
Paul ﻿Emerg Themes Epidemiol           (2021) 18:11  
https://doi.org/10.1186/s12982-021-00101-8

METHODOLOGY

Cannons and sparrows II: the enhanced 
Bernoulli exact method for determining 
statistical significance and effect size 
in the meta‑analysis of k 2 × 2 tables
Lawrence M. Paul*   

Abstract 

Background:  The use of meta-analysis to aggregate the results of multiple studies has increased dramatically over 
the last 40 years. For homogeneous meta-analysis, the Mantel–Haenszel technique has typically been utilized. In such 
meta-analyses, the effect size across the contributing studies of the meta-analysis differs only by statistical error. If 
homogeneity cannot be assumed or established, the most popular technique developed to date is the inverse-vari-
ance DerSimonian and Laird (DL) technique (DerSimonian and Laird, in Control Clin Trials 7(3):177–88, 1986). However, 
both of these techniques are based on large sample, asymptotic assumptions. At best, they are approximations espe-
cially when the number of cases observed in any cell of the corresponding contingency tables is small.

Results:  This research develops an exact, non-parametric test for evaluating statistical significance and a related 
method for estimating effect size in the meta-analysis of k 2 × 2 tables for any level of heterogeneity as an alterna-
tive to the asymptotic techniques. Monte Carlo simulations show that even for large values of heterogeneity, the 
Enhanced Bernoulli Technique (EBT) is far superior at maintaining the pre-specified level of Type I Error than the DL 
technique. A fully tested implementation in the R statistical language is freely available from the author. In addition, a 
second related exact test for estimating the Effect Size was developed and is also freely available.

Conclusions:  This research has developed two exact tests for the meta-analysis of dichotomous, categorical data. 
The EBT technique was strongly superior to the DL technique in maintaining a pre-specified level of Type I Error even 
at extremely high levels of heterogeneity. As shown, the DL technique demonstrated many large violations of this 
level. Given the various biases towards finding statistical significance prevalent in epidemiology today, a strong focus 
on maintaining a pre-specified level of Type I Error would seem critical. In addition, a related exact method for esti-
mating the Effect Size was developed.

Keywords:  Meta-analysis, Categorical analysis, Mantel–Haenszel, DerSimonian, Exact solution, Inverse variance, 
Convolution, Heterogeneity, Rare events
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“Little experience is sufficient to show that the traditional 
machinery of statistical processes is wholly unsuited 
to the needs of practical research. Not only does it take 
a cannon to shoot a sparrow, but it misses the sparrow. 
The elaborate mechanism built on the theory of infinitely 
large samples is not accurate enough for simple labora-
tory data.” (R. A. Fisher, 1925)
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Background
The use of meta-analysis in epidemiological research 
has been increasing at a very rapid rate. A review of the 
National Library of Medicine’s online database (“Pub 
Med”) shows that in 1977 there was only a single research 
article with the term “meta-analysis” in its title. This 
number had increased to 138 in 1991, 966 in 2005 and to 
17,205 in 2019 (see Fig. 1).

Part of this growth may be due to the widespread avail-
ability of powerful personal computer software making 
meta-analysis techniques more feasible to implement. 
More importantly, the need to draw meaningful con-
clusions from an aggregation of small studies may help 
explain this exponential growth.

The use of meta-analytic techniques is controversial 
when the contributing studies are not randomized con-
trol trials (RCT). Many researchers feel that it is highly 
misleading to attempt to combine a series of disparate 
studies [1] while others maintain that, with proper safe-
guards, meta-analysis allows an extremely useful pooling 
of smaller studies [2, 3]. A discussion of the appropriate-
ness of meta-analysis is beyond the scope of this paper. 
Rather, the focus here will be on minimizing unneces-
sary error in testing the overall statistical significance of a 
meta-analysis and in estimating the Effect Size.

Overview of 2 × 2 × k categorical meta‑analysis
The “2 × 2 × k” categorical meta-analysis paradigm is 
probably the most frequently encountered situation in 
meta-analysis. It consists of a series of k contributing 
studies each described by a 2 × 2 contingency table. Every 
cell of each 2 × 2 table contains the number of occur-
rences of an event (e.g., disease case) for the particular 

combination of row and column variables. For the sake 
of illustration, we can associate the two columns of each 
table with Disease Manifestation vs. No Disease Manifes-
tation and the two rows with Exposure vs. No Exposure. 
Table 1 represents the results of one of these k studies.

In most meta-analyses, there are typically two dis-
tinct components: (1) A statistical test of the overall dif-
ference between the Exposure and No Exposure groups 

across the k contributing studies; and (2) A method to 
pool the observed differences between groups across 
the k studies in order to estimate the true difference 
(the Effect Size).

