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The human leukocyte antigen (HLA)-G is a non-classical HLA class I molecule, which has
distinct features to classical HLA-A, -B, -C antigens, such as a low polymorphism, different
splice variants, highly restricted, tightly regulated expression and immune modulatory
properties. HLA-G expression in tumor cells and virus-infected cells, as well as the release
of soluble HLA-G leads to escape from host immune surveillance. Increased knowledge of
the link between HLA-G expression, viral infection and disease progression is urgently
required, which highlights the possible use of HLA-G as novel diagnostic and prognostic
biomarker for viral infections, but also as therapeutic target. Therefore, this review aims to
summarize the expression, regulation, function and impact of HLA-G in the context of
different viral infections including virus-associated cancers. The characterization of HLA-
G-driven immune escape mechanisms involved in the interactions between host cells and
viruses might result in the design of novel immunotherapeutic strategies targeting HLA-G
and/or its interaction with its receptors on immune effector cells.
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INTRODUCTION

Accumulating evidence exists that immune suppressive mechanisms play a critical role in
promoting viral infections by either suppressing the capacity of infected host cells to overcome
viral infection or by preventing the elimination of virus-transformed cells by immune effector cells.
A common mechanism to escape immune surveillance is a loss or downregulation of classical HLA
class Ia antigens and the neoexpression of non-classical HLA class Ib antigens, such as HLA-E, -F
and –G (1–3). While the expression of HLA class Ia antigens leads to a T cell-mediated control of
host immune responses mediated by antigen presentation and recognition, neoexpression of HLA-
G has immune modulatory properties by inhibiting both innate and adaptive immune responses
thereby leading to an immune escape of virus-infected cells. Although diverse viruses exploit HLA-
G to establish persistent infections, the underlying molecular mechanisms tremendously differ. In
Abbreviations: APC, antigen presenting cells; b2-m, b2-microglobulin; CDS, coding region, coding sequence; CTL, cytotoxic T
lymphocyte; DC, dendritic cell; HC, heavy chain; HCMV, human cytomegalo virus; HCC, hepatocellular carcinoma; HCV,
hepatitis C virus; HHV, human herpesvirus; HLA, human leukocyte antigen; HNSCC, head and neck squamous cell
carcinoma; HPV, human papilloma virus; HTLV-1, human I-lymphotropic virus type II; IAV, influenza A virus; IL,
interleukin; MDSC, myeloid-derived suppressor cell; miRNA, microRNA; MSC, mesenchymal stem cells; NK, natural killer;
NPC, nasopharyngeal carcinoma; PD1, programmed death receptor 1; SARS-CoV-2, severe acute respiratory syndrome
coronavirus 2; SNP, single nucleotide polymorphism; TGF-b, transforming growth factor b; Treg, regulatory T cell; ULBP,
UL16-binding protein; URR, upstream regulatory region; UTR, untranslated region.
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this review, the expression, regulation, and clinical impact of
HLA-G neoexpression in the context of viral infections as well as
the underlying molecular mechanisms will be summarized.
FEATURES OF THE HLA-G

