statistical

analysis was performed on data using GraphPad prism (version 7;

GraphPad Software, San Diego, CA). All the data were assessed for

homogeneity of variance using the Brown–Forsythe test, where no

significant differences among standard deviations were found.

Data normality assessment using the Shapiro–Wilcoxon test

and further statistical analysis using the Kruskal–Wallis test

followed by Dunn’s post hoc test were performed. The BBB

locomotor rating scale scores and threshold response were

analyzed using two-way analysis of variance (ANOVA) with

repeated measures followed by Tukey’s multiple comparisons

post hoc test for multiple comparisons between the groups. In

case of mRNA and protein level expression, one-way ANOVA

followed by Tukey’s post hoc test was used to compare differences

between the groups in behavioral results. Data are represented as

mean ± SD and were considered statistically significant if p < 0.05.

3 Results

3.1 Expression level of NKCC1 following
spinal cord injury

To determine the appropriate time to initiate treatment after SCI,

herewe assessed themRNAandprotein expression level ofNKCC1 at

the injured spinal cord following different time points post SCI. To

assess the time-dependent differences between the mRNA and

protein expression level of NKCC1 at the lesion center, the rats

were subjected to contusion spinal cord injury. Then, the lesioned area

was isolated at distinct timepoints to determine both mRNA and

protein expression level using real-time PCR and Western blot,

respectively. The pattern of changes at the NKCC1 level was

determined (Figure 2A). One-way ANOVA demonstrated

significant differences in the mRNA level [F (7, 51) = 39.45, p <

0.0001] following SCI. Upregulation of the mRNA level was detected

immediately after injury (0 h) compared to the intact

group. Importantly, the mRNA level was significantly increased at

3 h and peaked around 6 h after SCI, (p < 0.001). An immunoblotting

study was conducted to evaluate the NKCC1 protein levels of the

spinal cord in the time course after SCI. Verification of the assumption

of normality was assessed by the Shapiro–Wilk test (p < 0.05). One-

way ANOVA showed significant difference between the groups [F (7,

16) = 12.01, p < 0.0001]. NKCC1 protein expression altered from the

initial time of injury to 24 h post SCI. The protein levels of

NKCC1 rapidly elevated after injury compared to those of the

control group, peaked at 6 h, and was maintained at high levels

on 15 h but reduced until 7 days after SCI but increased at 28 days.

Our data showed that the NKCC1 protein levels upregulated up to

threefold on 6 h and approximately twofold on 3 and 15 h after injury

(Figure 2B). According to these results, we have chosen the 3-h

timepoint for NKCC1 blockade after SCI for the following

experiment.

3.2 Early inhibition of NKCC1 improves
spontaneous recovery of locomotor
function

We first studied the impact of early bumetanide treatment on

locomotor function. The rats were given bumetanide at

concentrations of 2 and 4 mg/kg or vehicle once daily by

intraperitoneal injection for 28 consecutive days starting 3 h after

contusion spinal cord injury. BBB scoring is used to evaluate motor

performance of the rats. Two-way ANOVAwith repeated-measures

for the BBB score demonstrated a significant effect of treatment [F

(3.15) = 5.67, p = 0.008), time (F (6.30) = 730.7, p < 0.0001] and

treatment × time interaction [F (18,90) = 4.24; p < 0.0001]. Prior to

spinal cord injury, all the animals showed normal hind-limb

function. At day 1 post spinal cord injury, all animals presented

complete paralysis of hind-limb function. All the animals show

spontaneous motor recovery up to 4 weeks. However, the rats in

both bumetanide treatment groups showed significantly better

spontaneous motor recovery than those in the SCI group starting

from day 14 (p < 0.01). Furthermore, the Bum 2mg/kg group and

the Bum 4mg/kg group had a higher score than the vehicle group

from day 21 (p < 0.05, p < 0.001, respectively). No significant

differences were observed between the vehicle groups and the SCI

group. (Figure 3A). These data suggest that 3 h post injury is a

proper time for improvement of motor function.

3.3 Early bumetanide treatment
ameliorates hyperalgesia in contusion
spinal cord injury rats

Next, we investigated whether repetitive daily treatment with

bumetanide (2 or 4 mg/kg) would alter the nociceptive threshold
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upon thermal stimulation compared with no bumetanide

treatment groups. We found that the withdrawal response for

thermal stimuli was significantly changed for rats in both the SCI

and vehicle-treated groups (Figure 3B). Two-way ANOVA with

repeated-measures demonstrated a significant effect of treatment

[F (4,24) = 14.97, p < 0.0001), time (F (4, 24) = 21.1, p < 0.0001)

and treatment × time interaction [F (16, 96) = 2.801; p = 0 .001]

on paw withdrawal threshold. In both SCI and vehicle groups,

withdrawal latency decreased after 7 days, and this phenomenon

continued till 28 days after injury, which indicates hyperalgesia.

