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The MHC class I and II molecules play a central role in immune responses such
as transplant rejection through their role in presentation of antigens to T lympho-
cytes (1, 2) . Although the immunological functions of "classical" MHC molecules
have been studied extensively (3), the biological functions of the class I molecules
encoded telomeric to H-2D are unknown (4). Several hypotheses have been advanced
to explain the expression of these nonclassical MHC-related molecules (3, 5) . Thus,
they mayhave functions distinct from antigen presentation, such as encoding receptors
for macromolecules on cell surfaces or in solution, or they may simply be variants
of the classical gene products, without qualitatively different function . Recently,
Simister and Mostov (6) demonstrated that the Fc receptor (FcRn) that transports
maternal IgG across the intestinal epithelium ofnewborn rats is anMHC class I-like
molecule.

It is now widely accepted that class I and II MHC molecules bind fragments of
protein antigens and present them to the antigen receptor of T lymphocytes (7-10) .
The use ofsynthetic peptides has facilitated the definition of minimum amino acid
core sequences required for recognition by helper or cytotoxic Tlymphocytes (11-13).
Suggested structures of peptides functioning as Tcell epitopes include an amphipathic
a-helix with one surface interacting with the MHC molecule and another surface
with the TCR (14, 15), or a linear pattern with a four or five amino acid motif core
(16, 17).
The maternally transmitted antigen (Mta)1 is a murine cell surface MHC class

I-like antigen defined exclusively by antigen-specific cell-mediated lympholysis (CML)
(18-20). The expression of Mta is controlled by at least three genes, two of which
are nuclear, i.e., (32-microglobulin (02M) and Hmt, a locus telomeric to the TIa re-
gion of the H-2 complex (21) . The third gene, which accounts for maternally in-
herited polymorphism, is mitochondrial (MY) (22-24) . Four alleles ofMtfhave been
identified (a, a, y, and S), the most common of which, My, is found in >9501o of
inbred and wild mice (25, 26).
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Mta-ASSOCIATED N-FORMYL PEPTIDE RECEPTOR

Genetic analyses ofmonoplasmic and heteroplasmic hybrid cells showed that Mlfl
and MY, were mitochondrial genes and could be expressed codominantly (24, 27) .
More recently, we showed that Mtfpeptides were mitochondrially encoded and had
unusually short half-lives (28) ; we suggested that Mtf encodes a signal peptide de-
rived during maturation of respiratory enzymes . Indeed, Wang et al . (29) reported
that a peptide from the NH2 terminus of a 35-kD subunit of the mitochondrial
NADH dehydrogenase (NDI) behaved in CML assays as an Mtf gene product . In
addition, they found that the different Mtfalleles are created by substitution in codon
6 of NHl, which in the Mtfalleles a, 0, -f, and 6 encodes isoleucine, alanine, valine,
and threonine, respectively.
Mta has the characteristics ofan MHC class I molecule that functions in presen-

tation ofa selfpeptide at the surface ofcells in some unique fashion . This phenomenon
of self peptide presentation is seen on mouse cells of diverse tissue origin (24) . The
general phenomenon of binding and presentation of self peptides by MHC mole-
cules was proposed more than 10 years ago (30) and was demonstrated more re-
cently for class II molecules in vitro (31-33) and in vivo (34, 35) . Lorenz and Allen
(34) suggested that constitutive processing and presentation ofselfantigens has poten-
tially far-reaching significance in self-tolerance, autoimmunity, and alloreactivity.
Mta is an immunological mystery. On one hand, Hmt, which belongs to a group

