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Abstract: Euglena gracilis is a well-known photosynthetic microeukaryote considered as the product
of a secondary endosymbiosis between a green alga and a phagotrophic unicellular belonging to
the same eukaryotic phylum as the parasitic trypanosomatids. As its nuclear genome has proven
difficult to sequence, reliable transcriptomes are important for functional studies. In this work, we
assembled a new consensus transcriptome by combining sequencing reads from five independent
studies. Based on a detailed comparison with two previously released transcriptomes, our consensus
transcriptome appears to be the most complete so far. Remapping the reads on it allowed us to
compare the expression of the transcripts across multiple culture conditions at once and to infer a
functionally annotated network of co-expressed genes. Although the emergence of meaningful gene
clusters indicates that some biological signal lies in gene expression levels, our analyses confirm that
gene regulation in euglenozoans is not primarily controlled at the transcriptional level. Regarding the
origin of E. gracilis, we observe a heavily mixed gene ancestry, as previously reported, and rule out
sequence contamination as a possible explanation for these observations. Instead, they indicate that
this complex alga has evolved through a convoluted process involving much more than two partners.

Keywords: transcriptome assembly; gene expression; transcriptional regulation; ontology network;
co-expression network; taxonomic analysis; database contamination; kleptoplastidy

1. Introduction

Euglena gracilis is a secondary green alga that can grow in a wide variety of environ-
ments. E. gracilis belongs to the euglenids, a monophyletic group of free-living, single-celled
flagellates that inhabit aquatic ecosystems. Euglenids are distinguished mainly by their
unique type of cell covering, the pellicle. The latter is a complex structure composed of
proteinaceous strips covered by a cell membrane and underlain by the microtubule system
and the cisternae of the endoplasmic reticulum [1]. Together, euglenids, symbiontids (free-
living flagellates living in low-oxygen marine sediments), diplonemids (free-living marine
flagellates) and kinetoplastids (free-living and parasitic flagellates, e.g., Trypanosoma) form
the monophyletic group of Euglenozoa [2–5]. Euglenids are early diverged members of the
Euglenozoa and distant relatives to the kinetoplastids [6]. Thus, analysing E. gracilis genomic
information is a way to approach the evolution of parasitism, due to their common ancestry
with kinetoplastids [7,8]. For example, it has been shown that many additional subunits of
the mitochondrial respiratory chain previously considered exclusive to kinetoplastids are
shared with E. gracilis, and therefore cannot be associated with the parasitic lifestyle [9]. Yet,
it is worth mentioning that free-living bodonids (e.g., Bodo saltans) are better comparators
for parasitism [10,11]. The relationship between euglenids and kinetoplastids has been first
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proposed by T. Cavalier-Smith based on ultrastructural similarities (e.g., “mitochondrial
cristae shaped like a flattened disc with a narrow neck”) [12], then supported by other lines
of evidence, such as alignments of nuclear rRNA [13], the addition of a leader sequence
to nuclear pre-mRNAs [14] and the presence of trypanothione reductase in E. gracilis,
previously found only in kinetoplastids [15].

E. gracilis bears a complex plastid [16], derived from a green alga belonging to Pyra-
mimonadales, and acquired by a free living phagotrophic eukaryovorous euglenid ances-
tor [17–19]. As the result of a so-called “secondary” endosymbiosis, this chloroplast is
bound by three membranes, whereas primary plastids only have two membranes [20,21].
Whatever the specific event, endosymbiosis is accompanied by massive gene loss and gene
transfer from the genome of the symbiont to the nuclear genome of the host (Endosym-
biotic Gene Transfer or EGT) [22]. Moreover, there can be gene transfers from sources
other than the symbiont giving rise to the observed plastid [Horizontal (or Lateral) Gene
Transfer or HGT/LGT], for example, over (more or less cryptic) transient endosymbioses
(e.g., “shopping bag” [23–25] and “red carpet” [26] hypotheses). Alternatively, HGT can
occur in a, possibly ulterior, “non-endosymbiotic context” [27,28] (e.g., “limited transfer
window” hypothesis” [29]), because it may be easier to duplicate or recruit a foreign gene
for servicing the nascent plastid than to get it from the symbiont itself [30]. In any case,
both EGT and HGT have shaped the nuclear genome of photosynthetic euglenids, leading
to heavy genetic mosaicism (e.g., [7,31,32]).

