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Abstract: This paper presents a difference-type lower bound for the Bayes risk as a difference-type
extension of the Borovkov–Sakhanenko bound. The resulting bound asymptotically improves the
Bobrovsky–Mayor–Wolf–Zakai bound which is difference-type extension of the Van Trees bound.
Some examples are also given.
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1. Introduction

The Bayesian Cramér–Rao bound or Van Trees bound [1] has been extended in a
number of directions (e.g., [1–3]). For example, multivariate cases for such bounds are
discussed by [4]. These bounds are used in many practical fields such as signal processing
and nonlinear filtering. However, these bounds are not always sharp. To improve them,
Bhattacharrya type extensions for them were provided by [5,6]. These Bayesian bounds are
split into two categories, the Weiss–Weinstein family [7–9] and the Ziv–Zakai family [10–12].
The work in [13] serves as an excellent reference of this topic.

Recently, the authors in [14] showed that the Borovkov–Sakhanenko bound is asymp-
totically better than the Van Trees bound, and asymptotically optimal in a certain class of
bounds. The authors in [15] compared some Bayesian bounds from the point of view of
asymptotic efficiency. Furthermore, necessary and sufficient conditions for the attainment
of Borovkov–Sakhanenko and the Van Trees bounds were given by [16] for an exponential
family with conjugate and Jeffreys priors.

On the other hand, the Bobrovsky–Mayor–Wolf–Zakai bound ([17]) is known as a
difference-type (Chapman–Robbins type) variation of the Van Trees bound. In this paper,
we consider the improvement of the Bobrovsky–Mayor–Wolf–Zakai bound by applying
the Chapman–Robbins type extension of the Borovkov–Sakhanenko bound. This bound is
categorized into Weiss–Weinstein family.

As discussed later, the obtained bound is asymptotically superior to the Bobrovsky–
Mayor–Wolf–Zakai bound for a sufficiently small perturbation and large sample size. We
also provide several examples for finite and large sample size settings which include
conjugate normal and Bernoulli logit models.

2. Improvement of Bobrovsky–Mayor–Wolf–Zakai Bound

Let X1, . . . , Xn be a sequence of independent, identically distributed (iid) random
variables with density function f1(x | θ) (θ ∈ Θ = R1) with respect to a σ-finite measure
µ. Suppose that f1(x | θ) is twice partial differentiable with respect to θ, and support
{x | f1(x | θ) > 0} of f1(x | θ) is independent of θ. The joint probability density function
of X := (X1, . . . , Xn) is f (x | θ) := ∏n

i=1 f1(xi | θ), where x = (x1, . . . , xn). Let λ(θ) be a
prior density of θ with respect to the Lebesgue measure. Consider the Bayesian estimation
problem for a function ϕ(θ) of θ under quadratic loss L(θ, a) = (a − ϕ(θ))2. The joint
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pdf f (x, θ) of (X, θ) is given by f (x, θ) = f (x | θ)λ(θ). Hereafter, expectations under
probability densities f (x, θ) and f (x | θ) are denoted by E(·) and Eθ(·), respectively. We
often use prime notation for partial derivatives with respect to θ for brevity, for example,
∂
∂θ ϕ(θ) is expressed as ϕ′(θ).

In this paper, we assume the following regularity conditions (A1)–(A3).

(A1) ϕ(θ) is twice differentiable.
(A2) Fisher information number

0 < I(θ) = −Eθ{∂2 log f1(X1|θ)/∂θ2} = Eθ [{∂ log f1(X1|θ)/∂θ}2] < ∞

for arbitrary θ ∈ Θ and is continuously differentiable in Θ.
(A3) Prior density λ(θ) of θ is positive and differentiable for arbitrary θ ∈ Θ and

limθ→±∞ λ(θ) = 0.

Let Gh = 1
h

(
f (x,θ+h)

f (x,θ)
ϕ′(θ+h)
I(θ+h) −

ϕ′(θ)
I(θ)

)
. Considering variance–covariance inequality for

Gh, we have the following theorem for the Bayes risk.

Theorem 1. Assume (A1)–(A3). For an estimator ϕ̂(X) of ϕ(θ) and a real number h, inequality

E
{
(ϕ̂(X)− ϕ(θ))2

}
≥ {Cov(Gh, ϕ̂(X)− ϕ(θ))}2

E(G2
h)

=

{
E
[
{ϕ(θ)− ϕ(θ − h)} ϕ′(θ)

I(θ)

]}2

E
[{

f (X,θ+h)
f (X,θ)

ϕ′(θ+h)
I(θ+h) −

ϕ′(θ)
I(θ)

}2
] (1)

for the Bayes risk holds.

Bound (1) is directly derived as a special case of the Weiss–Weinstein class [7]. How-
ever, we prove it in the Appendix B for the sake of clarity.