of"nonclassical" MHC class I molecules that are not known to be antigen-presenting
molecules, restricts T cell recognition of Mtf peptides . On the other, Mtf peptides
are not restricted by the H-2K/D/L antigen-presenting molecules, which are the
restriction elements of all other defined conventional antigens (20) . To account for
this unusual pattern of Mta T cell recognition, we postulated that the Hint gene product
would have a special chemical affinity for Mtfpeptides (20) . In addition, Mtf pep-
tides should have distinct biochemical properties that prevent or limit their ability
to be restricted by H-2K/D/L antigen-presenting molecules . Because prokaryotic
and mitochondrial ribosomes, but not cytoplasmic ribosomes, initiate proteins with
N-formyl-methionine (36), we hypothesized that the N-formyl group on mitochon-
drial peptides might provide the requisite chemical tag (20) . We sought to test our
model by asking whether the N-formyl group was required for synthetic Mtfpeptide
activity, and whether this moiety was recognized by specific antigen-presenting mole-
cules on target cells .

Materials and Methods
Mice.

	

Fl mice of (NZB Q x BALB/c a' ; Mtab), and (B10.D2 9 x NZB a' ; Mtaa) were
bred in our colony from breeding stocks from The Jackson Laboratory (Bar Harbor, ME).
B10.CAS2 (Mta"°ll) mice were bred in our colony from stocks provided by Dr. J . Klein,
Tiibingen, FRG.
MLC and CTL Clones.

	

As described previously (24, 37), Fl mice were primed by in-
traperitoneal injection of 4 x 10 7 splenocytes from Mta-disparate reciprocal F1 male mice .
After 3 wk, the spleen cells of the responding mice were cultured in supplemented Mishell-
Dutton medium (sMDM) for 3-6 d with y-irradiated (1,500 rad) splenocytes from the im-
munizing strain at a 6:1 responder-to-stimulator cell ratio . At the end of the initial culture,
viable cells were plated at limiting dilution (1, 10, or 1,000 cells/well) in 96-well flat-bottomed
culture plates with y-irradiated stimulator cells and an ammonium sulfate-purified superna-
tant from PMA-induced EL4 cells, containing 10 U/ml IL-2 (37) . Cultures were fed weekly
for 2-4 wk with fresh sMDM/IL-2 and stimulator cells (4-6 x 10 6 cells/ml) . Cultures from
the microtiter wells were screened for their ability to lyse 5'Cr-labeled Con A blasts (CABs)
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from the stimulating strain . Positive wells were expanded to 24-well plates (Linbro, McLean,
VA) and screened for specificity on "Cr-labeled CABs from Mta-disparate, reciprocal Fl
strains. Cultures demonstratingMW specificity were maintained by weekly seeding 3 x 10 4
viable CTLs into 1.5 ml of fresh sMDM/IL-2 with irradiated stimulator cells (3-4 x 10 6
cells/ml) in a 24-well plate. Most of the lines were derived from limiting dilution cultures
that were seeded at an average of 1 or 10 cells/ml, in which fewer than 20% of the wells were
positive for cytotoxic activity.

Target Cells.

	

Target cells were from the tumor cell lines EL4 (C57BL/6 thymoma, H-26,
Mtaa) and WEHI-105.7 (NZB thymoma, H-2d, Mtab) or were lymphoblasts harvested 3-
5 d after culture with Con A. CABs were generated as described by Smith et al . (38) by cul-
turing 5 x 10' splenocytes/ml for 3-5 d in modified Mishell-Dutton medium (mMDM) with
2.5 wg/ml Con A (Pharmacia Fine Chemicals, Uppsala, Sweden). The tumor cell lines EL4
and WEHI-105 .7 were maintained in DME with 10% FCS. Target cells at 10 6 cells/ml in
DME + 10 01o FCS were incubated for 12-15 h (except where indicated) with the appropriate
peptide at a final peptide concentration of 400 nM and 0.5% DMSO (required because of
the hydrophobicity of the peptides) . The cells were centrifuged, labeled with 150 ttCi of "Cr
for 60-75 min at 37 0C, and washed in cold HBSS containing 5% FCS. The labeled cells
were enriched for viable cells by density gradient centrifugation over Isolymph (Gallard-
Schelesinger Corp., Carle Place, NY). The cells were then washed twice and resuspended
at 5 x 10 5/ml in assay medium (supplemented MEM, 1001o FCS, and 50 Wg/ml gentamicin) .