Surprisingly, in recent years, many epidemiolo-
gists employing meta-analytic techniques have greatly 
deemphasized the first component. Borenstein et  al. [2] 
conclude:

“…However, meta-analysis also allows us to move 
beyond the question of statistical significance, and 
address questions that are more interesting and also 
more relevant.” (pp. 11–12).

Similarly, Higgins et al. [3] rather dismissively state:

“…If review authors decide to present a p value with 
the results of a meta-analysis, they should report a 
precise p value, together with the 95% confidence 
interval” (pp. 371–372).

A method is developed that maintains the Type I error 
(“false alarm rate”) at the desired level, but which has 
good power to detect true differences across a large range 
of event probability, number of contributing studies, sam-
ple size and level of heterogeneity. An argument can be 
made that maintaining the Type I error at a pre-specified 

Fig. 1  Number of articles containing “meta-analysis” in the title by year of publication
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level is more important than the power (1—Type II error 
rate) to detect true differences between conditions. The 
framers of modern statistical testing called such errors 
“Errors of the First Kind” and placed a special emphasis 
on them. Neyman and Pearson in 1933 stated:

“A new basis has been introduced for choosing 
among criteria available for testing any given sta-
tistical hypothesis, H0, with regard to an alternative 
Ht. If ϴ1 and ϴ2 are two such possible criteria and if 
in using them there is the same chance, ε, of reject-
ing H0 when it is in fact true, we should choose that 
one of the two which assures the minimum chance of 
accepting H0 when the true hypothesis is Ht.” [4] (p. 
336).

Thus, while Neyman and Pearson supported the effort 
to choose criteria that yield the greatest power to detect 
true differences, this effort is secondary to maintain-
ing a pre-specified level of Type I error. A second exact 
method is developed to estimate the effect size of any sta-
tistically significant finding.

“Rare” events and meta‑analysis
The probability of occurrence of a disease is often cat-
egorized as “rare” although no specific definition exists. 
As an example, Higgins et al. state that “There is no sin-
gle risk at which events are classified as ‘rare’”, but gives 
as examples 1 in a 100 or 1 in a 1000 (see [5], p. 520). 
An obvious related issue is observing zero cases in one 
or more cells of a contingency table. Table  2 shows the 
expected cell sizes from various realistic combinations of 
disease probability and contributing study sample size.

Table  2 supports the notion that “rare” events are a 
focus of many epidemiological studies.

For homogeneous meta-analysis (i.e., where the effect 
across studies may be assumed to be the same within 
statistical variation), the two techniques typically used 
for categorical data are the Mantel–Haenszel and Peto 
techniques. Both of these techniques rely on the Man-
tel–Haenszel Chi Square to test for the overall statisti-
cal significance. For heterogeneous meta-analyses, the 
asymptotic DerSimonian–Laird (DL) inverse variance 
technique is typically used [6].

The problem in applying large sample asymptotic tech-
niques to meta-analyses involving small numbers of cases 
will be illustrated in the older and much more developed 
domain of homogeneous meta-analyses. Mantel devel-
oped what is probably the most widely used technique 
for homogeneous meta-analyses [7]. In applying his tech-
nique, he showed that a minimum of approximately five 
cases was required in each of the four cells of each of 
the 2 × 2 tables for each of the k studies comprising the 
meta-analysis [8]. This is the same heuristic requirement 
typically used without any particular justification for the 
simple chi-square test. Mantel and Fleiss reviewed the 
options when a reasonable number of cases was not pre-
sent in all cells:

“The investigators could have obtained data from 
very many more tables to make things more asymp-
totic for use of M–H [note: this is the Mantel–Haen-
szel technique], or they could readily have applied a 
more exact procedure for the data at hand” (p. 134).

R. A. Fisher made essentially the same plea in 1925 in 
the preface to the first edition of his well-known Statisti-
cal Methods for Research Workers [9]:

“Little experience is sufficient to show that the tra-
ditional machinery of statistical processes is wholly 
unsuited to the needs of practical research. Not 
only does it take a cannon to shoot a sparrow, but it 
misses the sparrow. The elaborate mechanism built 
on the theory of infinitely large samples is not accu-
rate enough for simple laboratory data. Only by sys-
tematically tackling small sample problems on their 
merits does it seem possible to apply accurate tests 
to practical data.”

