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Dynamic changes in blood immune cell composition and function
in Holstein and Jersey steers in response to heat stress
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Abstract
Heat stress has detrimental effects on livestock via diverse immune and physiological changes; heat-stressed animals are rendered
susceptible to diverse diseases. However, there is relatively little information available regarding the altered immune responses of
domestic animals in heat stress environments, particularly in cattle steers. This study aimed to determine the changes in the
immune responses of Holstein and Jersey steers under heat stress. We assessed blood immune cells and their functions in the
steers of two breeds under normal and heat stress conditions and found that immune cell proportions and functions were altered in
response to different environmental conditions. Heat stress notably reduced the proportions of CD21+MHCII+ B cell populations
in both breeds. We also observed breed-specific differences. Under heat stress, in Holstein steers, the expression of
myeloperoxidase was reduced in the polymorphonuclear cells, whereas heat stress reduced the WC1+ γδ T cell populations in
Jersey steers. Breed-specific changes were also detected based on gene expression. In response to heat stress, the expression of
IL-10 and IL-17A increased in Holstein steers alone, whereas that of IL-6 increased in Jersey steers. Moreover, the mRNA
expression pattern of heat shock protein genes such as Hsp70 and Hsp90 was significantly increased in only Holstein steers.
Collectively, these results indicate that altered blood immunological profiles may provide a potential explanation for the en-
hanced susceptibility of heat-stressed steers to disease. The findings of this study provide important information that will
contribute to developing new strategies to alleviate the detrimental effects of heat stress on steers.
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Introduction

Seasonal changes, particularly during the hot and humid sea-
son, can have detrimental effects on different aspects of live-
stock production, reproduction, metabolism, and immunity;
recent trends in global warming seem exacerbate the adverse
effects of environmental conditions during this season. For
example, extreme weather conditions, such as the concurrence
of heatwaves and droughts, tend to be associated with ex-
tremely high temperatures. Hot and humid environmental
conditions induce heat stress responses in plants and animals,
which are known to have significant effects on diverse phys-
iological processes, including those related to metabolism and
immunity, and can accordingly promote the development of
diseases. In the USA, annual economic losses in the livestock
industry, attributable to heat stress, have been estimated at
$1.69 to $2.36 billion, with the dairy, beef, pig, and poultry
industries accounting for 58%, 20%, 15%, and 7% of these
losses, respectively (St-Pierre et al. 2003). Accordingly, it is
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imperative to gain a better understanding of heat stress phys-
iology and develop strategies that can be implemented to al-
leviate the adverse effects of heat stress responses in livestock.

It has been reported that animals regularly subjected to heat
stress are generally unhealthy and suffer from various dis-
eases. The findings of correlation studies have indicated that
heat-stressed animals have a higher incidence of diseases, in-
cluding infectious and metabolism-related diseases. The in-
creased incidence of diseases in heat-stressed animals can be
attributed to impaired immune functions. Numerous studies
have revealed the detrimental effects of heat stress on the
immune status of livestock. For example, using RNAseq tech-
nology, it was found that Holstein bull calves exposed to
severe heat stress show hyperinsulinemia, along with altered
expression of genes involved in immune response and
immunity-related signaling pathways (Srikanth et al. 2017).
Relevant studies on the effect of heat stress have also demon-
strated that there is an attenuated vaccine response in animals,
which is characterized by abnormal immune responses
(Bagath et al. 2019). Furthermore, the levels of immunoglob-
ulin G2a (IgG2a), T cell proliferation, and the expression of
interferon gamma (IFN-γ) in both CD4+ and CD8+ cells and
cytotoxic T-lymphocyte have been reported to be suppressed
under conditions of chronic heat stress (Hu et al. 2007).
Consequently, administering vaccines to heat-stressed ani-
mals may not produce optimal immune responses, thereby
reducing the efficacy of vaccination.

Levels of the hormone cortisol are among the most prominent
biomarkers of heat stress responses in dairy cows. Cortisol pro-
duction induced by heat stress stimulates the immune system,
although conversely, the chronic secretion of cortisol is known
to be associated with immune suppression (Ju et al. 2014; Jin
et al. 2011). Several studies have assessed immunological chang-
es in Holstein dairy cows under heat stress conditions. For ex-
ample, the conditions associated with high temperature and dry
environmental seasons have been found to affect immune re-
sponses, including reduction in lymphocyte proliferation, neutro-
phil phagocytosis, and cytokine expression in Holstein dairy
cows (do Amaral et al. 2010, 2011). Moreover, heat-stressed
Holstein cattle reportedly show reduced cellular immunity and
enhanced humoral immune responses under prolonged heat
stress (Lacetera et al. 2005). Several studies have reported that
Jersey cows may be more heat tolerant than other breeds with
respect to milk yield and fat percentage during severe heat stress
(Harris et al. 1960; Collier et al. 1981; Smith et al. 2013). Some
studies have also assessed the differential heat stress resistance
among dairy cow breeds; it has been reported that Jersey cows
can control the effects of thermal stress to a certain extent owing
to their ability to dissipate internal heat via sweating (Knapp and
Robinson 1954). However, although there have been a number
of comparative studies on heat stress and physiological re-
sponses, the associated immunological properties have yet to
be sufficiently investigated.

