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Abstract

Insects face the challenge of navigating to specific goals in both bright sun-lit and dim-lit environments. Both diurnal and
nocturnal insects use quite similar navigation strategies. This is despite the signal-to-noise ratio of the navigational cues
being poor at low light conditions. To better understand the evolution of nocturnal life, we investigated the navigational
efficiency of a nocturnal ant, Myrmecia pyriformis, at different light levels. Workers of M. pyriformis leave the nest individually
in a narrow light-window in the evening twilight to forage on nest-specific Eucalyptus trees. The majority of foragers return
to the nest in the morning twilight, while few attempt to return to the nest throughout the night. We found that as light
levels dropped, ants paused for longer, walked more slowly, the success in finding the nest reduced and their paths became
less straight. We found that in both bright and dark conditions ants relied predominantly on visual landmark information for
navigation and that landmark guidance became less reliable at low light conditions. It is perhaps due to the poor
navigational efficiency at low light levels that the majority of foragers restrict navigational tasks to the twilight periods,
where sufficient navigational information is still available.

Citation: Narendra A, Reid SF, Raderschall CA (2013) Navigational Efficiency of Nocturnal Myrmecia Ants Suffers at Low Light Levels. PLoS ONE 8(3): e58801.
doi:10.1371/journal.pone.0058801

Editor: Eric James Warrant, Lund University, Sweden

Received December 27, 2012; Accepted February 8, 2013; Published March 6, 2013

Copyright: � 2013 Narendra et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: AN acknowledges funding support from the Australian Research Council’s (ARC) Centres of Excellence Scheme, ARC Discovery Project and Australian
Postdoctoral Fellowship (DP0986606), ARC Discovery Early Career Award (DE120100019), Hermon Slade Foundation and The Defence Science and Technology
Organization. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ajay.narendra@anu.edu.au

Introduction

Insects are active at different times of the day. At night, the light

intensity is nearly 6–11 orders of magnitude dimmer than in the

day [1]. To cope with this dramatic change in light intensity

insects require distinct visual adaptations. To increase their optical

sensitivity, most nocturnal insects have superposition eyes (e.g.,

moths), where light from several lenses is superimposed on to

a single photosensitive structure, the rhabdom [1,2,3,4]. However,

nocturnal hymenopteran insects (e.g., ants, bees, wasps) have

apposition eyes, where light reaches the rhabdom through a single

lens, thus being less sensitive compared to the superposition eyes.

To overcome this reduced sensitivity, nocturnal hymenopterans

increase their optical sensitivity by having larger lenses and wider

photoreceptors compared to their diurnal relatives

[1,5,6,7,8,9,10,11]. Insects that are active in a wide range of

ambient light levels cope with the variation in light intensities to

some extent by increasing or decreasing the sensitivity of their

visual system through pupillary mechanism [12].

Irrespective of the time at which insects are active, a common

challenge faced by all animals is navigation. Both diurnal and

nocturnal insects appear to use very similar navigation strategies

[1]. To determine the compass direction, insects rely on the

pattern of polarised skylight (diurnal: e.g., Cataglyphis fortis [13],

Apis mellifera [14]; nocturnal: e.g., Myrmecia pyriformis [15], Scarabaeus

zambesianus [16]), or on the visual landmark panorama (diurnal:

Apis mellifera, Cataglyphis fortis [17], Melophorus bagoti [18,19];

nocturnal: Myrmecia pyriformis [15], Megalopta genalis [20]). There

is now growing evidence that diurnal insects also orient using the

geomagnetic field [21]. While specific evidence for the use of

geomagnetic field by nocturnal insects is not available, it is most

likely used as an orientation cue by nocturnal migrating insects

[22,23]. To estimate the distance travelled flying insects integrate

optic flow information (diurnal: Apis mellifera [24]; nocturnal:

Megalopta genalis [25]) and walking insects such as ants use some

form of a stride integrator [26]. Though the importance of colour

in the context of navigation remains to be fully understood, it is

clear that nocturnal insects similar to their diurnal counterparts

use colour information for localisation even at the low starlight

intensities that they operate at [27,28,29].