Peptide Synthesis.

	

Peptides in Table I were synthesized by solid-phase techniques on a pep-
tide synthesizer (No. 430A ; Applied Biosystems, Inc., Foster City, CA) using the small scale
rapid cycle chemistry programs from Applied Biosystems . t-Butyloxycarbonyl-(t-Boc) NCI-
protected amino acids were coupled to the t-Boc amino acid-OCH2-phenylacetoamidomethyl-
polystyrene resin . All amino acids and loaded resins were purchased from Applied Biosystems
except the formylated and acetylated methionine, formylated valine, and formylated phenylala-
nine which were from Bachem Bioscience Inc. (Philadelphia, PA). Peptides were cleaved from
the resin and deprotected using trifluoroacetic acid-trifluoromethanesulfonic acid procedure
(39) . After cleavage the peptides were precipitated and washed with anhydrous ether, dried,
and solubilized in DMSO. Peptides were assayed for purity by reverse-phase HPLC and amino
acid analysis (Pico Tag System; Waters Associates, Milford, MA); several peptides were also
analyzed by N112-terminal amino acid sequence analysis (477A Protein Sequencing System,
Applied Biosystems, Foster City, CA).

Competition Experiments .

	

WEHI-105 .7 cells at 106 cells/ml were incubated at 37°C with
increasing concentrations offMet6-a, AcMet6-a, Met6-a (peptides, IV, VI, and VIII ; Table
I) or the chemotactic peptides N-formyl-Nle-Leu-Phe-NleTyr-Lys, N-formyl-Met-Leu-Phe-
Phe, and N-formyl-Met-Leu-Phe ; or the chemotactic antagonist t-Boc-Met-Leu-Phe (Sigma
Chemical Co., St . Louis, MO). After 4-10 h, a 20 nM concentration of fMet12-a (peptide
II, Table I) was added to each mixture and the cells were reincubated for another 4-10 h.
Target cells were then labeled with "Cr, washed, and processed as above.
CML Assay.

	

As described previously (24), long-term monoclonal CTLs were collected,
washed once, and resuspended in assay medium . Viable CTLs (effector cells) were counted
by fluorescein diacetate uptake . 100 pl of CTL suspension were added to 96-well round-
bottomed culture plates (Costar, Cambridge, MA). Target cells at 0.5-1 .0 x 104 cells per well
were plated at multiple effector-to-target cell ratios . After a4-h incubation at 37'C, the su-
pernatants were harvested using a supernatant collection system (Skatron, Sterling, VA). Spon-
taneous release (SR) was measured by incubating target cells in assay medium alone; max-
imal release (MR) was measured from target cells lysed by 1% SDS. Data are expressed as
follows: percent specific lysis = [(experimental release - SR)/(MR - SR)] t SE . The
standard error was estimated by propagation of errors. If no error bar is shown, the error
was <5%.

Results
Exogenous NDI-ce Peptide Mimics Endogenous Mff" Peptide.

	