Dairy steers, particularly those of Holstein cows, are an
important source of meat worldwide. Although dairy cows
tend to be more sensitive to heat stress than steers, the latter
are also prone to the adverse effects of unfavorable environ-
mental conditions. For example, steers reared in breeding en-
vironments in which they are directly exposed to heat stress
often show various clinical signs, including open-mouthed
panting, drooling, reluctance, or inability to rise, increased
licking of coats, and general dullness, and neurological signs,
as manifested by staring glazed eyes. As indicated previously,
economic losses in the beef industry due to heat stress can be
considerable. For example, more than 4000 head of beef steers
died in Iowa during a severe heat wave in 2006 (Belhadj
Slimen et al., 2016). Heat stress has been shown to be associ-
ated with reduction in the body weight, average daily gain,
and growth rate of beef cattle (Hahn 1999). Moreover, calves
confined to hutches in summer with elevated body tempera-
tures have been reported to have low levels of serum IgG and
high mortality (Broucek et al. 2009). However, although heat
stress has been shown to have a negative effect on the growth
performance of steers, relatively few studies have examined
changes in the productivity and physiology of steers subjected
to heat stress.

Adverse environmental conditions also appear to influence
the immune system of beef cattle; a few studies have examined
the heat stress-related changes in immunological biomarkers in
Holstein and Jersey steers. For example, it has been reported that
a shift in the immune response from Th1 type (IFN-γ) to Th2
type (IL-4) in bulls during intense heat waves reflects a reduction
in cell-mediated immunity (Peli et al. 2013).

Nevertheless, although heat stress clearly induces
immunity-related changes in livestock animals, information
pertaining to specific immune responses, including the re-
sponse patterns of immune cells and their functions, tends to
be limited, which can conceivably be attributed to technical
limitations. For example, most relevant studies have only ex-
amined immune-associated biomarkers, such as cytokine
levels, in dairy cows or steers subjected to different environ-
mental stress conditions. As immune cells orchestrate re-
sponses in the immune system of animals, understanding the
changes in these cells and their functions is essential for eluci-
dating the related physiological mechanisms in animals. In the
present study, we assessed blood immune cells and their func-
tions in the steers of two cattle breeds (Holstein and Jersey) in
normal (normal range of the temperature and humidity index
(THI)) and heat stress (high THI condition) environments and
attempted to identify common and breed-specific heat stress-
sensitive immune cells and their functions. Ourmost interesting
finding was that heat stress is associated with reduction in the
proportions of CD21+MHCII+ B cells and cytotoxic T cells
among blood immune-related cells. We believe that these
changes in immune cells and functions may be associated with
altered disease susceptibility in stressed steers.

706 D. S. Park et al.



Materials and methods

Animals

All experimental procedures for animal experiments were per-
formed in accordance with the guidelines (SCNU-IACUC-
2020-06) of the Institutional Animal Care and Use
Committee (SCNU-IACUC), Republic of Korea. The princi-
ples of laboratory animal care were met, and blood collection
procedures were performed by reducing pain and stress as
much as possible, in accordance with the guidelines of the
Korea National Standard of Cattle. All experimental protocols
were approved by the Institutional Animal Care and Use
Committee of the National Institute of Animal Science,
Rural Development Administration, Republic of Korea. The
six Holstein (690 ± 10.50 kg) and eight Jersey (550 ± 15.75
kg) steers used in this study were 36months of age and housed
in stalls. All cattle were fed selected diets once daily at 08:00
h, at a rate of 5–10% of the leftover diet.

Calculation of the temperature humidity index

With respect to livestock, the THI is mainly used to reflect the
intensity of heat stress; accordingly, in the present study,
based on the available meteorological data, we used the THI
to examine the effects of heat stress conditions on the afore-
mentioned two representative dairy cow breeds. To gauge the
load of heat stress on dairy cows, two distinct time slots were
established as normal and high-temperature environments
based on the THI for comparative experiments. For the deter-
mination of THI, we measured temperature and humidity
using a thermos and humidity meter (Testo 174H Mini data
logger; West Chester, PA, USA) and applied the following
THI equation devised by the National Research Council
(NRC, 1971): THI = (1.8 × ambient temperature + 32) -
[(0.55 - 0.0055 × relative humidity) × (1.8 × ambient temper-
ature - 26)]. For calculating the THI, measurements were con-
ducted for normothermia from May 14th to 27th and for hy-
perthermia from August 5th to 13th, for a total of 18 days;
accordingly, we obtained average THI values of 64.92 and
79.13, respectively.

Blood collection and immune cell isolation

Blood samples were obtained from the jugular vein of dairy
cows and transferred to the Vacutainer tubes spray-coated
with K2EDTA (BD Vacutainer; Becton Dickinson Co.,
Franklin Lakes, NJ, USA). The samples were immediately
placed on ice and transported to the laboratory for the isolation
of peripheral bloodmononuclear cells (PBMCs) and polymor-
phonuclear cells (PMNs) within 30 min from the time of sam-
pling. PBMCs were isolated by density-gradient centrifuga-
tion. Whole blood samples were diluted with phosphate-

buffered saline (PBS) to a 1:1 ratio in 15-mL conical tubes.
The diluted blood samples were then overlaid on the top of
Lymphoprep (STEMCELL Technologies Inc., Vancouver,
BC, Canada) in 15-mL conical tubes, and following centrifu-
gation for 20 min at 800×g at room temperature (15–25°C),
the layer of cells above the Lymphoprep was collected and
washed twice with PBS to obtain purified dairy cow PBMCs.
The isolation of PMNs was similar to that described for
PBMCs, following density-gradient centrifugation. Similar
to the PBMCs, the blood samples were diluted with PBS to
a 1:1 ratio and then overlaid on the top of Lymphoprep. After
centrifugation for 20 min at 800×g at room temperature, we
observed two distinct layers in the blood. The whole layer
beneath the PBMCs, the so-called interphase layer, was col-
lected, and to this, we added red cell lysis buffer. After
allowing it to settle for 15 min, the preparation was centri-
fuged for 5 min at 800×g at room temperature. The pellet thus
obtained was washed with PBS, followed by further centrifu-
gation for 3 min at 500g and room temperature to obtain
highly purified PMNs. Samples for quantitative reverse
transcription-PCR (qRT-PCR) were resuspended in 1 mL of
the Trizol reagent (Invitrogen, CA, USA) and transferred to
1.5-mL tubes. PBMCs were immediately stored at −80°C un-
til RNA isolation.