As light levels drop the available visual information for

navigation becomes weaker, resulting in a poor signal-to-noise

ratio. But the navigational requisites of diurnal and nocturnal

animals remain similar. To explain the evolution of nocturnal life

it is hence interesting to ask whether the navigational efficiency of

nocturnal animals suffers at low light. The nocturnal Namibian

spider, Leucorchestris arenicola, while navigating to its burrow, pause

and stay still for upto 1s at the lowest light intensities at which they

operate [30]. These pauses have been suggested to be a beha-

vioural adaptation for low light to enable animals to collect enough

light to detect coarse landscape structures. In the nocturnal sweat

bee, Megalopta species, individual bees took longer to locate the nest

in dim light compared to slightly brighter conditions [31]. The

longer duration was due to their tortuous flight trajectories in

contrast to the directed flights of individuals in slightly brighter

conditions. The flight speed of the nocturnal sweat bee, Megalopta
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genalis was also found to be nearly five times slower than that of the

diurnal bee, Bombus terrestris [25], indicating that their flight

performance suffers at dim light. Walking in a straight line requires

the use of an external compass [32]. Interestingly, both diurnal

and nocturnal beetles seem to achieve this with similar accuracy in

their ability to maintain a straight path by using a sun compass and

moon compass respectively [33].

We here study the nocturnal Australian Bullant, Myrmecia

pyriformis Smith (Figure 1) to find out whether their navigational

efficiency suffers at low light levels. This study species is

appropriate for the question of interest for the following reasons.

Firstly, in ants it is possible to record the entire path of individuals

with sufficient accuracy under ecologically relevant conditions.

Secondly, M. pyriformis are nocturnal foragers, where majority of

the workers leave the nest in a narrow time-window of 40–

60 minutes during the evening twilight (Figure 1b) [34]. Ants

typically travel to nest-specific Eucalyptus trees on which they

forage, with each individual carrying out only one foraging trip per

day [35]. A small proportion of workers (10–12% of daily forager

force) capture prey and attempt to return to the nest immediately

in the dark. The majority of workers, however, return to the nest

in the morning twilight after feeding on honeydew produced by

sap-sucking insects. The ants thus present a natural scenario where

animals tackle the task of navigation in a gradient of light

intensities from dark, dim and bright conditions enabling us to

investigate the navigational efficiency in these different light

conditions. We first report that nocturnal Bullants pause for longer

and walk slower as light levels drop. Next, we investigated homing

abilities of ants in dark, dim and bright light conditions, where we

measured homing success, path sinuosity and travel time. The

nocturnal M. pyriformis workers rely heavily on visual landmark

information for navigation [15] and hence we asked whether

homing efficiency is affected by the difficulty in using landmark

information.

Materials and Methods

Study location
This study was carried out at The Australian National

University Campus Field Station, Canberra, Australia

(35u16950.14’’S, 149u06942.13’’E) between 2009–2012, where we

located five nests of Myrmecia pyriformis Smith. Forager forces varied

between nests and between seasons. Thus to ensure we had

sufficient numbers for each experiment we studied 3 nests (A, B, &

C) all located within 30 m from each other. Ants were collected,

marked for individual identification using model paint (Citadel,

Games Workshop, UK) and released back to the nest 3–4 days

before the start of experiments. Astronomical data were obtained

from Geoscience Australia (http://www.ga.gov.au).

Experimental procedure
Natural paths of ants (Nest C). Ants from each nest

typically head in a specific direction to a specific tree [15]. We

tracked outbound paths of 9 individual ants from a single nest in

three 30-minute bins after sunset. We noted the spatial location of

pauses (.1 sec) along each individual ant’s path and the time

taken by individual ants to reach the tree.

Pausing behaviour and walking speed (Nest A, B). We

first identified the typical route ants took to travel from the nest to

the tree. Along this path, at a distance of 1–2 m from the nest, we

set up a video camera (SONY Handycam DCR-HC21E PAL)

with a night-shot mode and infrared light sources and mounted it

on a tripod. The camera zoom was set to film an area of

0.660.45 m to get the best resolution of individual ants. We

recorded the paths of ants heading towards their foraging tree. A

frame-by-frame video analysis was carried out to determine the

head position of ants at every 400ms to measure the pause

duration and walking speed (only time in motion was used) of

individual ants. We measured ambient light levels using an

ILT1700 radiometer with a SHD033 detector (Warsash Scientif-

ic). Light data were averaged over 20 seconds.

Homing accuracy at different light conditions (Nest

B). We followed foraging ants that left the nest in the evening

twilight and arrived at the base of nest-specific Eucalyptus tree. Ants

were individually captured at the base of the tree in foam-

stoppered transparent Perspex tubes. They were fed with 10%

sugar solution and prey and kept in ambient light conditions. Ants

were individually released at the base of the same tree the next day

in three time slots: dark (60–120 minutes before sunrise); dim

(30 minutes on either side of sunrise); and bright condition (60–

120 minutes after sunrise). These release times were chosen since it

best matches the typical return times of the majority of the ants.