Due to its great metabolic flexibility, a large number of culture media and growing
conditions have been used to study E. gracilis over the past 60 years [33–37]. Commonly, the
mineral composition remains similar from one medium to another, but three parameters
vary greatly: the pH (which can be acidic or neutral), the source of organic carbon (e.g.,
acetate, ethanol, and succinate) and the concentration of the carbon source (from 10 mM to
more than 150 mM). E. gracilis can therefore exploit a variety of organic carbon sources,
as well in the dark (heterotrophic conditions) as in the light (mixotrophic conditions),
where a high concentration of organic carbon leads to a decrease in photosynthesis by
repressing chlorophyll biosynthesis, reflecting the fact that this organism switches between
nutritional modes and combines them readily [38–40]. E. gracilis is also known for its
atypical metabolic pathways, some of them producing compounds of commercial interest.
In photosynthetic euglenoids, carbon reserves are stored in the cytoplasm in the form of
paramylon (β-1,3-glucan), in place of the starch (α-1,4 and α-1,6-glucan) typical of the
green line [41,42]. Paramylon can be used to produce bioplastics [43] and, similarly to
other β-glucans, has been reported to display some anti-tumoural activity [44]. In anoxic
(fermentative) conditions, E. gracilis has the unique ability among microalgae to convert
paramylon into wax ester compounds suitable for drop-in jet biofuels conversion because
of their low freezing point [45–47]. E. gracilis is also used as a source of dietary supplements
(e.g., the most bioactive form of vitamin E, α-tocopherol, is present in E. gracilis biomass in
a relatively high amount) [48].

Due to its evolutionary and biotechnological interests, E. gracilis is the best studied
member of the euglenids. Its chloroplast genome (143 kb) was among the first plastid
genomes ever sequenced [49], while its tiny mitochondrial genome has been recently
resolved [50,51]. To date, few studies have used high throughput sequencing technologies
to publish Omics information on E. gracilis [7,52,53]. In this respect, attempts to sequence
its nuclear genome are also very recent (initially estimated between 1 Gb to 9 Gb; see [54]
for a review). These efforts have culminated with the release of a very large (500 Mb) and
highly fragmented draft genome, as authors recalled, due to gapped contigs or unknown
base representation in half of the genome [7].

In this work, we have assembled a consensus transcriptome taking advantage of the
raw read data publicly available, including newly generated transcriptomic libraries, for
a total of five different data sources. Our assembly protocol was very thorough, with
a special emphasis on potential contaminant sequences, resulting in the most complete
transcriptome released to date for E. gracilis, according to a systematic comparison with the
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two other public transcriptomes [7,53]. After functional and taxonomic annotation of the
predicted coding sequences, we performed a comparative study of their expression level
across a range of culture conditions and studies, which allowed us to build an information-
rich network of co-expressed genes. However, these results confirm that transcriptional
control is not the primary level of genetic regulation in euglenozoans, while our taxonomic
analyses point to highly mixed gene ancestry, compatible with a kleptoplastidic phase of
plastid acquisition.