However, this phenomenon was ameliorated by bumetanide

2 mg/kg but did not show significant improvement. On the

other hand, 4 mg/kg bumetanide significantly improved

hyperalgesia. This result indicates that 4 mg/kg bumetanide

after SCI improved pain sensation.

3.4 Early bumetanide treatment could
restore hind-limb sensorimotor function

An assessment of the sensorimotor coordination was

performed at 4 weeks following SCI using the ladder-walking

test. After SCI, sensorimotor function was disrupted. The

animals in the SCI and vehicle groups were not able to cross

the ladder and were scored with 0–1 point, which was

significantly different from the Bum 4 mg/kg group (p <
0.001). The rats in the Bum 2 mg/kg group were occasionally

able to cross the ladder, which resulted in the final score of

1.833 ± 0.75. The rats in the Bum 4 mg/kg group were able to

cross the ladder with some missteps and achieved a score of

4.167 ± 0.75. No significant difference between the Bum 2 mg/kg

and vehicle group was observed (Figure 3C).

3.5 Bumetanide downregulates
NKCC1 expression in spinal cord injury rats

The rats received bumetanide (2 mg/kg and 4mg/kg) as an

NKCC1 inhibitor, 3 h after SCI. The mRNA and protein

expression levels of NKCC1 were evaluated in the injured spinal

cord segment following long-term bumetanide administration for

28 days. One-way ANOVA of the results revealed significant

differences between groups [F (4,21) = 83.08, p < 0.0001]. We

found that the mRNA expression level of NKCC1 at the lesion

site of the spinal cord in un-treated SCI groups markedly increased

(Figure 4A). In contrast, themRNA level of the SCI group treatedwith

bumetanide (4 mg/kg per day, starting 3 h after contusion for 28 days)

was significantly decreased as compared with those of the vehicle and

un-treated SCI groups.

Verification of the assumption of normality was assessed by the

Shapiro–Wilk test (p < 0.05). Afterward, one-way ANOVA of the

results revealed significant differences between groups [F (4,10) =

24.53, p < 0.0001]. Western blot analysis indicated that SCI was

accompanied by upregulation ofNKCC1 protein levels in comparison

to control, and also our data showed that blocking of NKCC1 resulted

in a significant decrease of its protein levels compared to the SCI-

untreated group (Figure 4B). In other words, bumetanide leads to

inhibition of SCI-induced NKCC1 overexpression. Also, it was

FIGURE 2
Altered expression of NKCC1 in the lesion center following spinal cord injury. (A) Time course-dependent change of mRNA NKCC1. (B) Protein
expression of NKCC1 at the injured spinal cord (epicenter). *p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 vs. control group; # p ≤ 0.05, ### ≤ 0.001 vs.0 h
group. +++p ≤ 0.001 vs. 6 h group. & p ≤ 0.001 vs. 3 h group. Data are presented as the mean ± S.D.
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observed that vehicle administration reduced the NKCC1 protein

levels, but there were no significant differences compared to the

untreated group.

3.6 Effect of bumetanide on GAP-43
expression in spinal cord injury rats

To evaluate whether the blocking of NKCC1 may induce repair,

themRNAandprotein expression levels ofGAP-43weremeasured in

the spinal cord samples following 28-day administration of

bumetanide. One-way ANOVA indicated significant differences in

the protein level [F (4,22) = 36.22, p < 0.0001] on day 28 after SCI.

Significant reductions in themRNA level of GAP-43were observed in

the SCI, vehicle, and BUM 2mg/kg group compared to the control

rats. Treatment with BUM 4mg/kg after 28 days showed no

difference in the mRNA level of GAP-43 (Figure 5A). Verification

of the assumption of normality was assessed by the Shapiro–Wilk test

(p < 0.05). Afterward, one-way ANOVA indicated significant

differences in the protein level [F (4,10) = 13.24, p = 0.0005] on

day 28 after SCI.Our data indicated therewas no significant difference

between the protein expression of GAP-43 on the control, un-treated

SCI, and vehicle groups. However, bumetanide administration

(2mg/kg and 4mg/kg) markedly upregulated GAP-43 protein

levels in the injured spinal cord (Figure 5B).