We tracked the individual paths using a Differential Global

Positioning System (for details see below), noted the time of release

and the nest-entry for each ant.

Visually mediated homing in bright and dark conditions

(Nest A). We determined whether landmark guidance for M.

pyriformis workers becomes less reliable at low light conditions.

Although a majority of M. pyriformis workers head out foraging in

the evening twilight, a few leave the nest before sunset [34]. We

made use of this variability to capture ants at the base of the

foraging tree before and after sunset. Captured ants were fed with

sugar and prey, transferred in the dark to a location 12 m

perpendicular to the normal foraging direction and released within

10 minutes of being captured. Ants were tracked until they

reached the nest or for 50 minutes. When possible we kept note of

the final destination of these ants, typically the nest or the tree.

Tracking technique. Ant paths were tracked by placing

small markers at every 5 cm behind a walking ant, carefully

avoiding disturbing the ants’ progress. The marked path was later

recorded using a Differential Global Positioning System (DGPS,

NovAtel Inc., Canada). The DGPS set-up consisted of a base

station antenna (GPS-702-GG L1/L2, GPS plus GLONASS),

a base station receiver (FLEXPAK-V2-L1L2-G GPS plus

GLONASS RT-2), a rover antenna (ANT-A72GLA-TW-N

(532-C) and a rover receiver (OEMV-2-RT2-G GPS plus

GLONASS). The stationary reference or base station calculates

corrections for a mobile rover antenna, the position of which is

determined with centimetre accuracy on a local scale, in this case

a 30 m radius. We mounted the stationary base station electronics

and antenna on a tripod to integrate position readings over

30 minutes. The rover receiver electronics were carried on

a backpack and connected to the rover antenna that was mounted

at the end of a long, hand-held stick. This was moved along the

flag-marked path. The base station and rover communicate

through a radio link, where corrections are exchanged. We

monitored the errors constantly and tracked paths only when

errors were less than 10 cm. Northing, Easting and Height

coordinates in metres, together with the standard deviations of

position error estimates were recorded at 1s intervals with a laptop

and extracted with a custom-written Matlab program (� Jan M.

Hemmi).

We tested whether pause duration and walking speed of ants

was affected by ambient light levels and also determined whether

there was a nest effect using a linear regression model in R

computing environment [36]. The effect of light condition on the

different measures of navigational accuracy was determined by

a Kruskal-Wallis analysis. Where required a Dunn’s multiple

Nocturnal Ant Navigation
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comparison test was carried out. Path straightness was determined

by Emax [32], with higher Emax values indicating straighter paths.

Emax is a dimensionless value that indicates the maximum possible

expected displacement, which is expressed as a function of the

number of steps. Circular statistics and plotting was carried out in

R computing environment [36].

Results

Natural paths of ants
Initial observations showed that ants that left the nest early (0–

30 minutes after sunset) reached the tree faster (13.1361.13 mins;

n = 3) than those that left 60–90 minutes after sunset

(26.1765.85 mins; n = 3; Figure 2a). Not only did the late ants

appear to walk more slowly, they also stopped more frequently

compared to the early foragers (Figure 2a; blue circles along each

path). This indicated that navigational efficiency of M. pyriformis

may suffer at low light. Since pause duration and walking speed

was difficult to accurately measure from these observations, we

addressed these questions in a separate experiment reported

below.

Pausing behaviour and walking speed
We recorded pauses ranging from 0.4–4.0 seconds (n = 53, Nest

A) and 0.36–4.72 seconds (n = 29, Nest B). Pause duration

increased significantly with decrease in light intensity (P,0.001,

t =24.328) and there was no significant difference between the

two nests (r2 = 0.28, P = 0.63, t =20.482, Figure 2b). Ants walked

more slowly as it became darker and the walking speeds (i.e., time

in motion) decreased from 7.97 cm s21 to 2.01 cm s21 at nest A

(red dots) and from 2.84 cm s21 to 0.90 cm s21 at nest B (black

dots). Walking speed of ants decreased with decrease in light

intensity (r2 = 0.78, P,0.001, t = 3.140, Figure 2c). Ants from nest

B (black circles in Figure 2c) walked more slowly than those from

nest A (P = 0.017, t =22.437). This difference is most likely due to

the micro environmental factors such as surface texture and

undergrowth [15].