Complete blood count analysis of the whole blood of
dairy cows

All whole blood samples used for complete blood count
(CBC) analysis were placed in 0.5-mL K3EDTA-coated
tubes and immediately transported to the laboratory.
Measurements were obtained using a Vetscan® HM5 he-
matological analyzer (ABAXIS, CA, USA), as recom-
mended by the manufacturer, using settings for bovine
b lood , and con f i rmed in acco rdance wi th the
manufacturer-recommended acceptable range prior to each
series of analyses. Analyzer-measured variables included
red blood cell (RBC) count; hemoglobin concentration
(HGB); hematocrit; mean corpuscular volume; mean cor-
puscular hemoglobin; mean corpuscular hemoglobin con-
centration; red cell distribution width by standard devia-
tion and coefficient of variation; RBC hemoglobin content
(RBC-HGB); reticulocyte percentage (RET); immature re-
ticulocyte fraction; low-, medium-, and high-fluorescence
ratios as grades of reticulocyte maturation; reticulocyte
hemoglobin content (RET-HGB); delta-HGB (calculated
as the difference between reticulocyte and RBC hemoglo-
bin content or RET-HGB minus RBC-HGB); WBC count;
neutrophil, lymphocyte, monocyte, eosinophil, and baso-
phil counts; platelet count by impedance and optical mea-
surements; mean platelet volume; platelet distribution
width; plateletcrit; and platelet large cell ratio.
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Flow cytometry analysis of the immune cells (PBMCs
and PMNs) of dairy cows

The PBMCs and PMNs were isolated from dairy cows
under normothermic and hyperthermic conditions. For
analyses, PBMCs and PMNs from 6 Holstein and 8
Jersey cattle were used for each time slot. The isolated
PBMCs and PMNs were subjected to flow cytometry
(FACS Canto II; BD Bioscience, Heidelberg, Germany)
analysis for immune cell population quantification using
FlowJo software v10.7.1 (Tree Star Inc., OR, USA). The
samples used for surface staining were fixed with 4%
paraformaldehyde for 20 min at 4°C, and those used for
intracellular staining were fixed with the Perm buffer at
4°C. The isolated cells were stained using a live/dead
fixable aqua dead cell stain kit (Invitrogen, CA, USA).
Samples were stained with the following direct
fluorescence-conjugated antibodies: anti-CD4:Alexa
Flour 647 (Bio-Rad, MCA1653A647), anti-CD21:PE
(Bio-Rad, MCA1424PE), anti-MHCII:FITC (Bio-Rad,
MCA5656F), anti-CD8:Alexa Fluor 647 (Bio-Rad,
MCA837A647), anti-WC1:FITC (Bio-Rad, MCA838F),
anti-CD16:FITC (Bio-Rad, MCA5665F), anti-CD14:PE
(Bio-Rad, MCA1568PE), anti-CD172a:Pe-Cy5 (Bio-Rad,
MCA2041C), ant i -CH138a (Kingfisher Biotech,
WSC0608B-100), and anti-IgM:Alexa Flour 647
(Invitrogen, A21238). All antibodies were diluted to
1:100 in PBS, and analyses were conducted using the
following four panels: (1) CD4 and CD21 for CD4 T cells
and CD21 and MHCII for B cells; (2) WC1 and CD8 for
γδ T and CD8 T cells; (3) CD172a, CD14, and CD16 for
monocytes; and (4) CH138a for neutrophils.

qRT-PCR

Total RNA was isolated from cell samples to examine
the respective responses in Holstein and Jersey steers
subjected to normothermia and hyperthermia. Samples
in Trizol were incubated for 5 min at room temperature,
after which 200 μL of chloroform was added to 1 mL
of Trizol. The samples were then vortexed for 10 s and
incubated for a further 2 min at room temperature for
phase separation. Thereafter, the samples were centri-
fuged at 10,000×g for 20 min at 4°C. The resulting
upper aqueous phase was transferred into fresh tubes,
to which 0.5–1 mL of isopropyl alcohol was added,
followed by gentle mixing by shaking. Subsequent to
incubation for 10 min at room temperature and centri-
fugation at 10,000×g for 10 min at 4°C, the supernatant
was removed, and the resulting RNA pellet was washed
with 75% ethanol prior to being stored in DEPC water
(Invitrogen, CA, USA). cDNA was synthesized using
AccuPower RT PreMix (Bioneer, Daejeon, Korea).

qRT-PCR was performed using a QuantStudio1 Real-
Time PCR system (Applied Biosystems, CA, USA)
and SologTM h-Taq DNA Polymerase (SolGent,
Daejeon, Korea). The reaction conditions were as fol-
lows: 50°C for 10 min, 95°C for 5 min, 95°C for 15s,
and 60°C for 30 s (40 cycles), followed by melting
curve analysis. The sequences of the primer sets used
for amplification are listed in Table 1.

Statistical analysis

Statistical analyses of dairy cow respiration rate and
rectal temperature were conducted using the Prism soft-
ware (GraphPad, La Jolla, CA, USA). One-way
ANOVA with Tukey’s post hoc test and two-way
ANOVA with Bonferroni post hoc tests were used to
calculate statistical significance. All data are presented
as mean ± SD, and significance was evaluated as P <
0.05, P < 0.01, and P < 0.001.