The non-classical HLA-G gene is located on the short arm of
chromosome 6 and consists of 8 exons, 7 introns, a 5’ upstream
regulatory region (URR) and a 3’ untranslated region (UTR).
The primary HLA-G transcript is alternatively spliced into at
least 7 mRNAs, which encode 4 membrane-bound (HLA-G1,
-G2, -G3, -G4) and 3 soluble (sHLA-G; HLA-G5, -G6, -G7)
protein isoforms (4). Each HLA-G isoform contains 1-3
extracellular domains (a1, a2, a3), which are encoded by exon
2, 3 and 4; exons 5 and 6 encode the transmembrane and
cytoplasmic domain of the heavy chain (HC), while the
presence of intronic sequences are highly variable (5). The
HLA-G1 and sHLA-G5 isoforms have a comparable structure
to classical HLA class Ia antigens (HLA-A, -B, -C) and contain
the HLA class I HC, which is non-covalently linked to b2-
microglobulin (b2-m) (6–9). Furthermore, a peptide is bound
in the cleft of the a1 and a2 domains, while the a3 domain of
both the membranous and the sHLA-G is bound by the CD8 co-
receptor (10). Similar to the classical HLA class Ia molecules,
HLA-G is capable of presenting a broad repertoire of peptides
and requires peptide binding to be efficiently presented on the
cell surface (11–13). The other HLA-G isoforms lack one or two
extracellular domains, are smaller and not associated with b2-m.
HLA-G1 to HLA-G4 are membrane-bound and have a
transmembrane region. In contrast, HLA-G5 and HLA-G6 are
soluble isoforms with the presence of intron 4, which contains a
premature stop codon thereby preventing the translation of the
transmembrane and cytoplasmic residue. HLA-G7 is also a
soluble isoform due to the presence of intron 2 containing a
pre-mature stop codon. Recently, a number of novel HLA-G
isoforms have been identified, which could be generated by
skipping exon 6 and by a deletion of the a1 domain (8, 14). It
should be noted that sHLA-G1 could be generated by a
metalloproteinase-dependent shedding (15). Furthermore,
membrane-bound HLA-G can also circulate within the blood
stream, in particular in form of extracellular vesicles (10).
PHYSIOLOGICAL EXPRESSION AND
IMMUNE SUPPRESSIVE ACTIVITY
OF HLA-G

HLA-G expression is generally restricted to immune privileged
tissues, such as cytotrophoblasts, cornea and pancreatic islets
(16–18). However, HLA-G neoexpression was detected under
pathophysiological conditions, such as cancers, inflammatory
diseases, auto-immune diseases and pathogen infections
including viruses (19). It is known that HLA-G has immune
suppressive properties by interacting with different inhibitory
receptors, namely ILT2/LILRB1, ILT4/LILRB2 and KIR2DL4,
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which are expressed on various immune cell subpopulations
(20–22). Other receptors have been recently discovered, which
are able to bind HLA-G, in particular NKG2A (23), CD160 (24)
and CD8 (25) thereby interacting with the a3 domain of the
respective HLA-G isoforms. The structures of the HLA-G
isoforms, their receptors including their HLA-G-binding
domains and the cell types expressing these receptors are
summarized in Figure 1. The interaction of these receptors
with HLA-G leads to the inhibition of the cytolytic function of
natural killer (NK) cells and CD8+ cytotoxic T lymphocytes
(CTLs), macrophage-mediated cytotoxicity, allo-proliferative
response of CD4+ T cells and of the maturation as well as
function of dendritic cells (DCs).

However, it needs to be underlined that the interactions of
HLA-G with immune effector cells are even much more diverse
and complex as summarized so far, since also indirect immune
modulatory effects of HLA-G on immune effector cells are
known. Recently, it could be demonstrated that the non-
classical HLA-E molecule can present peptides derived from
HLA class Ia, but also from HLA-G leader sequences (26–30).
HLA-E is a ligand for the inhibitory CD94/NKG2A,-B receptors
and for the activating CD94/NKG2C receptor expressed on NK
cells (31). This indirect mechanism modulates the immune
effector mechanisms depending on the context of the engaged
receptors. For example, the HLA-G-derived nonamer
VMAPRTLFL presented on HLA-E molecules caused an
enhanced NK cell-mediated lysis in an in vitro experiment of
transfected 721.221 cells naturally lacking HLA class Ia/b
molecules thereby representing valuable targets for NK cells.
However, it needs to be addressed in much more detail whether
this effect also plays a role in vivo, especially in the context of
sHLA-G molecules within the TME of solid tumors inhibiting
immune effector cells even prior to tumor infiltration.