Note that

lim
h→0

Gh =
1

f (x, θ)
lim
h→0

1
h

{
f (x, θ + h)

ϕ′(θ + h)
I(θ + h)

− f (x, θ)
ϕ′(θ)

I(θ)

}
=

1
f (x, θ)

∂

∂θ

{
f (x, θ)

ϕ′(θ)

I(θ)

}
(= G0, say).

(2)

The Borovkov–Sakhanenko bound is obtained from the variance–covariance inequality for G0

E
{
(ϕ̂(X)− ϕ(θ))2

}
≥ {Cov(G0, ϕ̂(X)− ϕ(θ))}2

E(G2
0)

=

{
E

(
ϕ′(θ)2

I(θ)

)}2

nE

(
ϕ′(θ)2

I(θ)

)
+ E

[{
(ϕ′(θ)λ(θ)/I(θ))′

λ(θ)

}2
] (3)

([2]). Since Bound (1) converges to Bound (3) as h→ 0 under Condition (B1) in Appendix A,
Bound (1) for a sufficiently small h is very close to Bound (3).

In a similar way, the Bobrovsky–Mayor–Wolf–Zakai bound is obtained from variance–
covariance inequality

E
{
(ϕ̂(X)− ϕ(θ))2

}
≥ {Cov(Bh, ϕ̂(X)− ϕ(θ))}2

E(B2
h)

=
[E{ϕ(θ)− ϕ(θ − h)}]2

E
[{

f (X,θ+h)
f (X,θ)

}2
]
− 1

, (4)
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where Bh = 1
h

(
f (x,θ+h)

f (x,θ) − 1
)

([17]). By applying limh→0 Bh = B0 =
∂
∂θ f (x,θ)

f (x,θ) to the variance–
covariance inequality, we have the Van Trees bound, that is,

E
{
(ϕ̂(X)− ϕ(θ))2

}
≥ {Cov(B0, ϕ̂(X)− ϕ(θ))}2

E(B2
0)

=
{E(ϕ′(θ))}2

nE{I(θ)}+ E
{

λ′(θ)
λ(θ)

}2 . (5)

Since limh→0 Bh = B0, the value of Bobrovsky–Mayor–Wolf–Zakai Bound (4) converges to
Van Trees Bound (5) as h→ 0 under (B2) in Appendix A. Hence, the value of Bound (4) for
a sufficiently small h is very close to the one of Bound (5) in this case.

On the other hand, we often consider the normalized risk

lim
n→∞

nE
{
(ϕ̂(X)− ϕ(θ))2

}
(6)

(see [3,14]). For the evaluation of the normalized risk (6), Bayesian Cramér–Rao bounds
can be used. For example, from Bound (3),

lim
n→∞

nE
{
(ϕ̂(X)− ϕ(θ))2

}
≥ lim

n→∞
n

{
E

(
ϕ′(θ)2

I(θ)

)}2

nE

(
ϕ′(θ)2

I(θ)

)
+ E

[{
(ϕ′(θ)λ(θ)/I(θ))′

λ(θ)

}2
] = E

(
ϕ′(θ)2

I(θ)

)
. (7)

Moreover, the authors in [14,15] showed that the Borovkov–Sakhanenko bound is asymptotically
optimal in some class, and asymptotically superior to the Van Trees bound, that is,

lim
n→∞

n

{
E
(

ϕ′(θ)2

I(θ)

)}2

nE
(

ϕ′(θ)2

I(θ)

)
+ E

[{
(ϕ′(θ)λ(θ)/I(θ))′

λ(θ)

}2
] ≥ lim

n→∞
n

{E(ϕ′(θ))}2

nE(I(θ)) + E
{(

λ′(θ)
λ(θ)

)2
} . (8)

Denote Borovkov–Sakhanenko Bound (3), Van Trees Bound (5), Bobrovsky–Mayor–Wolf–
Zakai Bound (4), and Bound (1) as BSn, VTn, BMZn,h and Nn,h, when sample size is n and
perturbation is h, respectively. Then, (8) means

lim
n→∞

BSn

VTn
= lim

n→∞

n× BSn

n×VTn
=

limn→∞ n× BSn

limn→∞ n×VTn
≥ 1. (9)

Hence, from (9),
BSn ≥ VTn (10)

holds for a sufficiently large n. Moreover, for this large n ∈ N,

lim
h→0

Nn,h = BSn ≥ lim
h→0

BMZn,h = VTn (11)

under (B1) and (B2). Hence, if Inequality (8) is strict, then Nn,h > BMZn,h for this large
n ∈ N and a sufficiently small h by (10) and (11). The equality in (8) holds if and only if ϕ′

is proportional to I(θ). Therefore, Bound (1) is asymptotically superior to the Bobrovsky–
Mayor–Wolf–Zakai bound (4) for a sufficiently small h.