Table 1  Typical contributing study (one of k) in a dichotomous 
meta-analysis

Exposure Disease status Total

Disease 
manifestation

No disease 
manifestation

Exposure 4 96 100

No exposure 2 98 100

Total 6 194 200

Table 2  Expected number of disease cases as a function of disease probability and individual study sample size (each arm)

Disease/condition Approximate disease prob Individual study sample size (each arm)

100 500 1000

Myocardial infarction incidence rate (Age ≥ 60 years) 0.011 [25] 1.1 5.5 11

Parkinson’s disease incidence rate (60–69 age group) 0.00058 [26] 0.06 0.29 0.58

Alzheimer’s disease incidence rate (60–74 age group) 0.002 [27] 0.2 1 2

Lung cancer incidence rate (White Males) 0.00051 [28] 0.05 0.26 0.51
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Both criticisms suggest the use of exact methods to 
handle the sparseness of the underlying contingency 
tables at least for the disease examples contained in 
Table  2. All but two of the combinations of individual 
study sample size and disease probability shown in 
Table  2 would yield fewer than five cases per cell lead-
ing to violations of the minimum cell size in the Mantel–
Haenszel (MH) Chi Square test, and thus the test would 
be potentially flawed. In addition, these two cases were 
for sample size equal to 500 and 1000 which probably 
don’t represent many realistic studies. While this limita-
tion of the MH Chi Square test was known to Mantel and 
others (e.g., [8]), it seems to generally have been forgotten 
for meta-analysis of 2 × 2 × k categorical data. The con-
tinued use of an asymptotic test in situations not suited 
for its use is unacceptable given the computer power that 
is now available to all researchers.

Heterogeneity vs. homogeneity in meta‑analyses
The term “heterogeneity” refers to the fact that stud-
ies done at different times and by different researchers 
might be expected to yield different results. The expec-
tation is that a variable of interest may be dependent, 
at least in part, on one or more other variables. The 
meta-analysis researcher, J. P. T. Higgins stated “As Het-
erogeneity is to be expected in a meta-analysis: it would 
be surprising if multiple studies, performed by differ-
ent teams in different places with different methods, all 
ended up estimating the same underlying parameter.” 
([10], p. 158). While researchers may agree that het-
erogeneity is to be expected, there is very little agree-
ment on how to quantify this variability. The obvious 
candidate is τ2, the estimated variability between stud-
ies. However, τ2 is not invariant across study designs 
and its interpretation may not be intuitive. Alternatives 
include I2 , the ratio of the inter-study variability to the 
total variability and the Q statistic, which is mathemati-
cally related to I2 (see, e.g., [11]).

In this paper, heterogeneity will be mathematically 
manipulated through τ2 using the logit distribution as 
developed by Bhaumik et al. [12]. Namely:

(1)xCi ∼ B
(

pCi,nCi
)

, xEi ∼ B
(

pEi,nEi
)

,

(2)
log it(pCi) = µ+ ε1i, log it(pEi) = µ+ θ + ε1i + ε2i

(3)ε1i ∼ N
(

0, γ 2
)

(4)ε2i ∼ N
(

0, τ 2
)

where B is the Binomial Distribution; N is the Normal 
Distribution; xCi, xEi are the observed number of cases in 
the control and exposure groups respectively of the ith 
study; pCi, pEi are the event probabilities in the control 
and exposure groups respectively of the ith study; nCi, nEi 
are the sample sizes in the two groups of the ith study; µ 
corresponds to the background event (disease) probabil-
ity in the exposure and control groups; θ is the logarithm 
of the overall ratio of the event probability in the expo-
sure group to the event probability in the control group; 
γ 2 is the variance corresponding to the uncertainty of 
the observed disease probability in both the exposure 
and control groups of the k contributing studies; τ 2 is a 
variance corresponding to the heterogeneity which exists 
only in the exposure group across the k contributing 
studies; ε1i is a Normal distribution deviation in back-
ground event (disease) probability for both the exposure 
and control groups of the ith contributing study and ε2i 
is a Normal distribution deviation in background disease 
probability due to heterogeneity only in the exposure 
group for the ith contributing study.

The basic principles of the Dersimonian–Laird (DL) method
As stated above, this research develops an exact 
method for conducting meta-analyses in k 2 × 2 tables 
with heterogeneity and contrasts it with the most pop-
ular approach which was developed by DerSimonian 
and Laird (DL) [6].

For each contributing study, the DL technique cal-
culates the logarithm of the sample odds ratio and a 
corresponding estimate of the variance of this meas-
ure based on the asymptotic distribution of these 
logarithms. Adjustments are made for entries in the 
individual 2 × 2 tables that contain a zero-cell count. 
Equations  5–8 below capture the core DL approach. 
In Eq.  5, an estimate of the interstudy variability, τ 2 , 
is first derived from Cochran’s Q statistic and the 
weights assigned to each of the k contributing studies, 
ωi . Each weight is equal to the inverse of the variance 
of the estimated fixed effect log odds ratio, θ̂i, for that 
contributing study.