To assess the possible
role of the N-formyl group in Mta, we established conditions under which exoge-
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nous synthetic NDI peptides were presented appropriately to Hmt-restricted, Mtf-
specific CTL. EL4 cells (Mtaa) or WEHI-105.7 cells (Mtab) were incubated with
a 400 nM concentration of fet6-cx or fMet26-a (peptides I and XI, Table I) and
tested for lysis by Mtab-specific or Mtaa-specific CTLs, respectively. As expected,
polyclonal Mtab-specific CTLs lysed Mtaa cells only when incubated with the
fMet6-Q peptide, not when incubated with the fMetM-cx peptide (Fig. 1 A) . Recipro-
cally, Mtaa-specific polyclonal CTL as well as 32/32 CTL clones (8 representative
clones are shown) lysed Mtab target cells incubated with fMetM-a, but not with
fet26-S (Fig . 1, B and C) . In the specificity assay screened at a single effector-to-
target cell ratio, a few Mtaa-specific clones did exhibit up to 20% lysis on targets
pulsed with inappropriate peptide (Fig. 1 C) ; this apparently inappropriate activity
was not observed when Mtaa-specific CTL clones were expanded and assayed at
multiple ratios. Additionally, neither cell line lost its native antigenic phenotype when
incubated with the disparate peptide (data not shown) .
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NDI-a and 0 peptides mimic endogenous Mtfgene products a and 16 . The indicated
NDI peptides (fMet26-a or fMet26-0) were incubated with EL4 (Mtaa) or WEHI 105.7 (Mtab)
target cells at a concentration of 400 nM in 0.5% DMSO final concentration . Incubation was
for 12 h at 37 °C before 51 Cr labeling. The cells were washed four times before inclusion in a
4-h 51 Cr-release assay. Control cells were similarly incubated in 0.5% DMSO alone. (A) Specific
recognition of NDI-S (fMet26-t$) peptide by polyclonal Mtab-specific CTLs . Polyclonal CTL were
generated by immunizing Mtaa (B10.D2 9 x NZB a") F1 mice with NZB (Mtab) spleen cells.
(B) Specific recognition of N131-at (Met26-a) peptide by polyclonal Mtaa-specific CTLs . Poly-
clonal CTLwere generated by immunizing Mtab (NZB 9 x BALB/c o) F1 mice with BALB/c
(Mtaa) spleen cells . (C) Specificity of selected Mtae-specific clones for recognition of NDI-a pep-
tide. CTL clones were assayed at a 10 :1 ratio of effector-to-target cells .
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NDI-a Peptide Recognition Is Hmt Restricted.

	

CTL-mediated immune recognition
of native (21) and tunicamycin-induced (37) forms of Mta are all Hmt restricted for
recognition by T lymphocytes. If exogenous NDI peptides sensitize target cells to
antigen-specific cell-mediated cytolysis, peptide recognition should also be Hmt re-
stricted. We tested this hypothesis using CABs from B10.CAS2 mice, which carry
the functionally null Hmtb allele . B10.CAS2 splenocytes are resistant to lysis by
Mtaa-specific CTLs even though these mice express endogenous Mtr (20, 21).
Preincubation of Hmt° but not Hmtd CABs with a 400 nM concentration of either
fMet26-a or fMet26-(3 (peptides I and XI; Table 1) induced susceptibility to lysis
by Mtaa-specific CTLs . We conclude that NDl-a peptide recognition is Hmt re-
stricted (Fig . 2) .
Hmt Can Restrict a Peptide as Short as Six Amino Acids .

	

To define the minimal struc-
ture of the My" product recognized by Mtaa-specific CTLs, a set of four peptides
of decreasing length were synthesized (peptides fMet26-a, fet12-a, fet8-a, and
fMet6-ac; Table 1) . Using these peptides, which differed only in length at their COOH-
termini, we observed that polyclonal CTLs lysed target cells pulsed wtih fMet26-a
and fet12-a peptides much more efficiently than they did targets incubated with
fMet8-a (Fig . 3 A) . No lysis was observed when the fMet6-a was used (Fig . 3 A .
In contrast, all 32 Mtaa-specific CTL clones recognized a-fMet8 as well, or nearly
as well, as they did fMet26-a and fMet12-a . Surprisingly, 8 of 32 clones lysed Mtab
targets pulsed with the shortest peptide tested, fMet6-a (e.g ., clones 1B3, 1GI1, and
3135 ; Fig. 3 B) . This exquisite discrimination was critical to competition experiments
described below.

The Nformyl Group in NDI-a Peptides Is RequiredforMY Mimicry.

