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Abstract
Phosphorylation of estrogen receptor-a (ERa) at specific residues in transcription activation function 1 (AF-1) can

stimulate ERa activity in a ligand-independent manner. This has led to the proposal that AF-1 phosphorylation and the

consequent increase in ERa activity could contribute to resistance to endocrine therapies in breast cancer patients.

Previous studies have shown that serine 118 (S118) in AF-1 is phosphorylated by extracellular signal-regulated kinases 1

and 2 (Erk1/2) mitogen-activated protein kinase (MAPK) in a ligand-independent manner. Here, we show that serines 104

(S104) and 106 (S106) are also phosphorylated by MAPK in vitro and upon stimulation of MAPK activity in vivo.

Phosphorylation of S104 and S106 can be inhibited by the MAP-erk kinase (MEK)1/2 inhibitor U0126 and by expression

of kinase-dead Raf1. Further, we show that, although S118 is important for the stimulation of ERa activity by the selective

ER modulator 4-hydroxytamoxifen (OHT), S104 and S106 are also required for the agonist activity of OHT. Acidic amino

acid substitution of S104 or S106 stimulates ERa activity to a greater extent than the equivalent substitution at S118,

suggesting that phosphorylation at S104 and S106 is important for ERa activity. Collectively, these data indicate that the

MAPK stimulation of ERa activity involves the phosphorylation not only of S118 but also of S104 and S106, and that

MAPK-mediated hyperphosphorylation of ERa at these sites may contribute to resistance to tamoxifen in breast cancer.
Journal of Molecular Endocrinology (2008) 40, 173–184
Introduction

Estrogen receptor-a (ERa) is a member of the nuclear
receptor superfamily of ligand-regulated transcription
factors, and is required for development and mainten-
ance of the female and male reproductive systems, bone,
and cardiovascular system, as well as being significant for
certain brain functions (Couse & Korach 1999).
Additionally, estrogens stimulate breast cancer pro-
gression and w70–80% of breast cancers express ERa.
The presence of ERa correlates with likelihood of
response to anti-estrogens, such as tamoxifen (Osborne
1998), and to aromatase inhibitors that inhibit estrogen
biosynthesis (Henderson & Piccart-Gebhart 2005),
demonstrating the importance of ERa in breast cancer
progression. However, a proportion of patients with ERa-
positive disease do not respond to endocrine therapy.
Further, of thosepatientswho respond,manywho initially
present with localized disease, and all with advanced
breast cancer, relapse. Most resistant tumors remain
ERa-positive and frequently respond to alternative anti-
estrogentreatment, indicativeof a continuedrole forERa
in breast cancer cell proliferation (Ali & Coombes 2002).
Augmentation of ERa activity in the presence of estrogen
or anti-estrogens, and/or ligand-independent activation
of ERa, could provide an important mechanism for
resistance to anti-estrogen therapies. In agreement with
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this possibility, a recent study shows that levels of
S118 phosphorylation are increased following breast
cancer recurrence following tamoxifen treatment
(Sarwar et al. 2006).

ERa regulates gene expression through direct
binding to estrogen-response elements within the
promoters of estrogen-regulated genes, or by recruit-
ment to DNA through interaction with other transcrip-
tion factors (Gronemeyer 1991, Bjornstrom & Sjoberg
2005). Transcriptional regulation by ERa is partly
mediated by transcription activation function, AF-2,
which is intrinsic to the ligand-binding domain (LBD).
Estrogen binding to the LBD results in a confor-
mational change that allows recruitment of coactivators
to the LBD (Brzozowski et al. 1997, Shiau et al. 1998,
Glass & Rosenfeld 2000). A second transcription
activation function, AF-1, is encoded within the
N-terminal 180 amino acids. AF-1 activity is promoter
and cellular context dependent (Tzukerman et al.
1994), and can be influenced by the expression profile
of specific coactivators (Smith et al. 1997). Although
there is evidence to suggest that phosphorylation of
AF-1 alone can enhance activity (Bunone et al. 1996,
Ignar-Trowbridge et al. 1996), ligand binding to AF-2
can also induce AF-1 activity (Metzger et al. 1992). This
suggests that, in a basal state, AF-1 activity is blocked by
AF-2. Finally, AF-1 and AF-2 can act synergistically in a
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promoter- and cell-specific manner (Gronemeyer 1991,
Tsai & O’Malley 1994, Beato et al. 1995).