However, the comparison between Bounds (1) and (4) is not easy for a finite n. Hence,
we now show comparisons of various existing bounds in two simple examples for fixed
n ∈ N and h ∈ R1.

Example 1. Let X1, . . . , Xn be a sequence of iid random variables according to N(θ, 1) (θ ∈ Θ =
R1). We show that Bound (1) is asymptotically tighter than Bobrovsky–Mayor–Wolf–Zakai Bound
(4) for a sufficiently large n. Suppose that the prior of θ is N(m, τ2), where m and τ > 0 are known
constants. Denote X = (X1, . . . , Xn) and x = (x1, . . . , xn). In this model, Fisher information
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I(θ) per observation equals 1. We consider the estimation problem for ϕ(θ) = θ2 since Bound (1)
coincides with Bound (4) for ϕ(θ) = θ (see also [5,6]).

First, we calculated Bobrovsky–Mayor–Wolf–Zakai Bound (4). The ratio of f (x, θ + h) and
f (x, θ) is

f (x, θ + h)
f (x, θ)

= exp
{

hT − n
2
(2hθ + h2)− h

2τ2 (2θ − 2m + h)
}

, (12)

where T = ∑n
i=1 Xi. Since the conditional distribution of T given θ is N(nθ, n) and the moment

generating function gT(s) is

gT(s) = exp
(

snθ +
s2n
2

)
, (13)

the conditional expectation ET|θ{exp(2hT)} is

ET|θ{exp(2hT)} = gT(2h) = exp
(

2hnθ + 2h2n
)

, (14)

where ET|θ(·) denotes the conditional expectation with respect to the conditional distribution of T
given θ. Then, from (12) and (14), we have that

E

[{
f (X, θ + h)

f (X, θ)

}2
]
=E
[

exp
{

2hT − n(2hθ + h2)− h
τ2 (2θ − 2m + h)

}]
=E
[

ET|θ{exp(2hT)} exp
{
−nh2 − h

τ2 (−2m + h)− 2hθ

(
n +

1
τ2

)}]
=E
[

exp
{

nh2 +
2hm
τ2 −

h2

τ2

}
exp

{
−2hθ

τ2

}]
= exp

{
nh2 +

2hm
τ2 −

h2

τ2

}
exp

{
−2hm

τ2 +
2h2

τ2

}
= exp

(
nh2 +

h2

τ2

)
. (15)

We can easily obtain E{ϕ(θ)− ϕ(θ − h)} = h(2θ − h). Hence, Bobrovsky–Mayer–Wolf–Zakai
Bound (4) is equal to

{h(2m− h)}2

exp
{

h2
(

n + 1
τ2

)}
− 1

(= BMZh, say) (16)

from (15). Next, we calculated Bound (1). Since I(θ) = 1, ϕ(θ) = θ2 and ϕ′(θ) = 2θ,

E
[

ϕ′(θ)

I(θ)
{ϕ(θ)− ϕ(θ − h)}

]
= E

(
4θ2h− 2θh2

)
= 2h{2(m2 + τ2)−mh}. (17)

Since

f (X, θ + h)
f (X, θ)

ϕ′(θ + h)
I(θ + h)

= 2(θ + h) exp
{

hT − n
2
(2hθ + h2)− h

2τ2 (2θ − 2m + h)
}

, (18)

we have

E

[{
f (X, θ + h)

f (X, θ)

ϕ′(θ + h)
I(θ + h)

}2
]

=E
[

4(θ + h)2ET|θ{exp(2hT)} exp
{
−n(2hθ + h2)− h

τ2 (2θ − 2m + h)
}]

=4 exp
{

nh2 − h
τ2 (−2m + h)

}
E
[
(θ + h)2 exp

(
−2h

τ2 θ

)]
(19)



Entropy 2021, 23, 161 5 of 13

from (18) and (14). Here, since moment-generating function gθ(s) of θ is gθ(s) = E{exp(sθ)} =
exp

(
sm + s2τ2

2

)
,

g′θ(s) =E{θ exp(sθ)} = (m + sτ2) exp
(

sm +
s2τ2

2

)
,

g′′θ (s) =E
{

θ2 exp(sθ)
}
=
{

τ2 + (m + sτ2)2
}

exp
(

sm +
s2τ2

2

)
. (20)

So, from (20), we obtain

E
{

exp
(
−2h

τ2 θ

)}
= exp

{
−2hm

τ2 +
2h2

τ2

}
,

E
{

θ exp
(
−2h

τ2 θ

)}
=(m− 2h) exp

{
−2hm

τ2 +
2h2

τ2

}
,

E
{

θ2 exp
(
−2h

τ2 θ

)}
=
{

τ2 + (m− 2h)2
}

exp
{
−2hm

τ2 +
2h2

τ2

}
. (21)