3.7 Effects of bumetanide on histological
changes

We performed further investigation to see whether changes

in the GAP-43 expression are associated with histological

changes. Histopathological changes in spinal cord tissue are

shown in Table 1. The spinal cord of the SCI (un-treated)

group showed major structural abnormalities consisting of

degeneration of spinal cord tissue, demyelination, infiltration

of inflammatory cells, and hyperemia (Figure 6B). In the SCI+

bumetanide 4 mg/kg group, hyperemia and infiltration of

inflammatory cells to the injury site significantly diminished

compared to the bumetanide 2 mg/kg group (Figures 6D,E). In

FIGURE 3
Beneficial effect of early and repeated intraperitoneal administration of bumetanide on functional recovery after SCI. (A) Improvement in the
BBB scale after SCI in the bumetanide treatment group. The Bum 4 mg/kg rats demonstrated superior BBB score with significant recovery than the
SCI and vehicle group. (B). Analgesic effect of early bumetanide treatment on thermal hyperalgesia in rats with contusion spinal cord injury.
Bumetanide reversed thermal hyperalgesia induced by SCI during 28 days. (C) Foot fault scoring of rats on the horizontal ladder walking test
analyzed using qualitative ratings for limb placement and accuracy at 4 weeks after SCI. Both bumetanide treatment groups showed significant
differences from the SCI group. Bum4 mg/kg showed the highest score at 4 weeks. * p ≤ 0.05, ** p ≤0.1, *** p ≤ 0. 001 vs. control group; ## p ≤ 0.01,
### p ≤ 0 001 vs. the SCI group; $ p ≤ 0.05, $$ p ≤ 0.01, $$$ p ≤ 0.001 vs. the vehicle group. Data are presented as the mean ± S.D.
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addition, the bumetanide 4 mg/kg reduced degenerative changes

of spinal cord tissue. In the vehicle group (ethanol), degeneration

on the spinal cord tissue similar to the SCI group was observed

(Figure 6C). In addition, motor neurons from the SCI (Figure 6B)

and vehicle (Figure 6C) rats show pathological shrinkage which

was reduced by Bum 4 mg/kg treatment (Figure 6E). To evaluate

the effect of SCI on the survival of motor neurons, the total

number of pyramidal neurons of the ventral horn was counted.

FIGURE 4
Bumetanide suppresses NKCC1 expression. (A) NKCC1 gene expression levels of the injured spinal cord at 4 weeks after SCI. Related gene
expression levels were upregulated at the SCI group, and Bum 4 mg/kg treatment decreased the NKCC1 expression compared to the vehicle. (B)
Representative Western blots of and quantitative data for NKCC1 and b-actin expression in each SCI group. NKCC1 protein expression level was
decreased by bumetanide treatment. ** p ≤ 0.01, *** p ≤ 0.001 vs. control group; ## p ≤ 0.01, ###p ≤0.001 vs. the treated SCI group. $ p ≤ 0.05,
$$ p ≤ 0.01 vs. vehicle group. Data are presented as the mean ± S.D. Loading controls were reused across Figures 4 and 5 of this article.

FIGURE 5
(A) GAP-43 gene expression levels of the injured spinal cord at 4 weeks after SCI. Bumetanide enhanced the GAP-43 neurogenesis-related
gene expression levels in a dose-dependent manner. (B) Representative Western blots and quantitative data GAP-43 and b-actin expression in the
injured segment. Bumetanide increased the GAP-43 marker protein expression levels. *** p ≤ 0.001 vs. the control group; # p ≤ 0.05, ## p ≤ 0.01,
### p ≤ 0.001 vs the SCI group; +++p ≤ 0.001 vs. Bum 4 mg/kg group; $ p ≤ 0.05 vs. the vehicle group. Data are presented as the mean ± S.D.
Loading controls were reused across Figures 4 and 5 of this article.
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TABLE 1 Comparison of histological changes of late SCI, such a hyperemia, degeneration, cellular infiltration, and demyelination between SCI and
treatment groups at 4 weeks post SCI. Histological score: 0= (negative); 1= (mild); 2= (moderate); 3= (severe).