Tamoxifen is an example of a mixed estrogen
agonist/antagonist, also termed selective ERmodulators,
which has been proposed to act by inhibiting the
LBD/AF-2, whilst allowing activation of AF-1 (Berry et al.
1990, McDonnell et al. 1995, Brzozowski et al. 1997, Shiau
et al. 1998). Structural studies have indicated that the
inhibition of the LBD/AF-2 in the tamoxifen-bound
ERa is due to the positioning of helix 12 in the
hydrophobic cleft to which transcriptional coactivators,
such as the p160 family members, are recruited, thereby
preventing coactivator recruitment. The same cleft can
also be involved in corepressor binding, and tamoxifen
has been suggested to allow corepressor recruitment to
the LBD (Nettles & Greene 2005). The nature of AF-1
activation by ligands such as tamoxifen, and in the
absence of ligand, is unknown, but may involve
phosphorylation of ERa. Previous studies have shown
that in ovariectomized mice, uterine proliferation
(which is normally estrogen- dependent) can be
mediated by growth factors such as epidermal growth
factor (EGF), and that the EGF-mediated uterine
stimulation is ERa dependent (Ignar-Trowbridge et al.
1992, Curtis et al. 1996). ERa may become phosphory-
lated in response to EGF and other growth factors,
resulting in ligand-independent ERa activation (Ignar--
Trowbridge et al. 1993).

Phosphorylation site mapping has demonstrated that
serine 118 (S118) in AF-1 is phosphorylated by Erk1/2
MAPK, resulting in stimulation of ERa activity (Kato et al.
1995, Bunone et al. 1996), whilst phosphorylation of
serine 167 (S167) in AF-1 by AKT and p90RSK also
stimulates ERa activity ( Joel et al. 1998a, Campbell et al.
2001). The ERa AF-1 is additionally phosphorylated at
serines 104 (S104) and/or 106 (S106) (Le Goff et al.
1994). Phosphorylation at these sites by Cdk2 (Trow-
bridge et al. 1997, Rogatsky et al. 1999) and GSK3
(Medunjanin et al. 2005) has been reported, and our
own data have previously indicated that these sites might
also be targets for MAPK (Chen et al. 2002). Increased
ERa activity due to AF-1 phosphorylation mediated by
MAPK and/or other kinases could therefore be at least
partly responsible for resistance to endocrine therapy in
breast cancer. This hypothesis is supported by findings
that stimulation of growth factor-regulated pathways can
augment the agonist properties of tamoxifen (Smith
1998) and inhibit tamoxifen-inducedgrowth suppression
and apoptosis in breast cancer cells (Benz et al. 1993,
Pietras et al. 1995, Campbell et al. 2001). Here, we
investigate phosphorylation at serines 104 and 106 by
Erk2 MAPK in vitro and in response to MAPK activity
in vivo, and determine their contribution to ERa activity.
Transcription reporter assays using ERa phosphorylation
sitemutants suggest that phosphorylation at all three sites
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contribute significantly to AF-1 activity, and in particular
are required for tamoxifen to act as an ERa agonist.
Materials and methods

Plasmids

The expression vectors pSG5-HEG0 and pSG5-HE15,
encoding full length and AF-2-truncated human ERa
(ERa-DLBD) respectively have previously been described
(Tora et al. 1989a). pGEX1lT-ERa and pGEX1lT-ERa-
DLBD were generated by cloning ERa encoding EcoRI
fragments from pSG5 into pGEX1lT (GE Healthcare
UK Ltd, Little Chalfont, UK). ERa mutants were
generated by site-directed mutagenesis, according to
manufacturer’s protocols (Stratagene, La Jolla, CA,
USA). pEF-RasV12, expression vector for constitutively
activeHa-Ras, was kindlyprovidedbyDrRTreisman(LRI,
London, UK). pCMV-Raf CAAX and pCMV-Raf S621A
werepurchased fromClontech(Saint-Germaine-en-Laye,
France).
Antibodies

Peptides corresponding to amino acids 97-112 of
human ERa, having the sequence [C]-FPPLNSVP-
SPSPLMLLH (phospho-S104) or [C]-FPPLNSVSPPSP-
LMLLH (phospho-S106), were used to generate rabbit
polyclonal antisera, as described (Chen et al. 2002).
Antibodies specific for ERa phosphorylated at S118
(16J4, New England Biolabs, Hitchin, UK), ERa (6F11,
Novocastra Laboratories, UK), MAPK (sc-93, Santa Cruz
Biotechnology, Heidelberg, Germany) and P-MAPK
(New England Biolabs) were obtained commercially.
Horseradish peroxidase-conjugated goat anti-rabbit
and anti-mouse immunoglobulins were purchased
from DAKO Ltd, Ely, UK.
Immunoblot analysis