In addition, immune suppressive cells are stimulated to
secrete cytokines, like transforming growth factor (TGF)-b and
interleukin (IL-10), which are able to increase HLA-G expression
(32–35). Furthermore, the interaction of HLA-G with its
receptors could lead to long-term immune modulatory effects
by inducing and/or accumulating regulatory T cells (Tregs) (36),
mesenchymal stem cells (MSCs) (37, 38) and myeloid-derived
suppressor cells (MDSCs) (39, 40). In addition to the direct
interaction of HLA-G with its appropriate receptors, the HLA-G-
mediated immune suppression could be also caused by
intercellular transfer mechanisms, such as trogocytosis,
exosomes or tunneling nanotubes, which also leads to escape
from the destruction by the host immune system.
POLYMORPHISMS AFFECT THE
EXPRESSION OF HLA-G

So far, more than 88 different HLA-G alleles (41) have been
discovered. Within its coding region, HLA-G shows a limited
protein variability compared to classical HLA class Ia, but both
the 5’ URR and the 3’ UTR contain a multitude of polymorphic
sites affecting gene regulation (42). The major HLA-G
February 2022 | Volume 13 | Article 826074
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polymorphisms associated with viral infections and their role in
virus susceptibility are summarized in Table 1. Response
elements for diverse transcriptional inducers have been
identified, like the progesterone response elements (PRE), heat
shock elements (HSE), interferon-stimulated response elements
(ISRE) and elements responding to cyclic AMP (CRE) (50–54).
In addition, negative regulators have been identified like the ras-
responsive elements (RRE) (55). Many polymorphisms and
single nucleotide variants within the regions of such response
elements have been described (56, 57). In vitro evaluations of the
effects of the most frequent 5’ URR haplotypes have indeed
Frontiers in Immunology | www.frontiersin.org 3
shown differential transcriptional regulation of HLA-G (58, 59).
In addition, to the 5’ UTR, diverse polymorphic sites exist also in
the 3’ UTR of the HLA-G transcript (60); many of them have
been shown to change the affinity of gene-targeted sequencing
for transcriptional or post-transcriptional factors, affecting
splicing (61), microRNA (miRNA) binding (62) and RNA
turnover (63). A variation of major significance for HLA-G
expression is a 14 bp insertion/deletion (ins/del, rs66554220)
in the 3’ UTR, which is associated with the alternative splicing of
HLA-G and miRNA stability. Furthermore, the region
downstream of the 14 bp ins/del polymorphic site has been
February 2022 | Volume 13 | Article 826074
)

)

TABLE 1 | Impact of HLA-G polymorphisms on viral infections and virus-mediated diseases.

Virus Polymorphism/allele Regulatory impact

HPV +14 bp/+14 bp significant association with an increased risk for HPV18 infection (OR = 12.95, P < 0.01) (43
+14 bp/-14 bp increased risk for HPV58 infection (OR = 5.55, P < 0.05) (43)
+14 bp/G significant increase in HPV18-infected patients (60.0% vs 27.3%, OR = 4.00, Pc < 0.05) (43
frequency of the allele +3142 C significant decrease in HPV-infected patients compared with normal controls (43)
frequency of the genotype +3142 CC significant decrease in HPV-infected patients compared with normal controls (43)
130C del association with an increased progression and reduced overall survival of NPC patients (44)

CMV +3142 CC genotype association with a higher susceptibility to CMV infection after kidney transplantation (45)
HIV HLA-G*010108 allele association with a 2.5-fold increased risk of HIV-1 infection (46)

14 bp del/del significantly reduced rates of perinatal HIV transmission (47)
HTLV-1 14 bp del/del higher proviral load (48)
SARS-CoV-2 SNP rs9381042 correlation with severe COVID-19 infections (49)
FIGURE 1 | Summary of HLA-G isoforms with their binding positions for the so far known receptors. This schematic summary of the structural differences of HLA-G
isoforms shows the so far known HLA-G receptors and also designates the exact binding position. The black arrows show exemplarily, but not exclusively possible
interactions, depending on mentioned binding positions on the HLA-G ligands. There exist first evidence of a possible interaction between NKG2A with HLA-G,
which still needs to be investigated in more detail. Therefore, NKG2A is not yet mentioned within this scheme. Created with BioRender.com.
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suggested to be a target for HLA-G-specific miRNAs thereby
leading to a direct downregulation of HLA-G. However, there
exist controversial data regarding the role of the HLA-G 14 bp
ins/del polymorphism and susceptibility to viral infections (64).
Of note, population studies suggest that HLA-G haplotypes are
strongly shaped by selective pressure throughout evolution
thereby preserving protein-coding sequences and enabling
divergence in regulatory sequences (42, 65).
REGULATION OF HLA-G EXPRESSION
AND VIRAL INFECTIONS