Homing accuracy at different light conditions
When ants were released at their point of capture at different

light conditions their homing success decreased, their paths

became less straight and ants took 2–3 times longer to return

home as light levels dropped. The proportion of animals that

returned home in the 50 minute recording duration was lowest in

the dark (52.6%, n = 19), increased in the dim (83.33%, n = 24)

and was maximum in the bright condition (93.75%, n = 18;

Figure 3a, 3b, 3c; red paths = successful; grey paths =

unsuccessful). The sinuosity of the paths was significantly different

between the dark, dim and bright conditions (P,,0.01,

KW = 10.21; Figure 3d). Paths were least straight in the dark

Figure 1. The study species, Myrmecia pyriformis and its daily activity rhythm. (a) The nocturnal bull ant, Myrmecia pyriformis. Graduations
are in mm. (b) Activity rhythm of M. pyriformis on one summer day. Bars indicate the proportion of outbound (red) and inbound (blue) workers in 10-
minute bins. Modified from Narendra [34].
doi:10.1371/journal.pone.0058801.g001
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and became increasingly straighter in the dim (P,0.05, Dunn’s

test) and bright conditions (P,0.01). Homing duration of success-

ful ants also differed significantly between the three conditions

(P,0.001, KW = 14.89; Figure 3e). Ants took the longest time to

reach the nest in the dark (29.2263.7 mins), compared to the dim

(15.5262.9 mins) and bright (11.7962.1 mins) conditions. A

comparison of travel speed in dark, dim and bright conditions

revealed the effect of low light (P,0.001, KW = 18.69; Figure 3f)

with ants being slowest in the dark (0.6260.09 cm s21; mean-

s6SE), and fastest in the bright (1.1260.09 cm s21) conditions.

The ‘lost’ ants released in the dark eventually returned to the nest

once it got bright, but well beyond the 50 minutes of recording

duration per individual.

Visually mediated homing in bright and dark conditions
Ants individually travelled in a narrow corridor from the nest to

their main foraging tree (blue paths; Figure 4a). When displaced

lateral to their typical foraging route, the proportion of ants that

found the nest, within the recording duration, was higher before

sunset (75%, red paths, Figure 4a) than after sunset (20%, red

paths, Figure 4b). The initial mean heading direction of ants

Figure 2. Effect of ambient light intensity on walking speed and pause duration and frequency in the nocturnal ant, Myrmecia
pyriformis. (a) Example trajectories of 9 ants and pauses they made (blue dots) on their foraging route at (i) 0–30 minutes after sunset, (ii) 30–
60 minutes after sunset and (iii) 60–90 minutes after sunset. Time taken to travel from the nest to tree is shown as means6SD. (b) Pause duration and
(c) walking speed of animals plotted against light levels. Two nests were studied and are indicated as red and black. Regression lines for each dataset
are shown.
doi:10.1371/journal.pone.0058801.g002
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before sunset (ø = 51.016u) and after sunset (ø = 54.033u) was close

to the true nest direction (ø = 60u). But since the orientation of ants

was distributed uniformly around a circle (Rayleigh’s test of

uniformity; before sunset: Z = 1.198, p = 0.30; after sunset:

Z = 2.655, p = 0.07) there seemed to be no specific directional

preference, which is further emphasised by the very short length of

the mean vectors (‘r’ in Figure 4a, 4 b). Among the successful ants,

the initial orientation of ants was directed either towards the true

nest (60u), or towards the fictive nest based on a celestial compass

(0u) and in some cases even opposite to the true nest direction.

However, most successful ants corrected their heading within 3–

4 m from the release and headed directly to the nest. Not a single

ant relied on the path integrator to travel the entire home vector,

either before or after sunset.

Discussion

The majority of the workers of M. pyriformis travel to their

favourite tree and back to the nest in the evening and morning

twilight respectively [34]. A small proportion of ants carry out this

task of navigation at night. We hence asked whether the

navigational efficiency of animals changes at different light

conditions. We found that as light levels dropped, ants paused

for longer durations and walked more slowly to reach their goal.

Displacement experiments showed that in both bright and dark

conditions, ants relied mainly on visual landmark information for

homing and not on path integration and that landmark guidance

became less reliable in low-light conditions.