Table 1 List of the primer sequences used for quantitative reverse
transcription-PCR

Genes Primer Sequences

β-actin Forward 5′-AGCAAGCAGGAGTACGATGAGT-3′

Reverse 5′-ATCCAACCGACTGCTGTCA-3′

IL-1β Forward 5′-TGACCTGAGGAGCATCCTTT-3′

Reverse 5′-AGAGGAGGTGGAGAGCCTTC-3′

IL-2 Forward 5′-ACCTCAAGCTCTCCAGGATG-3′

Reverse 5′-CTCTGGGGTTCAGGTTTTTG-3′

IL-10 Forward 5′-AGCCTTGTC GGAAATGATCCA-3′

Reverse 5′-CTCTCTTCACCTTCTCCACCG-3′

IFN-γ Forward 5′-GATTCAAATTCCGGTGGATG-3′

Reverse 5′-AAATATTGCAGGCAGGAGGA-3′

IL-18 Forward 5′-TCTGCTCTCCAATGCTTTCA-3′

Reverse 5′-AGCCATCTTTATGCCTGTGC-3′

IL-17A Forward 5′-TGAGTCTGGTGGCTCTTGTG-3′

Reverse 5′-GGTGGAGCGCTTGTGATAAT-3′

TNF-α Forward 5′-CGGTGG TGGGAC TCGTATG-3′

Reverse 5′-CTGGTT GTCTTC CAGCTTCACA-3′

IL-6 Forward 5′-CAGCTATGAACTCCCGCTTC-3′

Reverse 5′-CGGTTTTCTCTGGAGTGGTC-3′

IL-4 Forward 5′-TTGCTGCCCCAAAGAACACAA-3′

Reverse 5′-TGCTCGTCTTGGCTTCATTCA-3′

MPO Forward 5′-TACCAGACGCCCAACAACATT-3′

Reverse 5′-TTCTTGCTGAACACGCCCTT-3′

Hsp70 Forward 5′-AACATGAAGAGCGCCGTGGAGG-3′

Reverse 5′-GTTACACACCTGCTCCAGCTCC-3′

Hsp90 Forward 5′-GGAGGATCACTTGGCTGTCA-3′

Reverse 5′-GGGATTAGCTCCTCGCAGTT-3′
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Results

Changes in hematological parameters in Holstein and
Jersey steers under different THI conditions

To determinewhether heat stress alters hematological parameters
in steers, we analyzed the whole blood of Holstein and Jersey
steers using a Vetscan® HM5 hematological analyzer, which
provides a fully automated report for a 22-parameter complete
blood count (CBC) from whole blood, discriminating and quan-
tifying cell numbers based on cell size. Whole blood was obtain-
ed from Holstein and Jersey steers under two different environ-
mental conditions (MT, average THI = 64.92 and HT, average
THI = 79.13). The most prevalent white blood cell populations
(lymphocytes, neutrophils, monocytes, basophils, and eosino-
phils) were enumerated (109 cells/L) and reported as a percentage
of total white blood cells (WBC). The results indicated that the
levels of total WBCs were not significantly altered by the differ-
ent THI conditions. Similarly, for both cattle breeds, we detected
no significant changes in the cell count and frequency readings
obtained under each environmental condition (P > 0.9) (Fig. 1A).
Furthermore, for both Holstein and Jersey steers, there were no
significant differences between the MT and HT conditions with
respect to the number of lymphocytes, the most abundant type of
immune cells in the blood (>109 cells/L) (Fig. 1B). However,
although the number of monocytes tended to decline in response
to heat stress, the difference was not significant (Fig. 1C). In
addition, the number of neutrophils was non-significantly affect-
ed by environmental conditions (Fig. 1D). Similarly, we detected
no significant differences in the WBC, lymphocyte, monocyte,
or neutrophil counts between Holstein and Jersey steers (Fig.
1A–D). In contrast, we detected several differences with respect
to the number of basophils and eosinophils. In Holstein steers,
we observed significant increases in the number of basophils and
eosinophils under HT conditions (Fig. 1 E and F); contrastingly,
although the number of basophils and eosinophils in Jersey steers
was slightly higher under HT condition, it was not significantly
different from that observed in Holstein steers. In this regard, it
should be noted that there appeared to be an intrinsic breed
difference with respect to blood basophils and eosinophils, with
Holstein steers having significantly higher numbers of basophils
and eosinophils under MT conditions. Collectively, these find-
ings indicate that among the immune-related cells in blood, ba-
sophils and eosinophils are sensitive to heat stress, and that these
immune cell responses are more prominent in Holstein steers.

Changes in the composition of monocyte subsets in
Holstein and Jersey steers under different THI
conditions

We subsequently examined blood immune cell composition
comprehensively, based on flow cytometric analyses, by ini-
tially analyzing the innate immune cells, monocytes, and their

subsets. Among viable PBMCs, monocytes were identified as
CD172+ cells (Fig. 2A). In total PBMCs, we detected 5 to 6%
monocytes, the proportions of which did not differ significant-
ly between Holstein and Jersey steers. Similarly, environmen-
tal conditions (MT vs. HT) appeared to have no significant
effect on the proportion of monocytes. Furthermore, among
total monocytes, we identified three subsets based on expres-
sion of the surface markers CD14 and CD16 (Fig. 2B). Bovine
monocytes have been classified into classical (CD14+CD16-),
in te rmedia te (CD14+CD16+) , and non-c lass ica l
(CD14-CD16+) types. Consistent with the findings of a previ-
ous study, we found that the classical type constituted the
majority (89%) of observed bovine monocytes, with the inter-
mediate and non-classical monocytes being present in minor
proportions (5–10% for each subset) (Hussen et al. 2013;
Hussen and Schuberth 2017). However, for both the cattle
breeds, we detected no significant differences in the popula-
tions of monocyte subsets under MT and HT conditions.