As shown in Eq. 6, a new set of weights, ω′

i , are then 
calculated based on the estimated value of τ̂ 2 from 
Eq.  5 and the standard errors of the contributing 
studies.

(5)
τ̂ 2 =

Q − (k − 1)

∑

ωi −

(

∑

ω2
i

∑

ωi

)
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These new weights are then used to calculate esti-
mates of both the overall log odds ratio, θDL and its 
standard error as shown in Eqs. 7 and 8.

A test of statistical significance is then based on a 
large sample normal distribution. The DL technique 
requires asymptotic assumptions regarding both the Q 
statistic used to estimate the interstudy variability, τ 2, 
and the normal distribution required to test for statis-
tical significance. A more subtle issue is the possibility 
of distorting correlations between the individual esti-
mates of the effect size for each contributing study, θi , 
and the individual weights used for each of these con-
tributing effect sizes.

Results
A non‑parametric exact test of overall statistical 
significance for dichotomous categorical meta‑analysis
Jakob Bernoulli’s notion of what is now called a Bernoulli 
Trial offers the basis for a non-parametric approach to 
aggregating multiple epidemiological studies based on 
dichotomous categorical data. The enhancements to the 
Bernoulli method developed in this paper offer a prac-
tical exact method for assessing the overall statistical 
significance. A related technique is developed below to 
estimate the effect size of a dichotomous meta-analysis.

One of the many important contributions of this out-
standing seventeenth century mathematician was the 
idea of the fixed probability of an event over a sequence 
of independent trials which led to what is now called 
Bernoulli Trials and to the related Binomial Distribu-
tion. In brief, Bernoulli viewed a set of statistical events 
as a series of independent coin flips with each flip hav-
ing a probability p of obtaining a head and q = 1 − p of 
obtaining a tail. This hypothetical coin is often treated 
as a fair coin where both p and q equal 0.5. The simplest 
Bernoulli Trials approach encompasses a series of n flips 
and answers questions of the type: what is the probabil-
ity of observing × heads in n such flips? (See for example 
Rosner [13]). In epidemiology, one could consider each of 
the k contributing studies of a meta-analysis as a single 
Bernoulli Trial with p = 0.5. Then the combination of the 

(6)ω
′

i =
1

SE
(

θ̂i

)2
+ τ 2

(7)θ̂DL =

∑

ω
′

iθ̂i
∑

ω
′

i

(8)SE
(

θ̂DL

)

=
1

√

∑

ω
′

i

k studies could be analyzed as a binomial distribution. 
This is the standard Sign Test (see, for example, [14]).

For example, for a meta-analysis of 20 studies, if 15 out 
of 20 studies had more cases in the exposure group than 
in the control group, we could ask: What is the probability 
that 15 or more of the 20 studies could have shown a larger 
effect in the exposure group strictly by chance alone? If this 
cumulative probability is less than a pre-specified level of 
Type I error (e.g., 0.05), one would reject the null hypoth-
esis and conclude there probably exists a statistically reli-
able relationship between exposure and the end point used.

The principal reason that this approach has seen little 
use in practical epidemiology is that it suffers from two 
critical deficits. First, the dichotomous Bernoulli heads 
vs. tails approach doesn’t deal with the third possibility of 
a tie. The author of this study believes that no truly use-
ful method to date has been offered to deal with those 
situations when there are an identical number of events 
in each of the exposure and the control arms of a study 
other than to discard the study. Second, a truly exact 
EBT method requires a complete convolution of the fre-
quency distributions of the contributing studies in order 
to derive the combined frequency distribution. Even 
for equal sample size, each of the k contributing studies 
could have a different Bernoulli probability, p, requiring 
a full convolution to determine the null distribution of 
the total number of times there were more cases in the 
exposure group relative to the control group across the 
k contributing studies. Before dealing with the ties prob-
lem, the determination of the combined distribution will 
be outlined.

Combining the individual studies contributing 
to the meta‑analysis
A critical problem is finding a method for combining the 
individual study binomial distributions of the k contrib-
uting studies each with a possibly different p value into 
an overall frequency distribution.