There exist more than 220 viral species able to infect humans
(66) and annually even more human pathogenic viruses are
identified or even emerge including the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) (67). In 2008, before the
SARS-CoV-2 pandemic started, Woolhouse and co-authors
generated in silico prediction tools for estimating the
emergence of novel human pathogenic viruses concluding that
the formation/discovery of novel human viruses must be
anticipated in public health planning and the future should
prove this statement (68).

Infection with intracellular pathogens, such as viruses, could
lead to the presentation of pathogen-relevant peptides, e.g. via
HLA class I molecules to T cells resulting in T cell activation and
elimination of the infected host cell, although numerous other
molecular mechanisms also contribute to anti-viral immune
surveillance. These include the induction of the MICA/MICB
molecules as well as the UL16-binding proteins (ULBP)1-6,
which are physiologically not expressed, but induced by
cellular stress and viral infections and act as ligands for the
activating NKG2D receptor present on NK cells and CTLs (69).
In addition, intracellular, membranous and even secreted pattern
recognition receptors exert a strong role in anti-viral immune
surveillance. A prerequisite for appropriate immune effector cell
functions is the recruitment of these immune effector cells to the
virus-infected cells, a process, which involves a functional
chemokine signaling. Indeed, the authors recently reviewed the
distinct viral mechanisms targeting the above mentioned
strategies involved in immune recognition and elimination of
viral infections (70).

However, several human pathogenic viruses can successfully
develop immune evasion by various molecular mechanisms,
including the induced expression of immune checkpoints, like
PD-L1 and HLA-G, in the virus-infected host cells (1, 71–73). In
this review, we will summarize known examples of human
viruses able to induce immunological tolerance towards host
immune effector cells by HLA-G induction. Therefore, an
overview of the tightly regulated HLA-G expression will
be provided.

HLA-G is predominantly expressed in immune-privileged
tissues, in particular placental and eye tissues (17, 74), but also
insulin- and glucagon-positive cells within the endocrine islets of
the pancreas (18) and the medullary thymic epithelial cells (75)
and locally induce immunological tolerance thereby preventing
Frontiers in Immunology | www.frontiersin.org 4
tissue damages due to inflammatory reactions. The HLA-G gene
expression itself is regulated at multiple levels, including the
grade of promoter methylation (76), the acetylation of histones
(77), the existence of transcriptional activators (CREB1, AIRE)
(78, 79) as well as the lack of transcriptional repressors (RREB-1,
LINE1) (55, 80). In addition to the transcriptional control,
several factors contribute to a complex posttranscriptional gene
regulation of HLA-G including many miRNAs, such as miR-148
family members with the highest affinity to the 3’ UTR of the
HLA-G transcript and miRNA directed against the coding
sequence (CDS) of HLA-G (81, 82) as well as long non-coding
RNAs like HOTAIR (83). Furthermore, RNA-binding proteins
(RBPs), like e.g. HNRNPR, have been reported with regulatory
potential for the HLA-G mRNA (84).

Several cytokines, but also certain stress stimuli are known to
enhance the HLA-G levels, like interferon (IFN)-g, IL-10, TGF-b
(76), hypoxia and heat stress (52, 85).