	

We proposed
that Mtfpeptides should have distinct biochemical properties to account for its selec-
tive restriction by Hmt. To test the hypothetical requirement for the N-formyl group
in NDI peptides, two analogues of fet12-a were synthesized (peptidesV and VII;
Table I), containing either nonsubstituted methionine (Met12-a) or N-acetylated
methionine (AcMet12-a) at the NH2 terminus . Neither the nonsubstituted peptide
nor the acetylated analogue induced recognition and lysis of Mtab target cells by
Mtaa-specific CTLs . The requirement for the formyl group at the NH2 terminus
of NDI-a was observed both with Mtaa-specific polyclonal CTL and with all 32
Mtaa-specific CTL clones (Fig . 4) .
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NDI-cr mimicry of My'
gene product is Hmt restricted. Con A
blasts from Fl hybrids ofBALB/c 9 x
NZB a (Mtaa), NZB 9 x BALB/c 0.

(Mtab), or B10.CAS2 (Hmt) were in-
cubated for 12-14 h with a400nM con-
centration of the indicated peptide at
37 0C. Cells were then labeled with
"Cr and washed four times before
assay. Mtaa-specific polyclonal CTLs
were generated by immunizing (NZB
9 x BALB/c O') Fl mice with spleno-
cytes from BALB/c mice .
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The Effect ofPosition 1 Methionine Variation on NDI-a Recognition.

	

Because the N-
formyl group ofthe initiator methionine wasessential for Mtaa recognition, we rea-
soned that substituting methionine with other hydrophobic amino acids might in-
terfere with Mta-specific immune recognition . To test this idea, two analogues were
synthesized with formyl-phenylalanine (Whe12-a) or formyl-valine (Na112-a) at the
same position (peptides IX and X; Table I) . Using polyclonal Mtaa-specific CTLs,
the specific lysis of targets incubated with equimolar concentrations of these ana-
logues (Whe12-a and Na112-a) was reduced by 50-75%, as shown in Fig. 5 A . In
contrast, most of the Mtaa-specific clones recognized the formylated analogs as
efficiently or nearly as efficiently as they recognized fMet12-a (e.g ., clones IE3 and
1D3; Figure 5 B); however, some were less efficient (e.g ., clones 3D5 and 1C5) . Thus,
although the NH2-terminal formyl group was absolutely required for the immune
recognition of Mta, the identity of the NH2-terminal amino acid was not critical
for 28/32 CTL clones . These findings suggested that the N-formyl amino acid in-
teracts specifically with the antigen-presenting molecule, and that the M!fpeptide
interaction site on Hmt product may be an N-formyl-amino acid binder.
An N-Formyl-Peptide Receptor Is Requiredfor the Expression ofMta.

	

Therequirement
for an N-formyl group at the NH2 terminus of the NDI peptide might reflect epi-
tope discrimination by Mta-specific T cell receptors, binding by N-formyl peptide
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FIGURE 5 .

	

Methionine at position 1
ofNDl-a is not critical to Mta expres-
sion . WEHI 105 .7 cells were pretreated
with a 400 nM concentration ofthe in-
dicated peptides and were "Cr-la-
beledand washed four times before ad-
dition to a 4-h S'Cr-release assay. (A)
Mtaa-specific polyclonal CTL recog-
nition of "Cr-labeled WEHI-105 .7
cells preincubated withequimolarcon-
centrations of Met12-a, fPhe12-a, or
fVal12-a, or with DMSO alone. (B)
CML assays of Mtaa-specific clones at
a 10 : 1 ratio of effector-to-target cells.

receptors on the target cell, or both . If the second model is correct, i.e ., that target
cells bear an N-formyl receptor required for Mtfproduct presentation, then nonan-
tigenic N-formyl peptides ofthe correct molecular shape should compete for binding
and interfere with the presentation of exogenous fetV-a.