Prior to the widespread availability of computing 
power, the convolution of a large number of individual 
binomial distributions was typically handled by approxi-
mate methods given the unwieldy nature of the calcula-
tions. Even with the advent of available computer power, 
convolution is still often impractical. As an example, for 
a meta-analysis involving 24 studies each with a unique 
binomial distribution, there are over 2  million unique 
combinations of the studies that need to be considered 
just to calculate the single discrete probability that exactly 
12 of the 24 studies have more cases in the exposure 
group than in the control group.1 However, an exact algo-
rithm was laid out in a readily implementable fashion by 
Butler and Stephens in a 1993 technical report [15] which 
1  This number of combinations is simply C (24,12) = 2,704,156.
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can easily be implemented even on a personal computer. 
The algorithm yields the exact probability distribution 
of the convolution of individual binomial distributions 
which in the present application would correspond to 
the specific studies contributing to a meta-analysis. The 
method makes use of a recurrence relationship inherent 
in the binomial distribution which allows the semi-auto-
matic calculation of its probabilities without resort to the 
simple but overwhelmingly inefficient enumeration of all 
of the possible combinations of studies. This easily estab-
lished relationship can be stated as:

Figure 2 compares the estimated number of computer 
executable steps required in the Butler and Stephens 
method relative to a traditional convolution.

P(X = 0) = (1− p)n if j = 0

P
(

X = j
)

=

{

(

n− j + 1
)

j

}

×

{

p

(1− p)

}

× P
(

X = j − 1
)

if j ≥ 1

As can be seen, a traditional convolution is only tracta-
ble when the number of contributing studies is less than 
or equal to approximately 20.

The ties problem
The next problem in adapting the standard Bernoulli Tri-
als technique to practical meta-analysis is a procedure to 
deal with the situation where there are an identical num-
ber of cases in both the exposure and control arms of a 
study contributing to the meta-analysis. In studies with 
small sample sizes and/or low disease probabilities, the 
highest probability tie is typically the “0/0” tie in which 
no cases are observed in either the exposure or the con-
trol arms.

A first step in dealing with ties is to more clearly define 
the criteria for a “success”. The present EBT approach 
defines a success as there being a strictly greater num-
ber of cases in the exposure group relative to the control 
group. Under this definition, the same number of cases 
in both arms of the study or more cases in the control 
arm of the study is considered a “failure”. In essence, this 
is a trinomial situation. There are successes, failures and 
ties. We are simply combining the failures where there 

Fig. 2  Estimated computer executable steps per Butler and Stephens vs. traditional convolution
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are more cases in the control group relative to the expo-
sure group and tie situations and calling the combination 
“failures”.

Equation 9 below forms the basis of the EBT method. 
The Greek capital letter “Π” has been chosen to specify 
the probabilities of there being more cases in one arm 
of the study relative to the other to differentiate these 
parameters from the underlying disease probabilities:

Where �Ei  =  probability of there being strictly more 
cases in the exposure group relative to the control group 
in Study i; �Ci = probability of there being strictly more 
cases in the control group relative to the exposure group 
in Study i; prob(tie)i = probability of finding exactly same 
number of cases in both groups of Study i.

Assuming that �Ei and �Ci would be equal under the 
null hypothesis of no difference between exposure and 
control groups and rearranging terms, we have:

Solving for �Ei we have:

Thus, the only requirement for calculating the �Ei 
parameter for each contributing study is to first deter-
mine the probability of all tie situations for that study.

This is a very straightforward procedure. To determine 
prob(tie)i for each of the contributing studies, all of the 
tie situations need to be enumerated and then their prob-
abilities summed together.

As a simple example, assume that Study i has 100 par-
ticipants in each of its exposure and control arms and 
that the underlying event (disease) probability p is 0.01.

The probability that there are no cases among these 100 
participants in the exposure arm would then be:

Similarly, the probability of there being no cases in the 
control arm would also be 0.37.

Thus, the probability of a “0, 0” tie would be 
0.372 = 0.13 which is surprisingly large.

Table 3 lists the probabilities for the first five tie situa-
tions and sums these probabilities to determine prob(tie)i
.2

As shown in Table 3, there is over a 30% probability of 
obtaining a tie for zero cases through five cases in both 

(9)�Ei +�Ci + prob(tie)i = 1

(10)2�Ei + prob(tie)i = 1

(11)�Ei =
1− prob(tie)i

2

Prob(0cases) = 0.010 × (1− 0.01)100 = 0.99100 = 0.37

the exposure and control groups. Applying Equation (11) 
to this hypothetical study, we see that, under the null 
hypothesis of equal probabilities, �Ei and �Ci are both 
equal to 0.35. Thus, due to ties, the nominal 0.50 value for 
�Ei and �Ci has been greatly reduced.

The EBT technique is indeed a “vote counting” method 
and such methods have been greatly disparaged by Roth-
man [16] among others as “methods to avoid”. However, 
unlike a simple Sign Test, the EBT method is based on a 
reasonable approach to the ties problem and combines the 
individual PEi values by doing the equivalent of a formal 
convolution of the frequency distributions of the individual 
contributing studies.