Hence, from (19) and (21),

E

[{
f (X, θ + h)

f (X, θ)

ϕ′(θ + h)
I(θ + h)

}2
]
= 4{τ2 + (m− h)2} exp

(
nh2 +

h2

τ2

)
. (22)

Moreover, we have

E
[

f (X, θ + h)
f (X, θ)

ϕ′(θ + h)
I(θ + h)

ϕ′(θ)
I(θ)

]
=4E

{
θ(θ + h)

f (X, θ + h)
f (X, θ)

}
=4

∫∫
θ(θ + h)

f (x, θ + h)
f (x, θ)

f (x, θ)dθdµ(x)

=4
∫∫

(t− h)t f (x, t)dtdµ(x) (substitute t = θ + h)

=4E{(θ − h)θ} = 4(m2 + τ2 − hm), (23)

and

E

[{
ϕ′(θ)

I(θ)

}2
]
= 4E(θ2) = 4(τ2 + m2). (24)

From (22)–(24),

E

[{
f (X, θ + h)

f (X, θ)

ϕ′(θ + h)
I(θ + h)

− ϕ′(θ)

I(θ)

}2
]
= 4

{
τ2 + (m− h)2

}
exp

{
h2
(

n +
1
τ2

)}
− 4(m2 + τ2 − 2hm). (25)

Therefore, Bound (1) is equal to[
h
{

2(m2 + τ2)−mh
}]2

{τ2 + (m− h)2} exp
{

h2
(

n + 1
τ2

)}
− (m2 + τ2 − 2hm)

(= Nh, say). (26)

Lastly, we compare (1) and (4). From Bounds (1) and (4), we have

E
{
(ϕ̂(X)− ϕ(θ))2

}
≥ BMZh, Nh (27)

for arbitrary h ∈ R1. In general, while the Bayes risk is O(n−1), bounds BMZh and Nh are
O(exp(−nh2)) or decrease exponentially for h 6= 0 as n → ∞. Thus, we take the limit as
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h → 0 in order to obtain an asymptotically tighter bound. Define limh→0 BMZh = BMZ0 and
limh→0 Nh = N0. Since

BMZ0 =
4m2

n + 1
τ2

, N0 =
4(m2 + τ2)
1

m2+τ2 + n + 1
τ2

(28)

from (16) and (26), we may compare their reciprocals, 4/BMZ0 and 4/N0, in order to compare
BMZ0 and N0. BMZ0 and N0 are the Van Trees and Borovkov–Sakhanenko bounds, respectively.
The Borovkov–Sakhanenko bound is asymptotically tighter than the Van Trees bound. In this case,
the Borovkov–Sakhanenko bound is also tighter than the Van Trees bound for fixed n. In fact, since
the difference is

4
BMZ0

− 4
N0

=
1

m2(m2 + τ2)

(
m2

m2 + 1
− nτ2 − 1

)
<

1
m2(m2 + τ2)

(
1− nτ2 − 1

)
=

−nτ2

m2(m2 + τ2)
< 0 (29)

from (28), so 4/BMZ0 > 4/N0 and hence BMZ0 < N0 for all n ∈ N.
Next, we compare these bound to the Bayes risk of the Bayes estimator ϕ̂B(X) of ϕ(θ) = θ2.

The Bayes estimator ϕ̂B(X) is given by

ϕ̂B(X) =
1

n + (1/τ2)
+

T + (m/τ2)

n + (1/τ2)
. (30)

Then, the Bayes risk of (30) is

E
{
(ϕ̂B(X)− ϕ(θ))2

}
=

2τ2(2nτ4 + 2m2τ2n + 2m2 + τ2)

(nτ2 + 1)2

=4(m2 + τ2)n−1 +
−2(2m2 + 3τ2)

τ2 n−2 + O
(

n−3
)

(n→ ∞). (31)

Then, the normalized risk satisfies

lim
n→∞

nE
{
(ϕ̂B(X)− ϕ(θ))2

}
= 4(m2 + τ2) = lim

n→∞
nN0 > 4m2 = lim

n→∞
nBMZ0. (32)

Thus, the Van Trees bound is not asymptotically tight, while the Borovkov–Sakhanenko bound is
asymptotically tight.