Group SCI SCI+ Vehicle SCI+ Bum 2 mg/kg SCI+ Bum 4 mg/kg

Hyperemia 1 1 1.5 0

Degeneration 3 2 2 0.5

Infiltration 3 2 2 1

Demyelination 2 2 2 1

FIGURE 6
Toluidine blue staining for rats undergoing spinal cord injury (SCI) evaluated at 28 days post SCI (A–D). Histopathologic features were
investigated at highmagnification, region of extensive degeneration (red box, panel b–c) with demyelination (red arrows, panels b–c), and infiltration
(black arrow panel b). (F) Quantitative analysis for the number of motor neurons (% of sham group) among the groups was determined at 4 weeks
after SCI. (G) Graph bar shows quantitative evaluation of spared white matter in LFB-stained sections. The bumetanide 4 mg/kg group showed
more white matter than the SCI group. The data are shown as the mean ± SD. *** p ≤ 0.001 vs. control, # p ≤ 0.05, ## p ≤ 0.01, vs. the treated SCI
group; $ p ≤ 0.05, $$ p ≤ 0.01, $$$ p ≤ 0.001 vs. the vehicle group; +p ≤ 0.05 vs. Bum 2 mg/kg group; scale bar = 50 μm.
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One-way ANOVA analysis indicated a significant difference

between the number of motor neurons [F (4,15) = 47.23; p <
0.0001] in the injured spinal cord. A significantly increased

number of motor neurons was found in the Bum 4 mg/kg

group compared to all the SCI, vehicle, and Bum 2 mg/kg

groups 28 days post SCI. (Figure 6F). Quantification of the

spared white matter showed significantly better preservation

in both the bumetanide treatment groups and had a positive

effect on tissue preservation than the SCI and vehicle groups. The

control group showed a normal pattern of white matter

distribution. Statistical analysis indicated the area of preserved

tissue after SCI at the lesion site which was less (53%) than in the

control group. The low percentage of preserved white matter was

also detected in the vehicle group (48%), while both the treatment

groups exhibited less white matter area (WMA) loss at the lesion

site in the same segments. In the 4th week of survival, the

preserved white matter was better, and it reached 65% and

75%. (Figure 6G). Bumetanide groups revealed better

improvement in histological and functional features which

could be explained by the reduced moto-neuronal loss and

the preserved white matter sparing in the injured spinal cord.

We assume bumetanide therapy was associated with significant

white matter tissue survival in the injured segment.

4 Discussion

The upregulation of NKCC1 and the subsequent shift of GABAA

to excitatory functions is a fundamental transformation shown in

some nervous diseases, such as autism, temporal lobe epilepsy (Ben-

Ari et al., 2012; Gharaylou et al., 2019a), schizophrenia (Kehrer et al.,

2008), neuropathic pain (Côté, 2020), and animalmodels of theDown

syndrome (Potier et al., 2014). Bumetanide is an NKCC1 inhibitor

which showed promising effects in improving the conditions

associated with these circumstances (Ben-Ari, 2017; Gharaylou

et al., 2019c; Zarepour et al., 2020). The present study analyzes

bumetanide’s effect on SCI rat recovery using the BBB score,

horizontal ladder walking, and the hot plate test for assessment of

motor neuron function, sensorimotor function, and sensory

evaluation, respectively. Moreover, histological and molecular

assessments were used to validate these measurements. Therapeutic

effects of bumetanide (4 mg/day) became visible 28 days after SCI

when compared to those of baseline. There are three major types of

spinal cord injury: compression, transaction, and contusion (Ahmed

et al., 2019). Contusionwas themost commonpattern of injury (41%),

followed by transection (32.5%) and compression (19.4%) (Sharif-

Alhoseini et al., 2017a). On the basis of the literature, thoracic SCI

models are apparently reliable and easy to reproduce (Rahimi-

Movaghar, 2009). Most studies used a blunt trauma injury pattern

such as contusion, compression, distraction, dislocation, or existing

traumatic SCI (Sharif-Alhoseini et al., 2017b). Histological data

revealed the typical characteristics of contusion (Nishi et al., 2007).

The lesion site was composed of hemorrhage, edema, and infiltration

by inflammatory cells and cystic microcavitations, as seen in human

SCI (Baussart et al., 2006). Our study showed that the aforementioned

pattern was found in our rat SCI model.