A non‑parametric exact method for the estimation of effect 
size for dichotomous categorical meta‑analysis
Basic estimation technique
A second exact technique was developed to estimate the 
effect size for dichotomous categorical meta-analysis. As a 
starting point, one might simply form the ratio of the aver-
age observed event probabilities, pEi and PCi, in the expo-
sure and control groups respectively of each study and 
average these ratios across the k contributing studies. This 
simple approach, however, is highly biased. As shown in the 
underlying model that is described in Eqs. 1–4, the number 
of observed “successes” in the exposure and control arms 
of the k contributing studies each depend on an identical 
source of variation captured by ε1i in the model. The expo-
sure group, however, contains an additional source of vari-
ation, captured by ε2i in the model. Figure 3 illustrates the 
problem of estimating the effect size by simply forming the 
ratio of pE to pC.

Even for the relative risk of 1.0 depicted in the figure, the 
exposure distribution will have positive excursions that are 

Table 3  Probability of observing exactly the same number of 
cases in both the exposure and control groups for background 
event probability equal to 0.01 and sample size equal to 100 as a 
function of the number of observed cases

Number of cases in each group Probability

0 0.13

1 0.137

2 0.034

3 0.004

4 0.0002

5 0.00001

Total 0.309

2  The probabilities for six or more ties decrease to extremely small values. 
However, in actuality, the EBT method calculates all possible ties in calculat-
ing prob(tie)i.
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not compensated for by equally robust negative excursions 
at least for small (rare) values of event probability.

The differential skew of the pEi distribution relative to 
the pCi distribution was used to address this issue. The 
additional skew in the exposed group due to the source of 
ε2i in Eq. 2 was estimated by taking the difference between 
the total exposure group skew and the expected skew from 
a pure binomial with the same observed event probability. 
The observed average pE across the k contributing studies 
was then reduced by a factor proportional to this differ-
ence in skew levels.

Monte Carlo simulation of the ebt and dl techniques 
for statistical significance and effect size estimation
A series of Monte Carlo simulations was conducted to 
evaluate the EBT statistical significance test and the 
effect size estimation techniques and to compare them 
to the typically used DerSimonian–Laird Inverse Vari-
ance technique. The simulation was written and executed 
in the increasingly shared statistical language R [17]. The 
DerSimonian results were calculated using the “meta” 
package in R.

Five levels of relative risk (ratio of exposure group to 
control group event probability) of 1.0, 1.25, 1.5, 1.75, and 
2.0 were crossed with three levels of disease background 
event probability (0.005, 0.01, and 0.05), and three levels 
of sample size (50, 100 and 200). Finally, the number of 
studies entering into each meta-analysis was chosen to 
be 5, 10, 20, or 40 studies. These choices allowed direct 
comparisons with the earlier work cited above ([12, 18]). 
In actuality, the background event probabilities were 
restricted to the small values that are typically encoun-
tered in epidemiological studies as discussed in Table 2.

In addition, the heterogeneity between the contributing 
studies, τ2 in Eq. 4, was evaluated at 0 (homogeneity), 0.4, 
and 0.8 to, again, allow comparisons to the earlier work. 
This last value of 0.8 represents a very large variance among 
the studies and was partially chosen to be able to compare 
the results with previous work. As an example, at τ2 = 0.8, a 

nominal exposure group event probability pE of 0.05 would 
vary from of 0.007 to 0.39 which is over a 35:1 ratio. Finally, 
the common variability in both the exposure and control 
groups represented by γ 2 in Eq. 1 was chosen to be 0.5 to 
again allow direct comparison with the earlier work.

The statistical significance and effect size were evalu-
ated using both the EBT and DerSimonian techniques 
for each replication. All simulation runs were conducted 
with 10,000 replications. A value of 0.05 was used as the 
pre-specified level of Type I Error. The “Mid-P” tech-
nique advocated by Agresti [19] and others was used to 
determine the p values in a less conservative manner 
leading to more realistic power levels.

Results from the Monte Carlo simulations: testing 
statistical significance
Figure shows the results of both the EBT and the DL 
methods. To simplify presentation, only scenarios 
in which the expected number of cases was greater 
than or equal to two were utilized. Table  4 shows the 
included scenarios.

When the Relative Risk equals one, the power is the 
Type I error or, equivalently, the false alarm rate. The 
basic finding was that the EBT method maintained the 
prespecified level of Type I error for both the homo-
geneous and heterogeneous scenarios while the DL 
method had many violations of this level for heteroge-
neous scenarios. For the homogeneous scenario where 
τ2 = 0, both the EBT and the DL methods respect the 
prespecified Type I error level. However, for τ2 = 0.4 
and for τ2 = 0.8, the DL method exhibits large viola-
tions of this level. As expected, as the number of con-
tributing studies increases, the power for Relative Risk 
greater than one increases for both the EBT and DL 
methods. A separate analysis showed that the standard 
deviation of the power estimates in Fig. 4 was less than 
or equal to 0.42% (i.e., 0.0042).