Example 2. We considered the Bernoulli logit model of Example 2 in [16] when the sample size
was 1. Bound (1) was not always better than Bobrovsky–Mayor–Wolf–Zakai Bound (4). Let X have
Bernoulli distribution Ber

(
eθ

1+eθ

)
(θ ∈ R1). Then, the probability density function of X given θ is

f (x | θ) = eθx 1
1 + eθ

(x = 0, 1). (33)

It is assumed that the prior density of θ is the conjugate, a version of Type IV generalized logistic
distribution (e.g., [18]); then,

λ(θ) = 30e3θ
(

1 + eθ
)−6

(θ ∈ R1). (34)

We set the hyperparameters to these values for some moment conditions. In this case, Fisher
information for Model (33) is given by

I(θ) =
eθ

(1 + eθ)2 , (35)
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and we considered the estimation problem of ϕ(θ) = θ.
In this example, we calculated Bound (1) in the first place. Combining (33)–(35), we have

f (x, θ + h)
f (x, θ)

ϕ′(θ + h)
I(θ + h)

= ehx (1 + eθ)7

(1 + eθ+h)5 e2h−θ (36)

for h ∈ R1. Since X given θ is distributed as Ber
(

eθ

1+eθ

)
, it holds

EX|θ(e
2hX) =

1 + eθ+2h

1 + eθ
, (37)

where EX|θ(·) means the expectation with respect to the conditional distribution of X given θ. Then,
we have

E

[{
f (X, θ + h)

f (X, θ)

ϕ′(θ + h)
I(θ + h)

}2
]
=E

(
EX|θ

[{
f (X, θ + h)

f (X, θ)

1
I(θ + h)

}2
])

=E

{
(1 + eθ)14

(1 + eθ+h)10 e4h−2θEX|θ
(

e2hX
)}

=E
{
(1 + eθ)13(1 + eθ+h)−10(1 + eθ+2h)e4h−2θ

}
=30e4h

∫ ∞

−∞
(1 + eθ)7(1 + eθ+2h)eθ(1 + eθ+h)−10dθ

=
5
6
{10 cosh(h) + 10 cosh(2h) + 10 cosh(3h) + cosh(4h) + 5}, (38)

by (35) and (37), where cosh(x) = 1
2 (e

x + e−x) is the hyperbolic cosine. Moreover, we have

E
[

f (X, θ + h)
f (X, θ)

ϕ′(θ + h)ϕ′(θ)
I(θ + h)I(θ)

]
=
∫∫

f (x, θ + h)
1

I(θ + h)I(θ)
dθdF(x)

=
∫∫

f (x, t)
1

I(t)I(t− h)
dtdF(x) (substitute t = θ + h)

=
∫

λ(t)
1

I(t)I(t− h)
dt

=30
∫
(1 + et)−4(1 + et−h)2et+hdt

=10{1 + 2 cosh(h)}, (39)

where F(·) is the cumulative distribution function of Ber
(

eθ

1+eθ

)
. In a similar way, we have

E
{

ϕ′(θ)2

I(θ)2

}
= E

{
(1 + eθ)4

e2θ

}
= 30

∫
(1 + eθ)−2eθdθ = 30 (40)

and

E
[
{ϕ(θ)− ϕ(θ − h)} ϕ′(θ)

I(θ)

]
= E

{
h

I(θ)

}
= 30h

∫
e2θ(1 + eθ)−4dθ = 5h. (41)
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Hence, we can show from (38)–(41) that the right-hand side of (1) equals(
E
[
{ϕ(θ)− ϕ(θ − h)} ϕ′(θ)

I(θ)

])2

E
[{

f (X,θ+h)
f (X,θ)

ϕ′(θ+h)
I(θ+h)

}2
]
− 2E

[
f (X,θ+h)

f (X,θ)
ϕ′(θ+h)ϕ′(θ)

I(θ+h)I(θ)

]
+ E

{
ϕ′(θ)2

I(θ)2

}
=

(5h)2

10
3 sinh

(
h
2

)2
{33 cosh(h) + 12 cosh(2h) + cosh(3h) + 8}

=
30h2

−38 cosh(h) + 10 cosh(2h) + 10 cosh(3h) + cosh(4h) + 17
(=: (Nh, say), (42)

where sinh(x) = 1
2 (e

x − e−x) is the hyperbolic sine. The Borovkov–Sakhanenko bound (3) is
calculated as

N0 = lim
h→0

Nh =
5
9
≈ 0.556. (43)

In the second place, we calculate Bound (4). In a similar way to (38) and (39), we have

E

[{
f (X, θ + h)

f (X, θ)

}2
]
=E
{
(1 + eθ+2h)(1 + eθ)13(1 + eθ+h)−14e6h

}
=30e6h

∫
(1 + eθ+2h)(1 + eθ)7(1 + eθ+h)−14e3θdθ

=
1

858
{318 cosh(h) + 231 cosh(2h) + 116 cosh(3h) + 18 cosh(4h) + 175} (44)

and E{ϕ(θ)− ϕ(θ − h)} = h. Hence, by substituting (44) into (4), we have

[E{ϕ(θ)− ϕ(θ − h)}]2

E
[{

f (X,θ+h)
f (X,θ)