To determine the appropriate conditions for competition experiments, we estab-
lished the time-course and dose-response required to transform WEHI-105.7 cells
(Mtab) into Mtaa-like targets. For the dose-response curve, WEHI-105.7 cells were
incubated for 12-14 h with concentrations of fet12-a ranging from 10 to 800 nM
(peptide II, Table I), and tested for lysis by Mtaa-specific CTL clones 1D3 and 1GIL
As shown in Fig. 6A, aconcentration of fMet12-a peptide as low as 10 nM caused
maximum target cell lysis . The time course was established by incubating WEHI-
105.7 cells with a 400 nM concentration of fMet12-a for up to 18 h (51 Cr labeling
included). 2 h or less were sufficient to cause maximum target lysis by Mtaa-specific
clones (Fig. 6 B).
We chose as a potential competitor the fet6-a peptide, which is antigenic for

some Mtaa-specific CTL clones but not for others . WEHI-105.7 cells (Mtab) were
incubated with increasing concentrations of fet6-a, AcMet6-a, or Met6-a (pep-
tides IV, VI, andVIII ; Table 1) for4h before the addition of a 20 nM concentration
of fet12-a. Target cells were then incubated with Mtaa-specific clones that recog-
nized fMet6-a (e.g ., 1G11 ; Fig. 7 B), or did not recognize it (e.g ., 1D3; Fig. 7 A) .
Inhibition of target cell lysis was observed with a concentration of fMet6-a peptide
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Rapid and low-dose ND1
peptide induction ofMta. (A) WEHI
105.7 cells (Mtab) were incubated at
37°C with a 400 nM concentration of
fMet12-a for the indicated times (in-
cluding SiCr labeling). Cells were
washed four times before incubation in
a 4-h SiCr release assay at an effector-
to-target ratio of 4:1 for CTL clones
tell and 1E3. (B) WEHI 105.7 cells
were incubated with increasing conéen-
trations of fMet12-a at 37°C for 12 h
before SiCr labeling . Cells were then
washed fourtimes and added to CML
assays at an effector-to-target cell ratio
of 4:1 for CTLclones tell and 1D3.

FIGURE 7.

	

Anovel N-formyl receptor
is required for Mtaexpression . WEHI-
105.7 cells were incubated with in-
creasing concentrations of the indicated
peptides ofND1-a for 3-4 h before ad-
dition of a 20 nM concentration of
fMet12-a . The following morningcells
were labeled with "Cr, washed four
times, and incubated with Mtaa-
specific clones 1D3 (A) or 1G12 (B) be-
fore incubation in a 4-h SiCr release
assay at an effector-to-target cell ratio
of 4:1 .
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as low as 1 AM (50-fold excess) and was maximal with 2 AM (100-fold excess) when
clone 1133 was used as an effector. However, no effect was seen with a 1,000-fold
excess of fet6-a peptide when clone 1G11 was used . Significantly, no inhibition
of target cell lysis was observed with either clone 1133 or 1G11 when AcMet6-a or
Met6-a (peptides VI and VIII ; Table 1) were used as competitors. Our results dem-
onstrate that a receptor critical to Mtf peptide presentation can be competitively
occupied by fet6-a peptide, but not AcMet6-a or Met6-a peptides .

TheNformyl-NDI Peptide Receptor Difersfrom the Chemotactic Peptide Receptor.

	

Todis-
tinguish the Mta-associated N-formyl peptide receptor from the chemotactic pep-
tide receptor, which also binds some N-formyl peptides, we attempted cross-com-
petition experiments . If both receptors are the same, known chemotactic peptides
should competitively inhibit the activity of Mtf peptides . We chose three potent
chemotactic peptides : N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys, N-formyl-Met-Leu-Phe-
Phe, andN-formyl-Met-Leu-Phe ; and a chemotactic antagonist t-Boc-Met-Leu-Phe
(40-42). As shown in Table II, all four peptides failed to inhibit target lysis (IC5o
of »20 AM). In contrast, the IC5o of fet6-a was 41-3 AM. In addition, in-
cubating WEHI-105.7 cells with up to 20 AM of any of these chemotactic peptides
did not render these cells susceptible to lysis by any Mta-specific CTLs (data not
shown) . These results demonstrate that the Mta-associated N-formyl receptor is dis-
tinct from the chemotactic formyl-peptide receptor.