Cells were grown inDulbecco’smodifiedEagle’smedium
(DMEM) lacking phenol red and supplemented with
10% dextran-coated charcoal-stripped fetal calf serum
(DSS) for 3 days prior to plating in six-well plates at
300 000 cells/well. Cells were transfected using Fugene 6
(Millipore, Wafford, UK), with 100 ng pSG5 empty
vector or ERa expression construct, 5 ng empty vector
or Ras/Raf expression construct, and 500 ng pBSC
carrier DNA, as appropriate. After 48 h the cells were
treated with ethanol carrier, estradiol (E2; 10 nM),
4-hydroxytamoxifen (OHT; 100 nM) or ICI182,780
(ICI; 100 nM) 30 min prior to harvest, phorbol 12-
myristate 13 acetate (PMA; 100 nM) was added 15 min,
and U0126 (10 mM) was added 60 min, prior to harves-
ting, as appropriate. Cells were washed and harvested
www.endocrinology-journals.org
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directly into Laemmli buffer and immunoblotting was
performed, as described (Sarwar et al. 2006). For peptide
competition experiments, the primary antibodies were
pre-incubated with 10 mg/ml of the appropriate peptide
(Chen et al. 2002). Quantitation of phospho-ERa signal
was performed by densitometry of scanned films using
ImageQuant software, and expressed relative to the
respective total ER level.
Kinase assays

The glutathione-S-transferase (GST) fusion proteins,
GST-ERa and GST-ERa-DLBD were expressed in
Escherichia coli (Rosetta strain, Merck Chemicals Ltd,
Nottingham, UK) following induction with 0. 1 mM
isopropyl-beta-D-thiogalactopyranoside (IPTG) for 3 h
at 25 8C. Cells (50 ml) were lysed with 10 ml XTractor
buffer (BD Biosciences, Oxford, UK) containing 1 mM
dithiothreitol (DTT) and protease inhibitors, and the
lysates cleared by high-speed centrifugation. The lysates
were incubated with glutathione-sepharose beads at
4 8C for 1 h, and the beads were washed thrice with
TBS containing 1 mM DTT and protease inhibitors.
GST-ERa beads were resuspended in 1! kinase
buffer, 200 mM ATP, GE2 (10 nM) and kinase (Erk2
and GSK3, New England Biolabs, UK; Cdk2/cyclin A,
Cdk2/cyclin E, Cdk4/cyclin D1, Cdk7/cyclin H/MAT1,
AKT1, and AKT3; New England Biolabs), according
to manufacturer’s instructions. For radioactive kinase
assays, 50 mM cold ATP and 10 mM 32PgATP
(Amersham) was used. Reactions were incubated at
30 8C for 30 min and processed by SDS-PAGE followed
by autoradiography or immunoblot.
Reporter assays

Cells were grown in DMEM lacking phenol red and
supplementedwith 10%DSS for 3 days prior to plating in
24-well plates at 50 000 cells/well. Cells were transfected
using Fugene 6 (Roche), with 100 ng pERE3-TATA-luc
and pRL-TK reporters, 10 ng pSG5 empty vector or ERa
expression construct, 50 ng empty vector or Ras/Raf
expression vector, and 500 ng pBSC carrier DNA. After
4 h, the medium was replaced with fresh media
containing ethanol carrier, E2, OHT or ICI 182 780, at
concentrations indicated in figures. After a further 20 h,
the cells were harvested and luciferase levels determined
using Dual-Glo reagents (Promega). For experiments in
whichU0126 was used, 10 nMU0126 was added 1 h prior
to the addition of ligands and the cells were harvested
after a further 7 h. Firefly luciferase levels were corrected
for transfection efficiency using corresponding renilla
luciferase levels. The activity for wild-type ERa in the
absence of ligand was taken as one, with all other
activities shown relative to this. All experiments were
www.endocrinology-journals.org
independently repeated at least four times, and the data
presented as mean values with S.E.M. error bars.
Results

Antisera display specificity for ERa phosphorylated
at S104 and S106

Serines 104 and/or 106 have been shown to be
phosphorylated by Cdk2/cyclin A and Cdk2/cyclin E
(Trowbridge et al. 1997, Rogatsky et al. 1999), and GSK3
(Medunjanin et al. 2005). To further characterize ERa
phosphorylation at these residues, we generated rabbit
antisera specific for phosphorylation at S104 (a-PS104)
or at S106 (a-PS106). S104 phosphorylation was
stimulated following treatment of ERa-transfected
COS-1 cells with E2 and PMA (Fig. 1A). ERa mutants
in which S104 was substituted by alanine were not
detected by a-PS104, whilst mutation of S106 (106A)
reduced but did not abolish S104 phosphorylation.
S106 phosphorylation was also stimulated by E2 and
PMA, and blocked by mutants of S106 but not S104.
Competition with phosphorylated peptides further
confirmed that a-PS104 and a-PS106 are specific for
ERa phosphorylated at S104 and S106 respectively.
Detection of phopho-S104 ERa and phospho-S106
ERa were blocked by pre-incubation of the respective
antiserum with a 100-fold excess of peptides contai-
ning a phosphorylated S104 (PS104 and PS104/6),
and phosphorylated S106 (PS106 and PS104/6)
respectively.