}2
]
− 1

=
h2

1
858{318 cosh(h) + 231 cosh(2h) + 116 cosh(3h) + 18 cosh(4h) + 175} − 1

=
858h2

318 cosh(h) + 231 cosh(2h) + 116 cosh(3h) + 18 cosh(4h)− 683
(=: BMZh, say). (45)

The Van Trees bound is calculated as

BMZ0 = lim
h→0

BMZh =
2
3
≈ 0.667. (46)

In last place, we compute the Bayes risk of the Bayes estimator θ̂B(X) of θ, as follows. Since
the posterior density of θ, given X = x, is given by

60eθ(x+3)(1 + eθ)−7 (0 < θ < 1), (47)

the Bayes estimator is calculated as θ̂B(0) = E(θ|X = 0) = 60
∫ ∞
−∞ θe3θ(1 + eθ)−7dθ = −1/3,

θ̂B(1) = E(θ|X = 1) = 60
∫ ∞
−∞ θe4θ(1 + eθ)−7dθ = 1/3. Then, by easy but tedious calculation,

the Bayes risk of θ̂B is

E
{(

θ̂B − θ
)2
}
=

π2

3
− 47

18
≈ 0.679. (48)

Then, we can plot the values of Nh, N0, BMZh, BMZ0 and the Bayes risk of θ̂B from (42)–(46),
and (48) (Figure 1). Figure 1 shows that Bound (1) is lower than Bound (4) for any h under Prior
(34) when the sample size equals 1. However, in Section 3, we show by using the Laplace method
that Bound (1) is tighter than Bound (4) for a large sample size.
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Figure 1. Nh, N0, BMZh, BMZ0, and Bayes risk.

3. Asymptotic Comparison by Laplace Approximation

In this section, we consider Example 2 in the previous section, again in the case when
sample size is n. Bound (1) is asymptotically better than Bound (4) for a sufficiently large
n by using the Laplace method. These bounds are only approximations as n → ∞. The
probability density function of Xi given θ is

f (xi | θ) =
(

eθ

1 + eθ

)xi( 1
1 + eθ

)1−xi

= eθxi
1

1 + eθ
(xi = 0, 1; θ ∈ R1; i = 1, . . . , n) (49)

and the likelihood ratio of (49) is

f (xi | θ + h)
f (xi | θ)

= e(θ+h)xi
1

1 + eθ+h e−θxi (1 + eθ) = ehxi
1 + eθ

1 + eθ+h (h ∈ R1). (50)

Assume that the prior density of θ is

λ(θ) =
1

B(c1, c2 − c1)
ec1θ(1 + eθ)−c2 (θ ∈ R1; c2 > c1 + 1 > 2). (51)

Then, the ratio of (51) is equal to

λ(θ + h)
λ(θ)

= e(θ+h)c1(1 + eθ+h)−c2 e−θc1(1 + eθ)c2 = ec1h(1 + eθ+h)−c2(1 + eθ)c2 . (52)

By denoting X = (X1, . . . , Xn), and x = (x1, . . . , xn), the ratio of joint probability density
functions of (X, θ) is

P :=
f (x, θ + h)

f (x, θ)
=

{
n

∏
i=1

f (xi | θ + h)
f (xi | θ)

}
λ(θ + h)

λ(θ)
= eh ∑n

i=1 xi (1 + eθ)n+c2 (1 + eθ+h)−n−c2 ec1h (53)

by the iid assumption of Xi | θ, (50), and (52). From (53), we have

E(P2) =E
[
e2h ∑n

i=1 Xi (1 + eθ)2n+2c2(1 + eθ+h)−2n−2c2 e2c1h
]

=E
[
EX|θ

(
e2h ∑n

i=1 Xi
)
(1 + eθ)2n+2c2(1 + eθ+h)−2n−2c2 e2c1h

]
=E
[{

EX|θ

(
e2hX1

)}n
(1 + eθ)2n+2c2(1 + eθ+h)−2n−2c2 e2c1h

]
. (54)

By (37), we have
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E(P2) =E
[
(1 + eθ)n+2c2(1 + eθ+h)−2n−2c2(1 + eθ+2h)ne2c1h

]
=

e2c1h

B(c1, c2 − c1)
×
∫ ∞

−∞
(1 + eθ)c2(1 + eθ+h)−2c2 ec1θ

{
(1 + eθ)(1 + eθ+h)−2(1 + eθ+2h)

}n
dθ. (55)

Here, we consider the Laplace approximation of integral

I1 =
∫ ∞

−∞
(1 + eθ)c2(1 + eθ+h)−2c2 ec1θ

{
(1 + eθ)(1 + eθ+h)−2(1 + eθ+2h)

}n
dθ (56)

(see e.g., [19]). I1 can be expressed as

I1 =
∫ ∞

−∞
g1(θ) exp{nk(θ)}dθ, (57)

where g1(θ) = (1 + eθ)c2(1 + eθ+h)−2c2 ec1θ and
k(θ) = log

{
(1 + eθ)(1 + eθ+h)−2(1 + eθ+2h)

}
.