Many insects have adopted a crepuscular to nocturnal lifestyle,

yet for navigation they still have to rely on visual information. This

is particularly true for the solitary foraging ants (e.g., Cataglyphis,

Melophorus, Myrmecia, Harpegnathos). To partially account for the low

light levels at which they are active, workers of M. pyriformis have

evolved visual adaptations to increase their photon capture [5,10].

Their lens diameters are nearly 3 times larger and photoreceptors

nearly 3 times wider compared to day-active species [5,10,37].

These adaptations increase the optical sensitivity of the night-

active ants by at least 27 times [10], quite similar to the increase in

Figure 3. Homing success and navigational efficiency of the nocturnal bull ant, Myrmecia pyriformis. Top row: Homing paths of ants
released at the base of their foraging tree (R, blue circle) to the nest (N, black circle) in three one-hour slots: (a) Dark: 60–120 minutes before sunrise,
(b) Dim: 30 minutes on either side of sunrise, (c) Bright: 60–120 minutes after sunrise. Red: ants that successfully returned to the nest; grey: ants that
did not return to the nest within 50 minutes of tracking. Bottom row: (d) Sinuosity of all paths: the larger the Emax value the straighter are the paths;
(e) homing duration of successful ants (difference between the times of release and nest entry); (f) travel speed of all ants including pauses. Sector
graphs show the proportion of ants that reached the nest within the recording duration of 50 minutes. Significance codes: *p,0.05; **p,0.01;
***p,0.001.
doi:10.1371/journal.pone.0058801.g003
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optical sensitivity in the nocturnal halticid bee, M. genalis [20,38].

However, these optical adaptations alone are not sufficient to

support visual navigation and it has been suggested that insects

need to engage in two forms of neural summation to improve

vision in low light [8,39,40,41]: spatial summation (pooling signals

from neighbouring photoreceptors) and temporal summation

(increase in integration time). The increasing duration of pauses

we observed in M. pyriformis as light levels dropped (Figure 2a, 2 b)

is a possible behavioural strategy whereby animals could increase

the integration time to capture more light and to generate

a brighter view of the world. A similar function has been attributed

to the pausing behaviour of the Namibian spider, L. arenicola.

These spiders paused for 1s at the lowest light intensities they

operate at, and individuals travelled ,2 meters between successive

pauses [30]. The short pause durations in the nocturnal spider

may very well be due to their highly sensitive optics compared to

the apposition compound eyes of ants, which perhaps requires

longer pause durations to get a similar brighter view of the world.

The navigational efficiency of the nocturnal workers of M.

pyriformis suffers at low light conditions. As light levels dropped, the

walking speed of animals decreased, their ability to walk in

a straight line was affected, time taken to reach their goal increased

and the proportion of animals that successfully returned to the nest

decreased not only along their normal foraging corridor (Figure 3)

but also following a local displacement (Figure 4). At low light

conditions animals could not compensate for a local displacement

as well as animals in bright light conditions (Figure 4). Animals

appeared to rely predominantly on visual landmark information

rather than path integration in both bright and dim conditions,

but landmark guidance appears to be not sufficient to compensate

for the displacement in dim light conditions. Given these findings,

it is interesting to note that most workers of M. pyriformis time their

foraging excursions to a narrow time window in the evening

twilight, which most likely offers sufficient navigational informa-

tion.

It is also relevant to note that in ants and other insects, walking

speed is typically affected by temperature [42], but this is unlikely

to explain the differences in navigational efficiency that workers of

M. pyriformis exhibited. We have previously shown that workers of

M. pyriformis retain their nocturnal habits throughout the year and

thus encounter a wide range of temperatures ranging between 5–

30uC [34]. From laboratory studies we know that within this

temperature range the walking speed of workers remains fairly

constant and increases only beyond 35uC [43]. Temperatures

encountered by ants during our study were between 8–17uC,

which was well within the range where walking speed of ants

remain less affected by temperature. Hence it is unlikely that

temperature variation affected the walking speed of ants in our

study. On a daily basis, workers of M. pyriformis attempt to return

home upon capturing prey throughout the night. Hence motiva-

tion for finding the nest at different light conditions is very unlikely

to be a reason for the navigational differences we found at the

different light conditions.

Workers of M. pyriformis adhere to a crepuscular/nocturnal

foraging period throughout the year, with their activity primed by

light levels around sunset and most likely sunrise time [34]. Despite

being able to find home faster at brighter light levels, they do not

navigate or forage in the day. This raises the question of why these

ants remain so stubbornly night-active throughout the year.
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