Discussion
Our results demonstrate a requirement for the N-formyl group of Mtfpeptides

for target cell recognition by Mta-specific CTLs . In addition, our competition ex-
periments establish that a novel N-formyl peptide receptor expressed on APCs is
required for Mta expression . Although we do not know the identity or the charac-
teristics of this receptor, we can speculate on candidates. With the exclusion of the
chemotactic receptor (43, 44), there are at least two possible candidates for the Mta-
associated N-formyl receptor at the surface of the APC: the Hmt gene product, or

TABLE 11

Ma-associated N-Formyt Peptide Receptor Is Distinct from
the Chemotactic Receptor

WEHI 105 .7 cells were incubated with increasing concentrations (0-20 ,UM) of
the chemotactic peptides Nle-Leu-Phe-Nle-Tyr-Lys (CTP6), fet-Leu-Phe-Phe
(fMLPP), fet-Leu-Phe (fMLP) ; the chemotactic peptide antagonist t-Boc-Met-
Leu-Phe (t-Boc-MLP); or fet6-a . Competition experiments were as described
in Fig . 7 . The effector-to-target cell ratio was 4 :1 for Exp . 1 and 2 .5 :1 for Exp .
2 . The 50% inhibitory concentration (IC5o) was estimated from experiments in
which fMet6-a peptide inhibited >50% of the maximum specific lysis .

Mtaa-Specific
clone Exp . fet6-a

50%
CTP6

inhibitory concentration
fMLPP fMLP t-Boc-MLP

14M

1133 1 <2 >20 >20 >20 >20
2 <1 >20 >20 >20 >20

1E3 1 <2 >20 >20 >20 >20
2 <4 >20 >20 >20 >20
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an independent N-formyl receptor. We favor the former hypothesis as more par-
simonious; it accounts at once for the selective restriction of Mtfpeptides by Hmt.
To account for the large hole in the H-2K/D/L repertoire that fails to restrict Mtf
peptides, we propose that these antigen-presenting molecules are inefficient at pre-
senting very hydrophobic molecules such as signal peptides . In contrast, the Hmt
gene product should contain, in addition to the formyl-peptide binding site, a generally
hydrophobic pocket . An independent N-formyl peptide receptor would have to be
an intracellular processor that loads Mtfpeptides onto Hmtgene product. We would
expect that such a protein processor would equally load onto H-2K/D/L antigen-
presenting molecules. Although the Mta-associated N-formyl receptor is on theAPC
and may be the class I molecule itself, we can not exclude the possibility that the
N-formyl group is also recognized by the TCR on the effector cells.
The function of N-formyl group at the NH2 terminus of Mtfpeptide could be

to neutralize the positive charge at the NH2 terminus of the peptide, but this argu-
ment is not supported by N-acetylation which did not restore the activity. The re-
quirement for an N-formyl group has been demonstrated for all functional NDl-ac
or -(3 peptides, irrespective of the peptide length or the first amino acid in these pep-
tides (data not shown) . It is clear, however, that other structures in NDl peptides
are also required, in that the N-formylated chemotactic peptides failed to compete
for binding similar to fet6-a .
While the Mtaa-specific polyclonal CTLs did not recognize the six amino acid

peptide from My, one-fourth of the long-term CTL clones (8/32) investigated rec-
ognized this peptide. In fact, this difference was critical to the competition experi-
ments that established the N-formyl-NDI peptide receptor. The variation among
CTL clones for recognition and lysis of target cells preincubated with ND1-ar pep-
tides of decreasing lengths probably reflects expression ofclonotypic T cell receptors.
For example, for some cytochrome c-specific T cell clones changes limited to the
junctional regions ofthe TCR sequences altered the specificity for the peptide without
altering the MHC specificity (45, 46) . Our results on the minimal length of My'
are compatible with those reported in the literature . Although generally ranging
between 9 and 25 amino acids (2, 16), the shortest Tcell epitope reported is a pen-
tapeptide from the immediate-early phase regulatory protein of murine cytomega-
lovirus (13) .