Investigation of phosphorylation using mutants in
which S104, S106, and S118 were substituted by alanine
or glutamic acid, either singly or together, showed that
S104 phosphorylation was influenced by the status of
S106 and S118 (Fig. 1B). This result could potentially
be explained by a reduced efficacy of a-PS104 binding
when S106 or S118 are not phosphorylated, but this is
not supported by the fact that a-PS104 binding was
competed similarly by both the PS104 and PS104/6
peptides (Fig. 1A). Hence, phosphorylation at S106 and
S118 may be important for subsequent phosphorylation
of S104. S106 phosphorylation was lower in the case of
S118A, but not S104A, suggesting a role for S118 in
S106 phosphorylation. In the case of S118, the data
suggest that S104, but not S106 influences S118
phosphorylation. Together, these findings are indica-
tive of crosstalk between S104, S106, and S118, which
regulates phosphorylation at these sites.
Phosphorylation at S104 and S106 is induced by ERa
ligands and PMA, and by activated Raf/Ras

S118 phosphorylation is stimulated by E2, as well as anti-
estrogens (Joel et al. 1995, 1998b) and can be mediated
Journal of Molecular Endocrinology (2008) 40, 173–184



Figure 1 Characterization of phospho-specific antisera by peptide competition and phosphorylation site
substitutions. Lysates prepared from COS-1 cells transiently transfected with an empty expression vector
(K), or expression vectors forwild-typeERaorERa inwhichS104,S106, and/orS118hadbeensubstituted
by alanine (A) or glutamic acid (E), as indicated, were immunoblotted using antibodies for total ERa (a-ER),
or for ERa phosphorylated at S104 (a-PS104) or S106 (a-PS106). Cells were treated with ethanol solvent
(K), or 17b-estradiol (E2; 10 nM) and 12-tetradecanoylphorbol-13-acetate (PMA; 100 nM), for 30 min prior
to harvesting. (A) Replicate blots were incubated with primary antibody (no peptide), or antibody that had
been pre-incubated with a 100-fold excess (10 mg/ml) of a peptide encompassing the ERa phosphorylation
site; either unphosphorylated (unphos) or phosphorylated (PS104, PS106, or dual PS104/6) versions,
as indicated. (B) Lysates were additionally immunoblotted using antibody for ERa phosphorylated at S118
(a-PS118). Levels of phospho-ERa were quantitated in relation to the respective total ERa level (boxed,
below each immunoblot).
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by Cdk7 (Chen et al. 2000, 2002). Further, S118 can be
phosphorylated by MAPK in response to EGF and PMA
(Kato et al. 1995, Bunone et al. 1996, Chen et al. 2002).
Phosphorylation of S104 and S106 was also stimulated
by E2, OHT, ICI, and PMA (Fig. 2A). In the case of
PMA, this phosphorylation was decreased by the
MEK1/2 inhibitor U0126, and corresponds to a
decrease in activated Erk1/2 MAPK. The phosphoryl-
ation induced by ligands was mostly unaffected by the
addition of U0126, except that of S104 in response to
OHT and ICI, which were reduced. Co-expression of
ERa with constitutively active Ha-Ras (Ras-V12) or Raf1
Journal of Molecular Endocrinology (2008) 40, 173–184
(Raf-CAAX) resulted in enhanced phosphorylation of
S104, S106, and S118, whereas the kinase-dead mutant
of Raf1 (Raf-S621A) did not (Fig. 2B). Together, these
data indicate that S104, S106, and S118 can be
phosphorylated by Erk1/2 MAPK in response to
activation of the upstream pathways, and also though
MAPK-independent pathways upon ligand binding.

In agreement with the above findings, purified
Erk2 readily phosphorylated GST-ERa at S104, S106,
and S118 (Fig. 3A). Cdk2 also phosphorylated S104
and S118, but did not appear to phosphorylate S106.
GSK3 also phosphorylated S104, with longer
www.endocrinology-journals.org