The widespread expression of GABAergic neurons in the spinal

cord and their role in the early and late phases of SCI deserve full

attention. The gradient of intracellular and extracellular chloride ions

has changes in mature and immature GABAergic neurons. Spinal

cord lesions disrupted the state of balanced networks like immature

neurons because of the downregulation of KCC2 or upregulation of

NKCC1 (Mazzone et al., 2021). Consistentwith preceding reports, our

study further presented evidence of the change of NKCC1 expression

in the lesion after spinal cord injury. NKCC1 was overexpressed 3 h

after trauma, peaking at hour 6 and persisting at an elevated level for

7 days. Consequently, in order to inhibit NKCC1, 3 hours after SCI

was selected as an appropriate timepoint for bumetanide treatment.

We tried to simulate the time in which paramedics can reach an

injured patient, and it is exactly the time when the NKCC1 expression

is upregulated. The rats received bumetanide 3 h after SCI for 28 days.

Disturbance of the BBB score after induction of spinal cord injury has

been well-shown by previous studies. Proper time of injection of

bumetanide improves the BBB scores, indicating that this drug

prevents chloride disturbance and GABA dysfunction in motor

neurons injured in SCI. Consistent with our results, a study has

shown that the locomotor network was improved by applying anodal

trans-spinal direct current stimulation plus bumetanide after spinal

cord contusion (Mazzone et al., 2021). Another study reported that

bumetanide improved behavioral outcomes after cerebral ischemia

(Mu et al., 2017). Some studies injected bumetanide before induction

of injury, which is not in accordance of this natural disease (Mazarati

et al., 2009; Yan et al., 2018).We try to design our study based onwhat

happens clinically. The GABA-mediated depolarization through

upregulation of NKCC1 contributes to secondary post damage,

edema, neuron death, and destruction of spinal cord tissues

(Mazzone et al., 2021). The failure of spontaneous neurite

regeneration and neurological connectivity restoration leads to

persistent functional deficits following SCI. The GABA-mediated

depolarization inhibits axonal regeneration by stimulating the Rho/

Rock signaling pathway and the pan-neurotrophin receptor p75NTR

synthesis, increasing cell death (Shulga et al., 2012). Although changes

in the BBB scores are important, if these changes were not associated

with the cellular and histological improvement, they may not be of

long-standing benefit. Our histological analysis revealed that 4mg/kg

bumetanide was the best dosage to overcome histological changes

after SCI and induced reconstruction in injured spinal cord.

Bumetanide also prevented pathological upregulation of p75NTR and

neuronal death in the injured areas (Shulga et al., 2012). Peripheral

nerve regeneration and healing was obtained by the synergistic effect

of dexamethasone and bumetanide on edema and aquaporin

1 receptor (Longur et al., 2021). GAP-43 is an intrinsic

determinant of neuronal development and plasticity. Histological

assessment of our study showed a greater diameter of neurons and

reduced white matter loss after bumetanide treatment, which may be

due to preservation of the myelin sheath (Wang et al., 2018). Western
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blotting analysis in our study confirmed that bumetanide promotes

the expression of GAP-43 levels. Physiological dysfunction is one of

the major features in spinal cord injury. Researchers in this field try to

ameliorate these dysfunctions, such as hyperalgesia and sensorymotor

dysfunction. Previous research studies showed NKCC1 upregulation

following peripheral nerve injury leads to allodynia and hyperalgesia.

In addition, KCC2 downregulation due to overexpression of Brain-

Derived Neurotrophic Factor has also caused complicated pain states

(Kahle et al., 2008). Restoring these patterns and pharmacological

manipulations of these co-transporters has pronounced implications

for controlling neuropathic pain and providing efficient analgesic

effects (Gwak and Hulsebosch, 2011; Mòdol et al., 2014). Injection of

4 mg/kg bumetanide controlled the aforementioned dysfunctions and

restored physiological properties. The bumetanide 4mg/kg group

achieved faster recovery of the hind-limb function at 4 weeks in

comparison with the non-treated and vehicle animals. It seems that

the preservation of axons might be essential for a favorable

neurological outcome.

This study is a preliminary study to examine the effect of

bumetanide treatment in the contusion SCI rat. Previous studies

revealed that different recovery was observed between male and

female rats after the spinal cord injury (Datto et al., 2015). One

limitation of this study is only male rats were used. To provide more

scientific evaluation which allows potential translation to humans,

further research on female rats is crucial. Pre-clinical studies on both

sexes as a biological variable will help examine the long-term effect of

bumetanide treatment for clinical application.

5 Conclusion

This study provides novel evidence for the benefits of

bumetanide after SCI. Further investigation by using a primate

model will confirm whether bumetanide as an FDA-approved

drug can control all adverse effects of spinal cord injury.

Thereafter, it may also be part of the protocol for acute SCI care.
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