In actuality, comparing the power between the EBT 
and DL techniques for Relative Risk ratios greater than 
1.0 is not truly permissible due to the large number of 
violations of the pre-specified Type 1 Error for the DL 
technique.

Fig. 3  Demonstration of inappropriateness of simply directly 
comparing the pE and pC distributions to estimate Effect Size

Table 4  Scenarios included in the analysis of statistical 
significance

Background event 
probability

Sample size Expected number 
of observed cases

0.01 200 2

0.05 50 2.5

0.05 100 5

0.05 200 10
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Figure 5 is a comparison of Type I Error (false alarm 
rate) for the EBT technique and the DL technique as a 
function of heterogeneity (τ2).

As can be clearly seen, the current EBT technique is 
relatively resistant to the effects of increasing hetero-
geneity over a very large heterogeneity range. The DL 
technique, however exhibits a monotonically increas-
ing sensitivity to heterogeneity. A related aspect of any 
meta-analysis technique’s ability to perform well in the 
face of heterogeneity is its resistance to “contamination” 
from one or a small number of “rogue studies”. Since the 
EBT method does not directly allow such rogue studies 
to directly affect the test statistic, it should be much more 
resistant to these distortions.

The large costs of discreteness have been studied by 
Agresti [20] and others.

A first cost of discreteness results when the number of 
contributing studies is small. The general issue of over-
coverage is highlighted in Fig. 6.

The overcoverage is greatest for the smallest num-
ber of k contributing studies, and generally decreases as 
the number of contributing studies increases. As Fig.  6 
demonstrates, even an unrealistic level of 500 contribut-
ing studies is still associated with a relatively large level 
of overcoverage. While such discreteness clearly reduces 
power, it could be argued that a statistically significant 

finding based on extremely sparse tables and a handful 
of studies requires stronger evidence. Unfortunately, the 
majority of meta-analyses consist of fewer than two or 
three studies as Kontopantelis et al. have shown in their 
extensive analysis of all meta-analyses in the Cochrane 
Library [21].

Additional Monte Carlo testing was done for unbal-
anced designs (unequal sample sizes in the exposure and 
control arms of the contributing studies) and meta-anal-
yses with unequal sample sizes across contributing stud-
ies. Table 5 shows the sample sizes for the two groups for 
a typical unbalanced design in which the control group 
sample size is twice the exposure group sample size. The 
sum of the two sample sizes across both arms of the study 
was chosen to be 200 yielding an average sample size of 
100 to allow comparison with the balanced designs of 
Fig. 4.

Table  6 below shows the results of the simulation for 
heterogeneity values τ2 = 0 and τ2 = 0.8, Event (“disease”) 
Probability of 0.05, Number of Studies = 10, and Sample 
Size (avg.) = 100 at the same five levels of Relative Risk 
used above. The simulation run consisted of 10,000 rep-
lications as in Fig. 4.

As the results in Table  6 show, when the heterogene-
ity was equal to 0.8, the Type I Error (Relative Risk = 1.0) 
remained below the specified value of five percent for 

Fig. 4  Power as a function of number of studies, relative risk, and heterogeneity. A, C, E, and G are for the EBT method and B, D, F and H are for the 
DL method
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Fig. 4  continued

Fig. 5  Type I error for EBT and DL methods as a function of heterogeneity
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the EBT technique but was far above this point for the 
DerSimonian.

Table 7 below shows the sample sizes for the exposure 
and control groups for each of the contributing studies 
for a design with unequal sample size across the contrib-
uting studies. This particular design was chosen as a rela-
tively extreme case. As can be seen, the average sample 
size across the two groups was maintained at 100 to allow 
comparison of the simulation results with the equal sam-
ple size scenarios of Fig. 4.

Table  8 below shows the results of the simulation for 
a heterogeneity values of τ2 = 0 and τ2 = 0.8, Event (“dis-
ease”) Probability of 0.05, and Sample Size (individual 
study arm average) = 100, at the same five levels of 

Relative Risk as used above. The simulation run consisted 
of 10,000 replications as in Fig. 4.

Most importantly, at a heterogeneity level of 0.8, the 
EBT Technique was superior at protecting the pre-speci-
fied level of Type I Error relative to the DL technique.

A clear finding of the Monte Carlo simulations com-
mon to both meta-analysis techniques studies is the 
apparent fruitlessness of searching for small effect sizes. 
Both the EBT and DL techniques are very poor at reliably 
finding statistically significant results until the relative 
risk approaches 2.0. While this finding does not directly 
bear on the issues studied in this report, it does serve as a 
cautionary tale to those who continue to try to tease out 
very small effects especially from sparse data.