Figure 2 Phosphorylation of S104 and S106 is stimulated by ERa
ligands and by activators of MAPK. Immunoblots of lysates
prepared from COS-1 cells transfected with empty expression
vector (K) or expression vector for ERa, were performed as for
Fig. 1. Lysates were additionally immunoblotted using antibodies
for total (a-MAPK) and phosphorylated (a-PMAPK) Erk1/2 MAPK.
Levels of phospho-ERa were quantitated in relation to the
respective total ERa level (boxed, below each immunoblot). (A)
Cells were pre-incubated with U0126 (10 mM) for 1 h, followed by
the addition of E2 (10 nM), 4-hydroxytamoxifen (OHT, 100 nM),
ICI 182 780 (ICI; 100 nM) or PMA (100 nM), as indicated, and
cells harvested 30 min later. (B) Cells were transfected with
expression vector for ERa, together with expression vectors for
Ras-V12, Raf-CAAX or Raf-S621A, as indicated.
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exposures showing phosphorylation at S106, but
not S118. However, Cdk2 and GSK3-mediated ERa
phosphorylation appeared to be less significant than
that mediated by Erk2. Similar results were obtained
using recombinant ERa purified from SF9 insect cells
and transiently transfected ERa in crude COS-1
extracts (data not shown). The presence of estrogen
provided amoderate enhancement of Erk2-dependent
phosphorylation (Fig. 3B), but confirmed that ERa can
be phosphorylated by MAPK in the absence of ligand.
To investigate the relative levels of phosphorylation at
these sites, GST-ERa-DLBD and alanine substitution
mutants were incubated with Erk2 in the presence of
32P-gATP (Fig. 3C). Substitution of S104, S106, or S118
by alanine resulted in significant reductions in Erk2
phosphorylation, to w40, 60, and 80% respectively,
relative to wild-type ERa, with negligible detectable
phosphorylation when all three sites were mutated,
suggesting that S104, S106, and S118 are the only
significant Erk2 phosphorylation sites within amino
acids 1–281 of ERa. These data further support the
possibility that phosphorylation at each of these sites
influences phosphorylation at the other sites.
www.endocrinology-journals.org
S104, S106, and S118 are important for ERa activity

In reporter gene assays, substitution of S104, S106, and
S118 by alanine (4/6/18A) resulted in a reduction in
ERa activity in the presence of E2 by nearly 50%, whilst
substitution with glutamic or aspartic acid, to ‘mimic’
phosphorylation at these sites, stimulated ERa activity
two- to threefold (Fig. 4A). ERa activity for the alanine
mutant in the presence of OHTwas reduced by O80%,
and was two- to threefold higher for the 4/6/18E and
4/6/18D mutants. Significant ERa activation (seven-
fold relative to wild-type ERa) was also observed in the
absence of ligand for 4/6/18E and 4/6/18D. These
data suggest that phosphorylation at one or more of
these residues is critical for AF-1 activity and for the
agonist activity of OHT. Western analysis of total ERa
levels indicated relatively equal levels of expression
across the mutants and across different ligand treat-
ments. ICI is generally thought to decrease ERa levels,
but in many cases a change in solubility is mistaken for
degradation (Lipfert et al. 2005); the assays here have
measured total ERa levels.

To examine whether acidic substitutions in ERa
resulted in ligand hypersensitivity, we examined ERa
activity by reporter assay in the presence of increasing
concentrations of estrogen and OHT (Fig. 4B). The
acidic ERa mutant displayed an enhanced activity, of
similar magnitude compared with wild-type ERa, at all
ligand concentrations. Hence, although the acidic
mutant could yield equivalent levels of activity at
lower ligand concentrations compared with that of
wild-type ERa at higher ligand concentrations
(compare 4/6/18E at 0.1 nM E2 with wt at 1 nM E2,
and 4/6/18E at 1 mM OHT with wt at 100 mM OHT),
there was no evidence for enhanced ligand sensitivity.

ERa AF-1 is only weakly active in HeLa cells, with the
majority of ERa activity in HeLa cells being due to AF-2
(Bocquel et al. 1989). Further, the lack of AF-1 activity
correlates with lack of agonist activity for OHT in HeLa
cells (Bocquel et al. 1989, Berry et al. 1990). Triple acidic
substitution stimulated ERa activity in the absence of
ligand, as well as in the presence of E2 (Fig. 4C). Activity
in the presence of OHTwas also increased, but was not
significantly greater than that obtained in the absence
of ligand. Hence, acidic substitutions in AF-1 enhanced
ERa activity in HeLa cells in a similar manner to COS-1
cells, but did not activate an OHT response. Finally, in
the estrogen responsive and ERa-positive MCF7 breast
cancer cell line, transfection of ERa stimulated reporter
gene activity over and above the activity observed for
endogenous ERa (Fig. 4D). Reporter gene activity for
the glutamic and aspartic acid mutants was significantly
greater in the absence of ligand or in the presence of
E2 or OHT, compared with the activities obtained for
wild-type ERa, generally following what was seen using
COS-1 cells.
Journal of Molecular Endocrinology (2008) 40, 173–184
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Phosphorylation at S104, S106, and S118 contributes
to ERa activity