Changes in composition T and B-lymphocytes in
PBMCs in response to heat stress

To elucidate the immunological status of lymphocytes under
HT conditions, we evaluated the diverse types of T cells in
PBMCs, based on an assessment of the different T cell sub-
sets, namely T helper cells expressing CD4+ (Fig. 3A), T
cytotoxic cells expressing CD8+ (Fig. 3B), and γδ T cells
expressing WC1+ (Fig. 3B), in heat-stressed dairy cows. No
significant differences were detected with respect to the fre-
quency of CD4+ T cells. We observed decrease in the number
of both CD8+ and WC1+ T cells in both Holstein and Jersey
steers under HT conditions. However, while there was no
significant difference the number of CD8+ T cells in Jersey
steers, the proportion of WC1+ T cells was found to be signif-
icantly lower under HT conditions than under MT conditions.
Taken together, these findings indicate that heat stress condi-
tions induce changes in the T-lymphocyte composition of
PBMCs, particularly WC1+ T cells, in Jersey steers.

To identify bovine B cells, we stained PBMCs immuno-
logically with the B cell markers CD21 and MHCII and ob-
served that B cells were gated on the CD21+MHCII+ B cells in
PBMCs (Fig. 3C). Interestingly, we observed significant dif-
ferences and changes in the CD21+MHCII+ B cell population,
with significant reduction in the proportion of B cells being
detected in the steers of both breeds under HT environmental
conditions (Fig. 3C). Moreover, we observed differences in
the B cell proportions between Holstein and Jersey steers un-
der MT conditions, with Jersey steers having a significantly
lower proportion of CD21+MHCII+ B cells than Holstein
steers. Collectively, these finding indicated that heat stress
environmental conditions reduce B cell counts in both
Holstein and Jersey steers and that there are differences be-
tween the breeds in this regard.
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Change of mRNA expression for cytokine in PBMCs by
heat stress environment

To examine the functional changes in PBMCs induced by heat
stress, we assessed the expression of cytokine mRNAs in
PBMCs based on real-time PCR analysis of the expression
of IL-1β, IL-2, IL-10, IFN-γ, IL-18, IL-17A, TNF-α, IL-6,
and IL-4 in the PBMCs isolated from Holstein and Jersey
steers. The results revealed significant increase in the mRNA
expression of IL-10 and IL-17A in Holstein steers in response
to temperature alleviation (P < 0.05) (Fig. 4). In addition, the
mean levels of IL-10 and IL-17A mRNA expression in
Holstein steers were significantly higher than those in Jersey
steers under HT conditions (P < 0.05), as determined by two-

way ANOVA with Bonferroni correction. Furthermore, we
detected a significant increase in the expression of IL-6
mRNA in Jersey steers under HT conditions (P < 0.05), al-
though no significant changes in expression were observed in
Holstein steers. However, no significant differences were ob-
served in the levels of IL-1β, IL-2, IFN-γ, IL-18, TNF-α, IL-
6, and IL-4 (Fig. 4) under heat stress or between the two
breeds.

Changes in neutrophils by heat stress environment

We subsequently sought to determine whether heat stress in-
duces changes in blood neutrophils based on an analysis of
isolated PMNs. Neutrophils are among the most abundant

Fig. 1 Environmental stress-induced shifts in the concentrations of blood
immune cells of Holstein and Jersey cattle. Changes in the blood immune
cell profiles of Holstein and Jersey steers subjected to heat stress were
assessed by complete blood count (CBC) analysis. CBC measurements

showing total counts of A white blood cells (WBCs), B lymphocytes, C
monocytes, D neutrophils, E basophils, and F eosinophils. * = P < 0.05,
*** = P < 0.001. MT indicates moderate THI condition and HT indicates
high THI condition. Error bars denote standard derivations (SD)
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Fig. 2 Changes in the monocyte subsets of PBMCs in Holstein and
Jersey steers subjected to heat stress. Flow cytometry analysis to
identify monocyte subset population. A CD172a+ monocyte cells were
sorted from total PBMCs and B a dot plot depicting the three monocyte

subsets in monocytes (CD172a+): classical CD14+CD16-, intermediate
CD14+CD16+, and non-classical CD14-CD16+ monocytes. MT
indicates moderate THI condition and HT indicates high THI condition
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immune cell types in the blood and can be identified
based on the expression of CH138a (Piepers et al. 2009;
Della Libera et al., 2015). We accordingly found that
the population of CH138a+ cells in PMNs underwent a
decline in the steers exposed to HT conditions (Fig.
5A); this change was more evident in Jersey steers,
which showed a significantly reduced proportion of neu-
trophils. In addition, we detected a significant reduction
in the expression of neutrophil protein myeloperoxidase
(MPO) in Holstein steers only under HT conditions
(Fig. 5B). These observations indicate that heat stress
has a significant effect on neutrophils (number and
function) in the blood of steers.

Changes in mRNA expression for heat shock proteins
in PBMCs by heat stress environment

Heat shock proteins have been served as crucial biomarkers in
response to stress tolerance and adaptation (Hassan et al.
2019). Additionally, we have examined the expression of heat
shock proteins (Hsp) genes in PBMCs of Holstein and Jersey
steers between MT and HT condition. Interestingly, the ex-
pressions of Hsp70 and Hsp90 in PBMCs isolated from
Holstein steers were significantly increase under heat stress
environment (P < 0.05) (Fig. 6). But, there was no significant
difference in the expression of Hsp70 and Hsp90 of Jersey
steers. This leads to significantly higher mRNA expression
of Hsp90 in PBMCs from Holstein steers than those in
Jersey steers in HT condition.