This complex regulatory network for the control of the HLA-
G expression can be altered to induce or enhance the immune
evasion of tumor cells, but also of infectious pathogens, e.g.
viruses, bacteria and parasites (86). It is noteworthy that a
number of viruses have an oncogenic potential and
independently of viral infections a pathophysiological HLA-G
neoexpression, which can be detected with high frequencies in
virus-associated malignancies as well as independently of viral
infections in solid and hematopoietic tumor diseases (87–90).
ROLE OF HLA-G IN VIRAL INFECTIONS –

EXPRESSION, MECHANISMS AND
CLINICAL RELEVANCE

HLA-G and Human Papillomavirus
Human papillomavirus (HPV) infection is a common infection
and has been linked to epithelial cancers including in particular
cervical and head and neck cancers (91–93). HLA-G has an
impact on the clinical course of persistent HPV infections,
epithelial cell transformation, tumor growth, metastasis,
formation and therapy resistance. In HPV-associated tumors
like cervical cancer and head and neck squamous cell carcinoma
(HNSCC), a role of HLA-G in HPV infections and in the
initiation and progression has been described (94, 95)
mediated by polymorphisms, methylation and deregulation of
HLA-G (44).

HLA-G polymorphisms are genetic susceptibility and/or
disease-relevant factors for cervical HPV infections and viral
persistence of cervical cancers (Table 1). Most of the studies
focused on the polymorphisms in the 3’ UTR of the HLA-G gene
rather than on its promoter region or in its CDS. The
HLA-G +14/G and +3142G alleles are risk factors for HPV
infections and increase the risk of high-grade cervical lesions and
are associated with cervical carcinogenesis (43). Interestingly, the
HLA-G promoter methylation was not associated with the HPV
infection status (96). Moreover, a codon 130C deletion was
associated with an increased progression and reduced overall
survival of patients with nasopharyngeal carcinoma (NPC) (97).
February 2022 | Volume 13 | Article 826074
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In comparison to HPV-negative HNSCC, higher HLA-G
expression levels were found in HPV-positive HNSCC with
HLA-G7 as the most frequent isoform (98). In addition to
various HLA-G polymorphisms, which have been associated
with the susceptibility of HPV infection, an influence of HLA-
G on the immune modulation of HPV-positive HNSCC has been
described. Furthermore, high levels of IFN-g, but lower levels of
IL-10, TGF-b, SOCS1/3 and programmed death receptor 1
(PD1) were found in HPV-positive HNSCC (98).

HLA-G and Hepatitis Virus
Infections with hepatitis B (HBV) and C virus (HCV) are major
health threats worldwide (99, 100). Chronic HBV/HCV infection
is followed by chronic hepatitis, which might lead to liver
cirrhosis and hepatocellular carcinoma (HCC) (101). Despite
the host immune response is crucial for the control of HBV and
HCV, both viruses have developed different strategies to escape
immune surveillance including HLA-G neoexpression (102).
Indeed, a high frequency of HLA-G expression was found in
tissues of HCV-infected patients. In addition, elevated sHLA-G
serum levels were detected in patients with chronic HCV
infection (103, 104). Furthermore, HLA-G expression was
more prominent in high fibrosis specimens. In association with
the increased HLA-G expression in liver, an enhanced
inflammatory activity and liver fibrosis were demonstrated,
which might have implications for progression and prognosis
of liver diseases. HLA-G expression in the liver upon chronic
HCV infection might be due to the composition of the
inflammatory infiltrate, in particular of mast cells known to
induce fibrosis by stimulating the proliferation of TGF-b-
secreting hepatic stellate cells as demonstrated by Amiot and
co-authors (105). In addition, hepatic stellate cells also secrete
IL-10, which is able to upregulate HLA-G expression. Thus, the
liver microenvironment including cytokines affecting the
inflammatory response and fibrosis, such as IL-10 and TGF-b,
are responsible for the induction of liver HLA-G expression in
chronic hepatitis-diseased patients (104).