The above data demonstrate that serines 104, 106, and
118 are critical for AF-1 activity, and likely for AF-1
cooperativity with AF-2. In order to define the relative
importance of these sites, single and double mutants
were examined for their effect on ERa activity (Fig. 5).
Substitution of S118 by alanine reduced OHT-stimu-
lated ERa activity. Alanine substitution of 104A or
106A had little effect on OHT stimulation of ERa,
although ERa-104A/106A was significantly less active
than wild-type ERa. Interestingly, S104 or S106
mutations together with mutation of S118 reduced
ERa activity more potently than the S118 substitution
alone. On the basis of these findings, the order of
importance of the three serines appears to be S118O
S104OS106. Although mutation of S106 to alanine had
very little effect on ERa activity, its substitution by
glutamic acid resulted in the greatest stimulation in ERa
activity, with the order of activity for the three mutants
being S106OS104OS118, opposite to the relative
activities observed with the alanine substitutions. Never-
theless, in agreement with the findings from the alanine
mutants, multiple substitutions increased ERa activity
correspondingly, again suggesting that all three phos-
phorylation sites are important for AF-1 activity.
Activated Ras/Raf enhances ERa activity

In order to confirm the role of MAPK in the
phosphorylation of S104 and S106, NIH-3T3 cells
were co-transfected with reporter constructs and ERa,
together with expression vectors encoding Ras or Raf
(Fig. 6A). ERa activity was significantly enhanced by
constitutively active Ha-Ras (Ras-V12) and Raf1 (Raf-
CAAX), and was inhibited by a kinase-dead mutant of
Raf1 (Raf-S621A). By contrast, ERa-104A/106A/118A
activity was not stimulated by Ras-V12 or Raf-CAAX.
U0126 did not significantly inhibit the activities of
Figure 3 S104 and S106 are phosphorylated by Erk2 in vitro.
(A) Purified GST-ERa was incubated with a panel of purified
kinases, as indicated, according to manufacturer’s instructions,
followed by immunoblotting with phospho-specific antibodies
(a-PS104, a-PS106, and a-PS118) or a-ER. The filled arrows
indicate the position of GST-ERa, and the open arrow indicates a
non-specific product seen with a-PS106 antisera. (B) Purified
GST-ERa was incubated with increasing amounts of purified Erk2
MAPK (0, 5, 10, 20, 50, and 100 ng) in the absence of ligand (NL)
or in the presence of E2 (10 nM), followed by immunoblotting as
before. (C) Purified GST, or wild-type GSaT-ERa-DLBD
(ERa-DLBD) or GST-ERa-DLBD in which S104, S106, and/or
S118 had been substituted by alanine (A), as indicated, were
incubated with Erk2 in the presence of 32P-gATP, followed by
SDS-PAGE and autoradiography of the dried gel. Immunoblotting
a duplicate gel with a-ER was used to determine the relative levels
of each mutant. The bar chart shows quantification of each 32P
signal relative to the respective total GST-ERa-DLBD level.

www.endocrinology-journals.org



Figure 4 Effect of phosphorylation site mutations on ERa activity. (A and B) COS-1, (C) HeLa, and (D)
MCF7 cells were co-transfected with the ERE-3-TATA-firefly luciferase reporter gene, a renilla luciferase
control reporter gene, and expression vectors encoding wild-type ERa (ERa) or ERa in which S104, S106
and S118 were substituted by alanine (4/6/18A), glutamic acid (4/6/18E) or aspartic acid (4/6/18D), as
indicated. Cells were treated with ethanol solvent (no ligand; NL), E2 (10 nM), OHT (100 nM) or ICI
(100 nM), as indicated, except (B) where E2 was added at 0.01, 0.1, 1, and 10 nM andOHT at 0.1, 1, 10, or
100 nM. The cells were harvested for luciferase assays 20 h later. Results are presented as relative ratios
of firefly to renilla control luciferase activities, as described in Materials and methods. (A) A parallel
transfection series was assayed for ERa expression by immunoblot (a-ER). (D) MCF7 cells were
additionally transfected with an empty vector control (K) in order to determine the contribution of
endogenous ERa.
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ERa-104A/106A/118A or 104E/106E/118E, but did
inhibit the activities of wt ERa and those encoding
individual alanine mutants (Fig. 6B). Similar results
were obtained by treatment with another MEK1/2
inhibitor, PD98059 (data not shown). These data
suggest that the activation of the Ras/Raf/MEK/
MAPK signal transduction pathway results in ERa
activation through phosphorylation at S104, S106, and
S118.
Discussion

Phosphorylation at serine 118 in the AF-1 domain of
ERa has been demonstrated by us and other researchers
to be important for ERa activity (Ali et al. 1993,
Le Goff et al. 1994, Kato et al. 1995, Bunone et al. 1996,
Chen et al. 2000, 2002). Phosphorylation of serines 104
www.endocrinology-journals.org
and 106 has also been shown to augment ERa activity
(Le Goff et al. 1994), but their phosphorylation and
function have not been investigated thoroughly.