Discussion

The combination of high temperature and humidity creates a
hostile environment that can readily overwhelm the capacity

�Fig. 3 Changes in T and B lymphocytes among PBMCs in Holstein and
Jersey steers subjected to heat stress. Flow cytometry analysis to identify
lymphocytes subset population. Heat stress caused reduction in
lymphocyte populations in the PBMCs of both Holstein and Jersey
steers. The lymphocytes comprised A CD4+ T cells, B CD8+ T cells
and WC1+ γδ T cells, and C CD21+MHCII+ B cells. MT indicates
moderate THI condition and HT indicates high THI condition. * = P <
0.05, ** = P < 0.01

Fig. 4 Changes in the mRNA expression of cytokines in the PBMCs of
Holstein and Jersey steers subjected to heat stress. The expression of IL-
1β, IL-2, IL-10, IFN-g, IL-18, IL-17A, TNF-a, IL-6, and IL-4 was

examined in PBMCs using qRT-PCR. MT indicates moderate THI
condition and HT indicates high THI condition. Statistical significance
is denoted by an asterisk (*). * = P < 0.05
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of cattle to dissipate heat load, leading to increases in body
temperature that may exceed physiological limits (Ronchi
et al. 1997). As in other mammals, livestock generally main-
tain body temperature within a suitable range under certain
environmental conditions, referred to as the thermoneutral
zone. This zone causes minimal heat generation at normal
rectal temperatures, within which the maximum production
efficiency is achieved under minimal physiological expendi-
ture. At ambient temperatures above 26°C, cows are prone to
heat stress, a condition in which it becomes difficult for these
animals to control their body temperature (Kadzere et al.
2002). Chronic heat stress can cause persistent dysfunction
of the hypothalamus–pituitary–adrenal axis, which induces
physiological changes, including metabolic disorders, immu-
nosuppression, increased vulnerability to diseases, and repro-
ductive disorders (Narayan and Parisella 2017; Ju et al. 2014).

It is generally accepted that heat-stressed animals are un-
healthy and susceptible to various diseases. For example, an-
imals exposed to heat stress have been identified as clinically
vulnerable to heat stroke, bovine respiratory disease, rumen
acidosis, and mastitis (Louie et al. 2018; Zhao et al. 2019;
Vitali et al. 2020). However, a majority of the studies in this
field have focused primarily on the physiological changes and

nutritional perspectives associated with high-temperature
stress; there have been comparatively few studies that have
assessed the immunological implications. Nevertheless, atten-
tion is increasingly being devoted to gaining an understanding
of the heat stress-associated mechanisms underlying changes
in immune system function and the increased susceptibility of
dairy cows to disease. Among domestic animals, high-
productivity dairy cows have been identified as the most sen-
sitive to heat stress. In this regard, however, beef cattle are
considered less important than dairy cattle, given that beef
cattle generally have a higher average body temperature,
which is associated with a lower metabolic rate and the pro-
duction of less body heat that needs to be dissipated in order to
avoid heat stress (St-Pierre et al. 2003; Nardone et al. 2010).
Despite this apparent advantage, however, beef cattle remain
particularly vulnerable to extreme environmental conditions
and, thus, need to compensate for their higher body tempera-
ture through homeostatic mechanisms such as panting, sweat-
ing, and urination. It is relatively easy to identify behavioral
changes associated with heat stress. For example, heat-
stressed beef cattle can be characterized by enhanced water
intake and reduced feed intake and activity. However, little
information is currently available regarding the altered

Fig. 5 Altered neutrophil responses in heat-stressed Holstein and Jersey
steers. A A graph showing the CH138a + cell population in PMNs. B
mRNA expression of MPO in PMNs under different environmental

conditions. MT indicates moderate THI condition and HT indicates
high THI condition. Significant differences are denoted by asterisks (*).
* = P < 0.05, ** = P < 0.01

Fig. 6 Changes of mRNA expression for heat shock proteins in PBMCs in heat-stressed Holstein and Jersey steers. The expression of Hsp70 and Hsp90
was examined in PBMCs by using qRT-PCR. Significant differences are denoted by an asterisk (*). * = P < 0.05
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immune function of steers under hyperthermal conditions.
Thus, in the present study, we assessed changes in the com-
position and function of different types of blood immune cells
in steers under normal and heat stress conditions.

Blood comprises multiple types of cells including
granulocytes, a type of leukocytes, which are active in the
front-line defense against pathogen invasion and can be divid-
ed into three main subsets, namely, neutrophils, eosinophils,
and basophils. Given their versatility, these cells make a sub-
stantial contribution to the activation of adaptive immune re-
sponses (Stone et al. 2010; Scapini and Cassatella 2014). Both
basophils and eosinophils are associated with allergic inflam-
mation and have been considered primary effector cells
against parasitic infection and allergen. The basophils initially
accumulate in sites at which inflammation induces hypersen-
sitivity reactions during immune responses designed to coun-
teract the activity of allergens and parasite through regulation
of Th2 reactions. Eosinophils, whose recruitment is related to
the secretion of chemokines, cytokines, interleukins, and other
products such as histamine (Fulkerson and Rothenberg 2013;
Nadif et al. 2013), are associatedwith type 2 immune response
as well. Interestingly, on the basis of our CBC analyses, ba-
sophil and eosinophil numbers were numerically increased in
response to heat stress. It has been reported that eosinophils
and basophils are responsive immune cells to heat stress, but
they show differential responses. Consistently, several studies
have reported that animals have increased basophil counts
following exposure to heat stress (Mitchell et al. 1992;
Maxwell et al. 1992; Altan et al. 2000). The occurrence of
basophilia, an abnormal increase in basophil levels under con-
ditions of extreme stress, is generally accepted as a reliable
indicator of stress, disease severity, and chronic inflammation
and infections (Valent et al. 2018; Feriel et al. 2020; Mitchell
et al. 1992; Altan et al. 2000; Maxwell 1993; Maxwell and
Robertson 1998). However, eosinophils respond differently to
heat stress, and in this regard, it has been documented that
there is a reduction in the eosinophil counts of calves exposed
to high temperatures (da Silva et al. 1992; Alhidary et al.
2012). As a part of type 2 immunity, the basophil numbers
in blood and mesenteric lymph nodes expanded during para-
site infection (Roland et al. 2014; Reitz et al. 2018). In addi-
tion, eosinophilia has been shown to be a reliable diagnostic
clue for a helminth and bacterial infections (Ramirez et al.
2018). Relevant studies conducted on the influence of heat
stress on host immune homeostasis have been fully elucidated
that exposed to heat stress consequently increased the risk of
external parasites and vector-borne diseases (Patz et al. 2000).
On the basis of cellular and biological aspects of basophil and
eosinophil, there is a higher chance that several parasitic in-
fections could be happened under heat stress environment.
Therefore, we could not rule out the possibility that heat-
stressed steers suffered parasitic infection during HT condi-
tion in this study.