As described for HCV-infected tissues, HLA-G is expressed at
a high frequency in HBV-infected liver biopsies, but not in
control hepatocytes (106). Furthermore, sHLA-G levels were
also significantly higher in HBV-infected patients when
compared to healthy controls (15, 107, 108). The HBV-
mediated induction of HLA-G expression in hepatocytes might
be caused by modulation of the hepatocyte expression of miRs,
such as downregulation of the HLA-G-regulating miR-152
representing the most HLA-G mRNA affine member of the
miR-148 family leading to neoexpression of HLA-G (109).
These data further suggest that HLA-G and HLA-G-specific
miRs are involved in HBV-induced HCC.

HLA-G and Human Cytomegalovirus
Human cytomegalovirus (HCMV) causes a life-long human
infection, which may be life-threatening for immune-
suppressed patients (110, 111). Like other viruses, HCMV has
developed different strategies to escape immune surveillance
including the modulation of HLA-G expression (112).
Membrane-bound HLA-G was shown to be expressed in
Frontiers in Immunology | www.frontiersin.org 5
macrophages and monocytes undergoing lytic infection, while
sHLA-G levels are increased in serum of patients with acute
HCMV infection (113–115). Furthermore, an enhanced HLA-G
expression has been associated with allograft tolerance after
kidney transplantation (116). The single nucleotide
polymorphism (SNP) (3142C>G) in the HLA-G gene of the
recipient, but not in the transplant donor was associated with a
higher susceptibility to HCMV infection after kidney
transplantation. In addition, sHLA-G levels were associated
with a higher susceptibility to HCMV infection (Table 1).
These data suggested that both the recipient HLA-G+3142CC
phenotype and sHLA-G levels represent predictive risk markers
for HCMV infection (45). Recently, an association between other
HLA-G 3’ UTR variants and kidney graft outcomes has been
reported. In recipients with stable allograft function, significantly
higher sHLA-G levels were found in patients who
were +3010GG, +3142CC, +3187GG and +3196CC carriers in
comparison to acute rejection recipients (117). Thus, there exists
a direct association between this HLA-G 3’ UTR variants and
sHLA-G levels in kidney recipients leading to graft acceptance.
Therefore, monitoring of sHLA-G levels prior to transplantation
might serve as suitable marker to predict kidney graft outcome.
This was confirmed by a recent study demonstrating that the
acute and chronic rejection rate of kidneys increased 1.06 times
and 1.14 times, respectively, in kidney transplant recipients with
low serum sHLA-G levels. The frequency of acute rejection was
lower in patients with a 14 bp del/del polymorphism than that of
ins/ins and ins/del polymorphisms. Based on these results, the
HLA-G 3’ UTR polymorphism and the sHLA-G levels might
represent useful markers for the prediction of rejection in kidney
transplants (118).

HLA-G and Human Herpesvirus 6
Human herpesvirus (HHV)-6 is a b-herpesvirus comprising of
the two viruses HHV-6A and HHV-6B (119–121) that cause
both productive and life-long latent infections (122). HHV-6A/B
induce HLA-G expression in mesothelial cells leading to
impaired NK cell functions against virus-infected cells (123).
HHV-6A/B express the viral protein U94, which has key
functions in the viral life cycle and elicits immune responses.
Furthermore, U94 has been shown to induce HLA-G expression
by upregulating the expression of the transcription factor ATF3,
which activates HLA-G expression and release (124). In line with
these findings, patients suffering from systemic sclerosis showed
elevated sHLA-G levels when being co-infected with HHV-6A.
Furthermore, viral load correlated to NK cell dysfunction and
disease severity (125).

HLA-G and Epstein-Barr Virus
Another member of the HHVs, the Epstein-Barr virus (EBV),
has also been reported to induce the HLA-G expression by yet
undefined molecular mechanisms (126). It could be speculated
that the EBV-encoded viral IL-10 (vIL10), a known agonist of the
human IL-10, might be an inducer of the HLA-G expression.
Interestingly, EBV infections also affect the epigenetic control
within the host cell genome, including altered DNA methylation
patterns (127) as well as aberrant histone modifications (128),
February 2022 | Volume 13 | Article 826074
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both mechanisms known as important regulators of HLA-G gene
expression. It is noteworthy that EBV infections can be linked to
various tumor entities, such as NPC, gastric adenocarcinoma
(GC), classical Hodgkin lymphoma (cHL) and Burkitt
lymphoma (BL) (129), which have been shown to exhibit
pathophysiological HLA-G neoexpression.