Fig. 6  Interval overcoverage as a function of the number of contributing studies

Table 5  Sample sizes for simulation of unbalanced designs

Number of studies = 10

Group Study #

1 2 3 4 5 6 7 8 9 10

Exposure 66 66 66 66 66 66 66 66 66 66

Control 134 134 134 134 134 134 134 134 134 134
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Results from the Monte Carlo simulations: effect size 
estimation
Figures 7 and 8 capture the basic findings for estimating 
the Effect Size.

Again, only simulation scenarios in which the expected 
number of observed cases was greater than or equal to 
two were utilized. Since the effect of the number of stud-
ies contributing to the meta-analysis was small for this 
effect size estimation, results were averaged across this 
variable. As shown in Fig. 7, both methods were reason-
ably successful at estimating the levels of relative risk. 
However, both methods generally underestimated the 
relative risk for τ2 = 0 and overestimated it for τ2 = 0.4 
and τ2 = 0.8. Finally, as shown in Fig.  8, the interquartile 
range for the DL method was considerably smaller than 
for the EBT method.

Conclusions and suggestions for the future
This research has developed an exact test for the meta-
analysis of dichotomous, categorical data and a related 
method to estimate the size of the effect.

The enhanced binomial technique (EBT) to assess 
statistical significance
The EBT technique was greatly superior to the DerSi-
monian technique in maintaining a pre-specified level of 
Type I Error. As shown, the DerSimonian technique dem-
onstrated many large violations of this level when hetero-
geneity was present. Given the various biases towards 
finding statistical significance prevalent in epidemiology 
today, a strong focus on maintaining a pre-specified level 
of Type I Error would seem critical (see, e.g., [22]). The 

EBT approach is greatly superior at maintaining this pre-
specified value of Type I Error in the face of even extreme 
heterogeneity.

The enhanced binomial technique (EBT) to estimate effect 
size
A related but separate method was developed to estimate 
the effect size. This new technique was comparable to the 
often-used DL method although both methods demon-
strated some accuracy issues. The DL method exhibited a 
somewhat smaller Semi-IQR variability. The fact that the 
EBT method was clearly superior in assessing statistical 
significance while the DL method demonstrated a smaller 
variability in estimating effect Size supports the possible 
utility of separating these two procedures as outlined at 
the beginning of this article. One possibility is to use the 
EBT method for statistical significance assessment and 
the DL method for effect size estimation.

While statistical programs providing exact solutions 
already exist such as Cytel’s StatXact, they are beyond 
the means of most practicing statisticians and epidemi-
ologists. For example, Cytel Inc. currently lists a price of 
over $900 USD for their current version of StatXact 11 
[23].

The techniques developed here are written in the 
almost universal statistical language of R and are freely 
available from the author. As such, it is hoped that other 
researchers would be able to extend and improve these 
initial versions.

As outlined in this report, the use of meta-analysis in 
epidemiology is increasing very rapidly and appears to 
be meeting an important need. Fortunately, inexpensive 

Table 7  Sample sizes for simulation of unequal sample size designs

Number of studies equal to 10

Group Study #

1 2 3 4 5 6 7 8 9 10

Exposure 175 25 175 25 175 25 175 25 175 25

Control 175 25 175 25 175 25 175 25 175 25

Table 8  Power (%) for the unbalanced design of Table 7 τ2 (heterogeneity) equal to 0 and to 0.8; Event probability = 0.05; Number of 
studies equal to 10; Sample size (avg. per individual study arm) equal to 100

Heterogeneity

0 0.8

Risk ratio

Technique 1.0 1.25 1.5 1.75 2.0 1.0 1.25 1.5 1.75 2.0

EBT 2.0 14.9 43.0 70.0 87.7 4.3 11.4 22.4 34.5 47.9

DerSimonian and Laird 2.4 16.6 56.6 87.2 97.8 11.4 25.1 41.6 58.2 73.5
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Fig. 7  Effect size as function of relative risk and heterogeneity. A and B correspond to the EBT and DL methods respectively
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Fig. 8  Semi-interquartile range as function of relative risk and heterogeneity. A and B correspond to the EBT and DL methods respectively
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and readily available computer power has also vastly 
increased in the past forty years. For example, task speed 
as measured in Million Instructions per Second (“MIPS”) 
has increased from 0.64 for the IBM370 mainframe com-
puter in 1972 to 238,000 for an Intel Pentium processor 
personal computer in 2014 [24]. By using the techniques 
developed here and the computer power available to all 
researchers today, the determination of statistical sig-
nificance and the estimation of effect size can be readily 
accomplished without unnecessary error.
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