The findings of the present study indicate that basophil and
eosinophil responses may differ between Holstein and Jersey
steers, with Jersey steers having higher basophil and eosino-
phils levels than the Holstein steers under MT conditions.
Accordingly, this could be considered a breed-specific immu-
nological phenotype; in line with this observation, we found
that the basophilic and eosinophilic responses in Holstein
steers were more prominent than those detected in Jersey
steers. Although the responses of these cells have yet to be
sufficiently characterized, the evidence obtained to date indi-
cates that altered eosinophil and basophil responses may be
associated with diseases linked to heat stress. When we con-
sider the major function of the immune cells against the par-
asitic infection and host defense, there are possibilities that
heat stress induces the basophil and eosinophil’s over-
reaction to the antigens and finally renders the animals more
vulnerable to the infections under heat stress environment.
Collectively, our findings indicate that the granulocytes baso-
phils and eosinophils are sensitive to heat stress and that the
response to this source of stress is more pronounced in
Holstein steers. Thus, we suggest that the blood counts of
basophils and eosinophils could serve as potential biomarkers
for determining heat stress in Holstein steers.

With regard to characterizing the immunological properties
of animals, flow cytometry analysis represents a powerful tool
in the field of immunology. Surprisingly, however, compara-
tively few flow cytometry-based studies have been conducted
to assess immunological responses in the field of animal sci-
ence, which accordingly motivated us to use this technique to
assess the heat stress-related mechanisms of the blood im-
mune system of Holstein and Jersey steers.

Among PMNs, neutrophils play key roles as the main cel-
lular type involved in eradicating microorganisms and
preventing damage to host cells (Henson and Johnston Jr,
1987). Neutrophils bind to and ingest microorganisms via
phagocytosis, and the combined activity of neutrophil reactive
oxygen species (ROS) and granule constituents, such asMPO,
is highly effective in killing most bacteria and fungi
(Kobayashi et al. 2005). Accordingly, a substantial reduction
in the number of neutrophils or defects in their antimicrobial
activity markedly enhances the likelihood of elevated rates of
morbidity and mortality in patients with bacterial infections
(Nauseef 2007). Moreover, neutrophils serve as an effective
marker for assessing the effects of heat stress on the immune
system based on determination of the neutrophil-to-
lymphocyte ratio, which has been established as an indicator
of adverse outcomes in oncology patients, with associations
between this ratio and mortality being confirmed in both hu-
man and animal studies (Zahorec 2001; Ni et al. 2019). In
some cases, in vivo heat stress has been found to be associated
with reduction in the levels of neutrophil phagocytosis
(Tejaswi et al. 2020). Other studies have reported that inade-
quate levels of antioxidants and trace elements, which may
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occur under heat stress conditions, can lead to a reduction in
the number of neutrophils in the blood and an increase in the
incidence of mastitis and retention of the placenta in dairy
cows (Spears and Weiss 2008; Smith et al. 1997). Our flow
cytometric results in the present study revealed a reduction in
the percentage neutrophil composition of PMNs in Holstein
steers under HT conditions, which was significantly lower
than that recorded in Jersey steers (Fig. 5A). However, our
CBC observations indicated that there were no significant
differences in neutrophil numbers in the whole blood of the
two breeds. We suspect that this discrepancy between the
findings of CBC and flow cytometry analyses could be attrib-
utable to changes in the numbers of other immune cells in the
blood, as we observed increases in the numbers of basophils
and eosinophils in response to heat stress.

MPO is a cationic heme-containing enzyme found in the
primary granules of neutrophils, which is released into both
the phagolysosomal compartment and the extracellular envi-
ronment in response to oxidative stress and during inflamma-
tory responses (Aratani 2018). The paradigm of MPO release
from activated neutrophils is normally related to rectifying
disease states and combating different types of microbial ac-
tivities at the sites of infection (Khan et al. 2018). It has been
demonstrated that when bovine PMNs are exposed to exces-
sively high temperatures in in vitro culture, they show im-
paired neutrophil function. Generally, it has been established
that a reduction in MPO functionality represents a good pre-
dictor of immune suppression (Boulougouris et al. 2019). In
the present study, we found that a change in environmental
heat stress induced a reduction in the expression of MPO only
in Holstein steers (Fig. 5B). Therefore, the impaired function
of immune cells, such as attenuated neutrophil MPO expres-
sion, could be attributable to thermal stress, the effects of
which were more evident in Holstein steers.