HLA-G and Human Immunodeficiency
Virus
The human immunodeficiency virus (HIV) is a RNA virus.
Several studies suggested elevated sHLA-G in serum samples of
untreated HIV patients, but membrane-bound HLA-G is also
detected on immune cells of patients. Furthermore, HIV
infection is not only inducing HLA-G on monocytes,
macrophages and T lymphocytes (130), but also causes an
increased HLA-E expression in infected CD4+ T helper cells
(131), which exerts immune modulatory functions comparable
to that of HLA-G thereby contributing to immune evasion of
HIV-infected cells (131). HLA-E is the ligand for the inhibitory
NK cell receptors CD94/NKG2A, -B and for the activating -C
expressed on NK cells and CTL (132). HIV infection also induces
the expression of the immune modulatory ligands PD-L1 and
PD-L2 on macrophages (133), which interact with their receptor
PD-1. The PD-L1/PD-1 interaction causes an inhibition of CTL
activity, but also an increased IL-10 secretion, which contributes
to immune evasion of HIV-infected CD4+ T helper cells (134).

The HIV-related induction of HLA-G expression has been
currently well characterized. Certain HLA-G alleles increase the
risk for heterosexual transmission of HIV in African women.
Indeed, the HLA-G*010108 allele was associated with a 2.5-fold
increased risk of HIV-1 infection and the two HLA-G*010108
alleles containing genotypes HLA-G*010108/010401 and
G*010101/010108 were associated with an elevated risk of
HIV-1 infection (Table 1) (46). Furthermore, children carrying
the homozygous HLA-G genotype with the 14 bp deletion within
the HLA-G 3’-UTR exhibited significantly reduced rates of
perinatal HIV transmission (47, 135).

The overexpression of HLA-G in HIV-infected individuals
may be secondary due to an increased release of IL-10. The HIV-
encoded protein gp41 has been identified to induce IL-10
secretion in monocytes (136) thereby revealing a possible
mechanism for the occurrence of HLA-G.

In addition, HIV infection causes a downregulation of the
classical HLA class Ia molecules HLA-A and HLA-B (137), a
known mechanism for (tumor) immune evasion, clearly
demonstrating a deregulation of appropriate HLA class Ia/b
signaling upon HIV infection.

HLA-G and Human T Cell Lymphotropic
Virus Type I
The human T cell lymphotropic virus type 1 (HTLV-1) known to
induce very aggressive adult T-cell lymphoma (ATL) also
upregulates HLA-G expression, mainly HLA-G1 and HLA-G5
(138), and in analogy to HIV, the homozygous HLA-G
genotype −14-bp/−14-bp genotype has a higher proviral load
than the +14-bp/−14-bp and +14-bp/+14-bp genotypes
Frontiers in Immunology | www.frontiersin.org 6
(Table 1) (48). However, a detailed mechanism for the HTLV-
1-mediated HLA-G increase has not yet been identified, but an
IL-10-based mechanism analogous to the HIV-dependent HLA-
G induction might be likely.

HLA-G and Influenza A Virus
Influenza A virus (IAV) causes acute respiratory infections (139).
Infections with IAV are known to induce HLA-G mRNA and
protein expression in alveolar epithelial cells (140), which is a
major inhibitory molecule of host immune responses to IAV
infections. Although the detailed underlying mechanisms have
not yet been determined, the study suggested an involvement of
cytokines, in particular IFNs, which could cause the HLA-G
neoexpression mediated by the viral encoded NS1 protein.