Since

k′(θ) = − eθ(−1 + eh)2(−1 + eθ+h)

(1 + eθ)(1 + eθ+h)(1 + eθ+2h)
, (58)

if k′(θ) = 0, then θ = −h. k takes its maximum at θ = −h,

k′′(−h) = −
tanh

(
h
2

)2

2
< 0 (59)

and k′′(−h)→ 0 (h→ 0). Therefore, the Laplace approximation of I1 gives

I1 ∼ exp{nk(−h)}g1(−h)

√
2π

−nk′′(−h)
(60)

as n → ∞ from (57)–(59). Here, we have k(−h) = log
{
(1 + e−h)(1 + eh)/4

}
≥ 0 since

e−h + eh ≥ 2 from the arithmetic-geometric mean inequality. The equality holds if and only
if h = 0. Hence, the leading term of Bobrovsky–Mayor–Wolf–Zakai Bound (4) is

h2

e2c1h

B(c1,c2−c1)
Jn(−h)

(61)

as n→ ∞, from (55) and (60), where

Jn(−h) = exp{nk(−h)}g1(−h)

√
2π

−nk′′(−h)
. (62)

In a similar way to the above, defining

Q :=
f (x, θ + h)

f (x, θ)

ϕ′(θ + h)
I(θ + h)

= P
(1 + eθ+h)2

eθ+h , (63)

we calculate

E(Q2) =E
[
(1 + eθ)n+2c2(1 + eθ+h)−2n−2c2+4(1 + eθ+2h)ne2c1h−2θ−2h

]
=

e2(c1−1)h

B(c1, c2 − c1)
×
∫ ∞

−∞
(1 + eθ)c2(1 + eθ+h)−2c2+4e(c1−2)θ

{
(1 + eθ)(1 + eθ+h)−2(1 + eθ+2h)

}n
dθ. (64)
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Here, we consider the Laplace approximation of the integral

I2 =
∫ ∞

−∞
g2(θ) exp{nk(θ)}dθ, (65)

where g2(θ) = (1 + eθ)c2(1 + eθ+h)−2c2+4e(c1−2)θ and k(θ) is defined in (57). The Laplace
approximation of I2 gives

I2 ∼ exp{nk(−h)}g2(−h)

√
2π

−nk′′(−h)
= 24e2h Jn(−h) (66)

as n→ ∞. Similarly to (41), we have

E
[
{ϕ(θ)− ϕ(θ − h)} ϕ′(θ)

I(θ)

]
=E
{

h
(1 + eθ)2

eθ

}
=

h
B(c1, c2 − c1)

∫ ∞

−∞
e(c1−1)θ(1 + eθ)−c2+2dθ

=
h

B(c1, c2 − c1)

∫ 1

0
tc1−2(1− t)c2−c1−2dt (substitute t = eθ/(1 + eθ))

=h
B(c1 − 1, c2 − c1 − 1)

B(c1, c2 − c1)
. (67)

Hence, by using (64)–(67), the leading term of Bound (1) is{
h B(c1−1,c2−c1−1)

B(c1,c2−c1)

}2

24e2c1h

B(c1,c2−c1)
Jn(−h)

(68)

as n→ ∞. Dividing (61) by (68) yields

h2
/{

e2c1h

B(c1,c2−c1)
Jn(−h)

}
{

h B(c1−1,c2−c1−1)
B(c1,c2−c1)

}2/{ 24e2c1h

B(c1,c2−c1)
Jn(−h)

} =

{
4

B(c1, c2 − c1)

B(c1 − 1, c2 − c1 − 1)

}2

=

{
4
(c1 − 1)(c2 − c1 − 1)

(c2 − 2)(c2 − 1)

}2

<

(
c2 − 2
c2 − 1

)2
< 1. (69)

The second inequality from the end follows from (c2 − 2)/2 = {(c1 − 1) + (c2 − c1 −
1)}/2 ≥

√
(c1 − 1)(c2 − c1 − 1) by the arithmetic-geometric mean inequality. Hence, (68)

is asymptotically greater than (61) for any h in this setting.