PBMCs, which are the prominent type of lymphocytes
(70–90%), are essential mediators of cell-mediated and hu-
moral immune responses; functions of PBMCs on the immune
system are typically investigated by measuring changes in
cytokine secretion, proliferation, or gene expression (Akdis
et al. 2012; Crotty 2011; Kleiveland 2015). Among innate
immune cells, γδ T cells expressing WC1 are associated with
the production of pro-inflammatory cytokines and they direct-
ly attack target cells, such as infected cells, through their cy-
totoxic activity, or via the activation of other types of immune
cells (Rogers et al. 2005; Lawand et al. 2017). Relevant stud-
ies have demonstrated that γδ T cells are the most sensitive to
environmental stress. For example, the effect of weaning in
beef calves has been found to be associated with a reduction in
peripheral lymphocyte count and impaired phagocytic func-
tion, with transient reduction in the proportion of γδ T cells
(Lynch et al. 2010). In addition, the administration of dexa-
methasone has been demonstrated to induce a disproportion-
ate depletion of γδ T cells, which results in a substantial

suppression of gene transcription in lymphocytes (Menge
and Dean-Nystrom 2008). Here, we found that stress-
induced environmental changes had a substantial influence
on WC1+ lymphocytes, which is in line with the findings of
previous studies that have observed adverse environmental
effects, including transportation stress, parturition, and dexa-
methasone treatment, in bovines (Riondato et al. 2008; Meglia
et al. 2005; Menge and Dean-Nystrom 2008). In the present
study, we also observed that heat-stressed Holstein and Jersey
steers showed numerical reduction in the WC1+ lymphocyte
populations (Fig. 3B), which indicates that γδ T cells are
innate immune cell types that are sensitive to heat stress in
steers and that these changes may be associated with a reduc-
tion in cell-mediated immunity.

The most evident heat stress-related change detected in this
study was a reduction in the number of blood CD21+MHCII+

B cells in the steers of both the breeds (Fig. 3C). B cells
differentiate into plasma cells that produce antibodies and
memory cells. B lymphocytes not only play essential roles in
the production of antibodies but also serve as a source of
cytokines. Stress-related changes in B lymphocytes have also
been documented. For example, exposure to heat stress has
been demonstrated to promote reduction in B lymphocyte
differentiation and replication in numerous species, including
rats, birds, and cows (Pitkin 1965; Regnier and Kelley 1981;
Kelley et al. 1982). In addition, heat stress results in reduction
in the levels of immunoglobulins (IgA, IgM, and IgG) and
cytokines, ultimately causing immunosuppression (Guy
et al. 2017; Safa et al. 2019). Other studies have shown re-
duced passive immunity under ambient temperature, with
lower levels of circulating IgG than those under MT condi-
tions (Machado-Neto et al. 1987). In addition, it has been
reported that heat stress negatively affects immune responses
following vaccination. Moreover, antibody levels and anti-
body titers in the Newcastle disease have been reported to
decline in response to heat stress (Zulkifli et al. 2000; Liew
et al. 2003), whereas chronic heat stress induces reactions that
inhibit the production of IgG and IgG1 (Hu et al. 2007). These
observations are consistent with the reduced numbers of B
cells under heat stress conditions detected in the present study.
Thus, we believe that a better understanding of the immuno-
suppression of B cell immunity-induced risk factors under HT
conditions is necessary to facilitate alleviation of the detrimen-
tal effects of heat stress on steers.

The findings of previous studies have indicated that under
the conditions of heat stress, there is an increase in the expres-
sion of chaperones and heat shock genes that act to prevent
protein aggregation and misfolding, which contributes to cell
survival and triggers immune system activation, whereas ex-
posure to severe heat stress can lead to the expression of genes
involved in apoptotic processes (Srikanth et al. 2017). In the
present study, we found that environmental heat stress in-
duced increase in the expression of Hsp genes in PBMCs
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isolated from Holstein steers alone (Fig. 6). Hsp70 and Hsp90
have major function in cellular thermotolerance, immune
modulation, and reliable marker for heat stress (Hassan et al.
2019; Deb et al. 2014). In this regard, the obtained observation
strengthens the evidence that there are definite breed-specific
differences for PBMC heat stress response between Holstein
and Jersey steers. This may be explained by differential sus-
ceptibility to heat stress in host homeostasis.

In this study, we observed reduction in the number of sev-
eral essential immune cell types, including B cells and γδ T
cells, in response to heat stress. Lymphocyte counts can serve
as an indicator signifying that hosts are mounting appropriate
immune protective responses against bacterial and viral anti-
gens. Stress is a primary cause of altered lymphocyte traffick-
ing and function, rendering animals more susceptible to infec-
tious diseases (Lalor and Hepburn 2017); the altered immune
cell populations due to heat stress may potentially enhance the
susceptibility to pathogenic infection, thereby explaining an
increase in the incidence of infectious diseases in animals
suffering from heat stress. It is conceivable that different im-
mune cell types are characterized by different sensitivities in
their responses to stress. However, at present it is not fully
understand how and which factors contribute to the observed
reduction in immune cell populations in the blood, or which
factors may influence immune cell survival in response to heat
stress.

In this regard, relevant studies have focused on the effects
of heat stress on the inhibition of immune cell growth and
proliferation. However, immune cell development and differ-
entiation can be affected by a diverse range of additional fac-
tors, including hormones and metabolites, and several studies
have reported that heat-stressed animals are typically charac-
terized by altered metabolic profiles (Ganesan et al. 2018;
Malmendal et al. 2006; Min et al. 2017). Given that diverse
metabolites can differentially regulate immune cell differenti-
ation and functions, changes in metabolic profiles may, in
turn, induce changes in the population of blood immune cells
under heat stress conditions. The data presented herein indi-
cate that heat stress alters the immune cell populations (B-
lymphocytes and γδ T cells) and function (MPO expression
by PMNs) and provide evidence that heat stress-induced im-
munosuppression can be attributed to abnormal blood im-
mune cell responses. However, we gained a comparatively
little insight regarding the function of these immune cells as-
sociated with the responses to pathogens or antigens. In this
regard, further investigations based on vaccine and/or antigen
challenge models that examine antibody titers under heat
stress conditions could represent a promising approach to gain
a better understanding of the changes in immune cell function.
In summary, prolonged heat stress impairs immune function
in steers, which is a basis for the development of immune
incompetence, elevated disease vulnerability, and the inci-
dence of immune-related diseases in steers. We accordingly

believe that it is necessary to develop additional management
strategies based on the altered immune responses attributable
to heat stress.
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