SARS-CoV-2 and HLA-G
In 2019, a novel corona virus emerged that caused a worldwide
pandemic and lead to the potentially life-threatening severe acute
respiratory syndrome (SARS-CoV-2) (67). In patients with severe
infection, high serum levels of sHLA-G were observed (141) and
HLA-G was also found on the cell surface of diverse immune cells
during the course of infection. HLA-G was detected on
monocytes, T and B cells and showed a high-low-high pattern,
probably correlating with infection, replication and clearance
phase (142). However, these results were only compiled from a
single patient and require further validation. Another clinical
study found a correlation between high sHLA-G levels and
improved disease outcome probably due to immune-dampening
effects of HLA-G that suppress an excessive tissue-damage,
possibly mediated by reduced neutrophil infiltration to the sites
of infection (143). Disease outcome was not clearly linked to HLA-
G variants despite a meta-analysis listed the HLA-G 3’UTR SNP
rs9381042 as a candidate variant that was slightly overrepresented
in a UK cohort of critically ill patients due to COVID-19 infection
compared to the general population (Table 1) (49).
CONCLUSIONS

As summarized in this review, multiple viral infections are
known to induce membranous HLA-G expression as well as its
secretion in infected host cells. In some cases, the role of HLA-G
in infections has been characterized to contribute to immune
evasion of the infected host cells by inhibition of immune effector
cells. So far, the detailed molecular mechanisms of this HLA-G
neoexpression have not yet been identified. In many of these
studies a correlation of the HLA-G neoexpression with elevated
IL-10 levels is reported. Indeed, IL-10 is a known inducer of the
HLA-G expression and has also been described in tumor cells
independently of viral infections as inducer of HLA-G
expression. Therefore, the very likely IL-10-based hypothesis of
the virus-driven HLA-G induction is summarized in Figure 2.

Physiologically, IL-10 exerts its functions as an anti-
inflammatory cytokine in preventing inflammatory and
autoimmune pathologies by inhibition of certain immune
effector cells thereby preventing inflammation-induced and
February 2022 | Volume 13 | Article 826074

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Jasinski-Bergner et al. HLA-G and Viral Infections
autoimmune pathologies (144). Murine in vivomodels inhibiting
the IL-10R demonstrated that the viral infection with
lymphocytic choriomeningitis virus resulted in a rapid
resolution of the persistent infection. This blocked IL-10
signaling was also linked to an increased IFN-g secretion by
CD8+ T cells (145). Another murine study with IL-10-deficient
mice could also demonstrate a better anti-viral T cell response
against the lymphocytic choriomeningitis virus (146).

The predominant IL-10-expressing cells are Th2 cells and
Tregs, but also macrophages, dendritic cells, eosinophils and
neutrophils are known to secrete IL-10 (144). Some of these
immune cell populations were directly infected by HLA-G-
inducing viruses and subsequently shifted towards increased
IL-10 secretion. In other cases, indirect effects, like e.g. an
increased PD-L1/PD-1 signaling, caused an enhanced IL-10
secretion of these immune effector cells.

Once the HLA-G gene transcription has been induced upon
IL-10 stimulation, the homozygous genotype del14bp/del14bp
has additional beneficial effects due to an enhanced HLA-G
mRNA stability by avoiding miRNA-based downregulation and
thereby resulting in increased HLA-G protein levels.

It is also known that IL-10 stimulation affects the RNA
expression profile in IL-10-stimulated cells (147), but whether
Frontiers in Immunology | www.frontiersin.org 7
HLA-G-regulating miRs are downregulated upon IL-10 signaling
is so far unknown. In addition, further direct or indirect effects of
IL-10 on other HLA-G-regulating factors are rather limited with
the exception of the transcriptional activator CREB1, which
induces the transcription of HLA-G and IL-10 (78, 148). Thus,
the regulation of HLA-G expression upon viral infection is
complex and further studies are urgently needed to gain deeper
insights into the molecular mechanisms of the viral infection-
driven HLA-G neoexpression.
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