Inorder to investigatephosphorylationof these residues
in greater detail, we generated phosphorylation site-
specific antisera. The antisera demonstrated appropriate
specificity for ERa phosphorylated at S104 or S106,
determined using multiple point mutants of S104 and
S106 and peptide competition of antibody binding, and
confirms that both S104 and S106 of ERa can be
phosphorylated. Interestingly, phosphorylation at S104
appeared to be substantially reduced by substitutions at
S106 and S118, and S106 phosphorylation reduced by
S104E and S118A. S118 phosphorylation was also some-
what reduced by S104 substitutions. The epitopes for the
a-PS104 anda-PS106 antiseramay overlap, but thepeptide
competition studies of antibody specificity go some way to
suggest that these antisera are not influenced by the
Journal of Molecular Endocrinology (2008) 40, 173–184



Figure 5 Effect of individual site mutations on ERa activity. COS-1 cells were co-transfected with ERE-3-
TATA-luc, pRL-TK, and the wild-type ERa expression vector (ERa) or versions with alanine or glutamic
acid substitutions, as indicated. Cells were treated and luciferase assays carried out as for Fig. 4. A parallel
transfection series was assayed for ERa expression by immunoblot (a-ER).
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phosphorylation status at the respective adjacent site.
Thus, in general, phosphorylation at these sites appears to
be partly interdependent. We cannot, of course, rule out
the possibility that these substitutions simply affect an ERa
conformation required for efficient phosphorylation.

Previous studies have indicated that the agonist
activity of tamoxifen (OHT) is due to activation of
AF-1, whilst AF-2 function is inhibited (Tora et al. 1989b,
Berry et al. 1990). In reporter gene assays using OHT,
alanine substitution of S104, S106, or S118 inhibited
ERa activity, with the greatest inhibition being observed
with substitution of all three residues. Similarly,
substitution of the individual sites by glutamic acid
augmented ERa activity, with the greatest activity being
seen for the triple mutant. Additionally, these sites
appear to be important for estrogen-inducedand ligand-
independent ERa activities. These data suggest that
phosphorylation at some or all three sites is critical for
AF-1 activity and for the agonist action of OHT.
Substitution of S118 to alanine resulted in a greater
loss of function compared with that of S104 and S106,
but glutamic acid substitutions suggested that achieving
a high level of phosphorylation at S104 and S106 might
have a greater impact upon ERa function than that at
S118. These apparently contradictory results may be
explained by functionally stronger S104 and S106 sites
being phosphorylated at lower levels in COS-1 cells,
relative to that at S118. It is additionally difficult to assign
Journal of Molecular Endocrinology (2008) 40, 173–184
levels of importance to these sites, since immunoblot
analysis of ERa substitution mutants suggested that
S104, S106, and S118 phosphorylation is partly inter-
dependent. Our data instead suggest that these three
sites, together, comprise a complex phosphorylated
domain, involved in augmenting ERa activity.

Reporter gene assays indicated that the activity of the
ERa-4/6/18E mutant (and 4/6/18D mutant) in the
absenceof ligandwasata level similar to that seen for wild-
type ERa in the presence of OHT, suggesting that OHT-
induced phosphorylation at these residues may be
sufficient for AF-1 activity. However, the further stimu-
lation of ERa-4/6/18E activity by tamoxifen in COS-1
cells, suggests that the agonist activity ofOHT is not solely
due to stimulation of phosphorylation at these sites.
Indeed, acidic substitutions did not lead to a restoration
of OHT-induced ERa activity in HeLa cells, in which ERa
AF-1activity is known tobe lowandassociatedwith littleor
no stimulation by OHT (Tora et al. 1989b, Berry et al.
1990). These data further support the view that the
agonist activity ofOHT is not due simply to stimulation of
AF-1 phosphorylation. Thus, although OHT agonist
activity is dependent upon (and induces) phosphoryl-
ation, other factors – possibly cell context-dependent
expression of coactivators and corepressors (Shang &
Brown 2002) – are also likely to be involved.