4. Conclusions

Bayesian Cramér–Rao-type bounds are often useful for issues of asymptotical effi-
ciency of estimators (for example, [4]). However the Borovkov–Sakhanenko bound is
asymptotically tighter ([14,15]) than the Van Trees bound [1]. Since the Bobrovsky–Mayer–
Wolf–Zakai bound [17] and the new bound in this paper converge to the Van Trees and
Borovkov–Sakhanenko bounds, respectively, as h→ 0 under some conditions, it is natural
to consider that their asymptotical property still holds for a small h. Examples in this paper
supported this result. The new bound gives an asymptotic lower bound of normalized
Bayes risk, and the bound cannot be improved as h→ 0.
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Appendix A. Regularity Conditions

We need the following conditions for the convergence of Bounds (1) and (2) to
Borovkov–Sakhanenko and the Van Trees bounds, respectively.

(B1) There exist h1 > 0 and a function b1(x, θ), such that

E
{

b2
1(X, θ)

}
< ∞ and

∣∣∣∣∣∣
f (x,θ+h)

f (x,θ)
ϕ′(θ+h)
I(θ+h) −

ϕ′(θ)
I(θ)

h

∣∣∣∣∣∣ ≤ b1(x, θ) for all |h| ≤ h1 and arbitrary θ ∈ Θ.

(B2) There exist h2 > 0 and a function b2(x, θ) such that

E
{

b2
2(X, θ)

}
< ∞ and

∣∣∣∣∣∣
f (x,θ+h)

f (x,θ) − 1

h

∣∣∣∣∣∣ ≤ b2(x, θ) for all |h| ≤ h2 and arbitrary θ ∈ Θ.

Appendix B. Proof of Theorem 1

Theorem 1 is directly derived from [7]. However, we prove it here for the sake of
clarity.

Let Gh = 1
h

(
f (x,θ+h)

f (x,θ)
ϕ′(θ+h)
I(θ+h) −

ϕ′(θ)
I(θ)

)
. Then, we have

E(Gh) =
1
h

{∫∫
f (x, θ + h)

ϕ′(θ + h)
I(θ + h)

dθdµ(x)−
∫∫

f (x, θ)
ϕ′(θ)

I(θ)
dθdµ(x)

}
=

1
h

{∫∫
f (x, t)

ϕ′(t)
I(t)

dtdµ(x)−
∫∫

f (x, θ)
ϕ′(θ)

I(θ)
dθdµ(x)

}
(substitute t = θ − h)

=0, (A1)

and

E{Gh ϕ(θ)} =1
h

{∫∫
ϕ(θ) f (x, θ + h)

ϕ′(θ + h)
I(θ + h)

dθdµ(x)−
∫∫

ϕ(θ) f (x, θ)
ϕ′(θ)

I(θ)
dθdµ(x)

}
=

1
h

{∫∫
ϕ(t− h) f (x, t)

ϕ′(t)
I(t)

dtdµ(x)−
∫∫

ϕ(θ) f (x, θ)
ϕ′(θ)

I(θ)
dθdµ(x)

}
(substitute t = θ − h)

=
1
h

[
E
{

ϕ(θ − h)
ϕ′(θ)

I(θ)

}
− E

{
ϕ(θ)

ϕ′(θ)

I(θ)

}]
=

1
h

E
[
{ϕ(θ − h)− ϕ(θ)} ϕ′(θ)

I(θ)

]
. (A2)

By Fubini’s theorem,
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E{Gh ϕ̂(X)} =1
h

{∫
ϕ̂(x)

(∫
f (x, θ + h)

ϕ′(θ + h)
I(θ + h)

dθ

)
dµ(x)−

∫
ϕ̂(x)

(∫
f (x, θ)

ϕ′(θ)

I(θ)
dθ

)
dµ(x)

}
=

1
h

{∫
ϕ̂(x)

(∫
f (x, t)

ϕ′(t)
I(t)

dt
)

dµ(x)−
∫

ϕ̂(x)
(∫

f (x, θ)
ϕ′(θ)

I(θ)
dθ

)
dµ(x)

}
(substitute t = θ − h)

=0, (A3)

hence, from (A1), (A2), and (A3),

Cov(Gh, ϕ̂(X)− ϕ(θ)) =
1
h

E
[
{ϕ(θ)− ϕ(θ − h)} ϕ′(θ)

I(θ)

]
. (A4)

From variance–covariance inequality, (A4) gives

E
{
(ϕ̂(X)− ϕ(θ))2

}
≥ {Cov(Gh, ϕ̂(X)− ϕ(θ))}2

E(G2
h)

=

{
E
[
{ϕ(θ)− ϕ(θ − h)} ϕ′(θ)

I(θ)

]}2

E
[{

f (X,θ+h)
f (X,θ)

ϕ′(θ+h)
I(θ+h) −

ϕ′(θ)
I(θ)

}2
] , (A5)

which is the desired inequality.
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