Although no direct physical evidence has been presented on binding of NDl pep-
tides to the putative class I-like, Hmt product, the selective recognition of Hmta cells
by the appropriate CTLs implies that Hmt product is the molecule involved in the
interaction with the T cell antigen receptor. It is not understood how the Hmt
product-exogenousMV peptide complex is constructed at the cell surface. Possible
mechanisms include exchange of the exogenous Mtfpeptides with the endogenous
peptides at the cell surface; association of the exogenous peptide with unoccupied
Hmtmolecules at the cell surface; or internalization ofMtfpeptides and intracellular
construction of the antigen.
NADH-dehydrogenase is a conserved mitochondrial enzyme composed of about

25 subunits, seven of which (ND1, 2, 3, 4, 4L, 5, and 6) are encoded by the mito-
chondrial genome (47, 48). NDl is aremarkably hydrophobic, mitochondrial trans-
membrane protein of 35 kD (48) . It has been proposed that a hydrophobic leader
sequence of 11 amino acids maybe cleaved by a signal peptidase from Xenopus laevis
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ND1 after the protein is anchored in the mitochondrial membrane (49) . Whether
this proposed leader sequence is the native Mtfepitope is still unknown. Although
some ofthe mechanisms ofprotein import into mitochondria have been well studied
(50), the pathways of vectorial transport of mitochondrially encoded proteins are
not fully understood (51) . However, for the native Mtfpeptide to be presented at
the cell surface it must be transported via a protein traffic pathway (52, 53). We
do not know how native Mtfpeptides end up at the cell surface, but it should be
possible to study this pathway using drugs that block transport of newly synthesized
proteins (54, 55).
The possibility that the Hmt gene product is a scavenger of hydrophobic N-

formylmethionyl peptides derived from endogenous mitochondrial translation products
has been proposed earlier (20). Further studies will be required to determinewhether
the Hmt product binds Mtfpeptides on the basis of hydrophobicity in addition to
the N-formyl group or both . Whether theMtfproduct is the only hydrophobic mito-
chondrial product transported by the Hmt product is not known. Comparing the
hydrophobicity profile (56) ofthe first 20 amino acids from ND1 with the mitochon-
drial ORFs (47) suggests similar hydrophobic sequences at the NH2 terminus of
ND2, ND4, and ND5 .

Finally, it is possible that a biological role of the N-formyl peptide receptor may
be to select those intracellular peptides derived from organisms and organelles of
prokaryotic origin, and present them at the cell surface to the immune system . If
so, then the Hmt/N-formyl receptor system might represent an ancestral specializa-
tion involved in immune defenses against intracellular prokaryotic pathogens.

Summary
Maternally transmitted factor (MY) is a mitochondria) gene that controls the an-

tigenic polymorphism of the MHC class I maternally transmitted antigen (Mta).
Synthetic peptides from the NH2 terminus of the mitochondrially encoded NADH
dehydrogenase subunit 1 (NDI)mimicMtfpeptide activity in an allele-specific manner.
We show that the minimal NDl-ct peptide length recognized by Mtaa-specific poly-
clonal CTLs was between 8 and 12 amino acids, while some Mtaa-specific CTL
clones recognized a six amino acid peptide. The N-formyl group at the NH2 ter-
minus of NDl was essential for Mta activity. Competition experiments using N-
substituted ND1-a peptides showed that an N-formyl peptide receptor on the target
cell, which differs from the chemotactic peptide receptor, was required for Mtaex-
pression . The specificity of this receptor can account for the distinct immune re-
striction of Mtain whichMtfpeptides are uniquely restricted by Hint . It is possible
that the Hmtgene product is the N-formyl peptide receptor itself and that it represents
a class I antigen presentation molecule specialized for binding, transport, and im-
mune presentation of N-formyl-peptide antigens of mitochondria) and prokaryotic
origin .
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