Previous reports have shown that Cdk2 (Trowbridge
et al. 1997, Rogatsky et al. 1999) and GSK3 (Medunjanin
www.endocrinology-journals.org



Figure 6 Effect of MAPK signaling activators and inhibitors on ERa activity. (A) NIH3T3 cells were
co-transfected with ERE-3-TATA-luc, pRL-TK, and the wild-type ERa expression vector (ERa), or
versions in which S104, S106, and S118 were substituted by alanine (4/6/18A) or glutamic acid (4/6/18E),
as indicated. Cells were additionally co-transfected with empty expression vector (K) or expression
vectors for Ras-V12, Raf-CAAX, or Raf-S621A, as shown. Cells were treated and luciferase assays
carried out as for Fig. 4. (B) COS-1 cells were transfected with ERE-3-TATA-luc, pRL-TK, and the wild-
type ERa expression vector (ERa) or versions with alanine or glutamic acid substitutions, as indicated.
Cells were pre-incubated with U0126 (10 mM), 16 h following transfection, as indicated, for 1 h prior to
addition of OHT, and harvested for luciferase assays 7 h later.
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et al. 2005) can phosphorylate S104 and/or S106.
However, whilst investigating the phosphorylation of
S118, we had previously observed that mutation of S104
and S106 reduced the levels of ERa phosphorylation by
MAPK in vitro (Chen et al. 2002). In agreement with this,
we show here that S104 and S106 phosphorylation was
stimulated by PMA and inhibited by the MEK1/2
inhibitor U0126, in transfected COS-1 cells. Further,
co-transfection with activated Ras-V12 or Raf-CAAX, but
not dominant-negative Raf-S621A, stimulated S104 and
S106 phosphorylation. Together, these results suggest
that serines 104 and 106 are phosphorylated by Erk1/2
MAPK. In vitro kinase experiments confirmed that, in
addition to phosphorylating S118, Erk2 could also
directly phosphorylate S104 and S106. Of the other
kinases tested, Cdk2 was able to phosphorylate S104
and S118, and GSK3 able to phosphorylate S104, but to
levels considerably lower than that achieved by Erk2.
However, Cdk2 and/or GSK3 may phosphorylate S104
and/or S106 in vivo. Indeed, ligand-stimulated phos-
phorylation was in most cases insensitive to U0126,
suggesting the involvement of other kinases. However,
OHT- and ICI-induced phosphorylation of S104 did
appear to partly involve MAPK, raising the possibility
that multiple kinases are differentially involved,
depending on the specific ligand.

In reportergeneassays, constitutivelyactiveRas andRaf
stimulated ERa activity in the absence of ligand or in the
presence of OHT. Substitution of S104/S106/S118 by
alanine prevented ERa activation by Ras and Raf,
indicating that these sites are required for MAPK
stimulation of ERa activity. Furthermore, U0126 inhib-
ited ERa activity, as did dominant-negative Raf, but had
little effect on triple S104, S106, and S118mutants. These
results suggest that the inhibitory effect of Raf-S621A and
U0126 on ERa activity was due to the inhibition of
phosphorylation at some or all of the three sites, and
further implicates MAPK in the phosphorylation of S104,
S106, and S118. Phosphorylation of S104, S106, and S118
could alsobe inducedbyERa ligands;E2,OHT, and ICI in
COS-1 cells. The in vitro kinase assays indicated that
ligand-binding results in marginally more efficient
phosphorylation of ERa by MAPK, perhaps due to the
altered conformation of ERa and/or unmasking of
potential MAPK docking site(s) (Obenauer et al. 2003).
However, ligand-stimulated phosphorylation of ERa
in vivo was largely insensitive to U0126, and may be
mediated by Cdk2 and/or GSK3 (Trowbridge et al. 1997,
Rogatsky et al. 1999, Medunjanin et al. 2005).

In conclusion, phosphorylation of S104, S106, and
S118 is important for ERa AF-1 activity, as displayed by
enhanced ligand-independent, and E2- and OHT-depen-
dent, activities. This enhanced activity is not due to ligand
hypersensitivity. No one site is critical, but lack of
phosphorylation at all of the sites together results in
near complete loss of AF-1 activity and prevents the
Journal of Molecular Endocrinology (2008) 40, 173–184
agonist action of OHT. Additionally, phosphorylation of
these sites occurs in a partially interdependent manner
and phosphorylation at each site appears to act via a
similar mechanism to enhance ERa activity, suggesting
that this region constitutes a phospho-regulated domain
of cooperativeMAPK phosphorylation sites. Activation of
the EGF receptor and ErbB2 pathways, which signal
throughMAPK, has been associated withmore aggressive
breast cancer phenotypes and poor patient prognosis
(Ross & Fletcher 1998, Arteaga 2001). These pathways
have additionally been linked to the tamoxifen resistance
phenotype (Benz et al. 1993, Kurokawa et al. 2000, Gee
et al. 2001, Kurokawa & Arteaga 2003, Shou et al. 2004).
The evidence presented here suggests that modulation
of ERa phosphorylation can determine whether or not
tamoxifen acts as an ERa agonist or antagonist, and that
hyperphosphorylation may result in tamoxifen-induced
activities at levels high enough to support the growth of
cells that depend upon ERa activity, such as those found
in the majority of breast cancers.
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