2. Materials and Methods
2.1. Data Collection
2.1.1. Public Repositories

Searching for public RNA-Seq data for E. gracilis in the International Nucleotide Se-
quence Database Collaboration (INSDC) returned eight studies. We further recovered an
additional dataset, produced and submitted to the European Nucleotide Archive (ENA)
repositories by ourselves (see Section 2.1.2 for details). Of these nine studies, only five short
read datasets (5 experiments/23 samples) that used Illumina technology to analyse whole
transcriptomes were exploitable. Among the discarded experiments, PRJEB4713 con-
tained 454 GS FLX Titanium long reads, a size that is difficult to handle by the chosen
assembler, while PRJEB21674 only included a single euglenid sample (among 1179), yet
labelled as “Euglena sp.”, PRJNA294935 primarily contained mitochondrial sequences,
and PRJNA12797 (built out of ESTs) was not accessible from public repositories. At last,
PRJDB4781 was not included because our meta-assemblies had been completed by the date
of its release (October 2019). The data files from the five retained experiments were down-
loaded using fastq-dump utility from the SRA Toolkit with -I and –split-file arguments to
divide files into forward and reverse paired reads. We also collected the two transcriptome
assemblies hitherto available, GEFR01 and GDJR01. The former was encoded under study
accession PRJNA298469, which corresponds to experiments B and C, and the latter, which
corresponds to experiment D, was encoded as study PRJNA289402. For further details on
experimental design or/and samples, see Table 1.

2.1.2. In-House Experiments, Cell Culture and Sequencing

The strain of E. gracilis (1224-5/25) was obtained from SAG (Sammlung von Algenkul-
turen Göttingen, Germany). Cells were cultured in liquid mineral medium tris-minimum-
phosphate (TMP) at pH 7.0 and 25 ◦C, supplemented with a mixture of vitamins (vitamin
B1 2·10-2 mM, vitamin B8 10-4 mM and vitamin B12 10-4 mM). In three samples, acetate
(60 mM) was added as a carbon source, under different photosynthetic photon flux densities
(PPFD, T8 fluorescent neon tubes) (in the dark, at low PPFD (50 µE m−2 s−1) or at medium
PPFD (200 µE m−2 s−1), while in a fourth sample, acetate was not supplied and light was
set to low PPFD (50 µE m−2 s−1). For each sample, the cells in the exponential phase
(1–2 × 10−6 cells/mL) were recovered by centrifugation, 10 min at 500 g. Total RNA was
extracted with the protocol outlined in [55], then fragmented and retro-transcribed before
standardization using the Duplex-Specific Nuclease kit (Evrogen, Russia). Each library was
prepared using the Illumina total mRNA kit (Illumina, San Diego, CA, USA) and quantified
by qPCR using the KAPA Library Quantification Kit (Roche, Switzerland). Subsequently,
samples were sequenced in both reading directions (paired-end 2× 100 nt) on four separate
tracks of a high-speed sequencer Illumina HiSeq 2000, yielding on average ca. 235 mil-
lion reads per sample. Library preparation, DSN normalization and high-throughput
sequencing by Illumina technology were carried out by the GIGA genomics platform
(https://www.gigagenomics.uliege.be (accessed on 23 July 2014)). Raw reads have been
deposited at the ENA database under the study accession number PRJEB38787 (Table 1).

2.2. Data Assembly

A schematic representation of the de novo transcriptome reconstruction and analysis
pipeline is given in Figure 1. All computations were performed on a grid computer.

https://www.gigagenomics.uliege.be
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Table 1. Representation of the collected data and overview of the experimental design. Exp. Code: letter assigned to each experiment
(one letter per study). Study Acc.: public accession number of the BioProject. Sample Code: first letter corresponds to the experiment,
first digit to experimental conditions of the samples, and second digit (if any) to the replicates. Run Acc.: public accession number of
read FASTQ files. Temp.: estimated Celsius degrees of cell culture temperature. Medium: type of cell culture medium, rich (R) or
mineral (M) plus carbon source (+C). Light: estimated light experimental conditions, darkness (D), low-light (LL) and high-light (HL).
Shaking: rpm of shaker incubator. Cult. Cond.: trophic regime, fermentative (F), heterotrophic (H), phototrophic (P) or mixotrophic
(M). Harvest Phase: development stage of the culture when collected, exponential phase (Exp) or stationary phase (Stat).

Exp.
Code Study Acc. Sample

Code Run Acc. Temp. Medium Light Shaking Cult
Cond.

Harvest
Phase Reference

A PRJNA310762

A.1.1 SRR3159774 25 R + C D 0 H Exp

[7]

A.1.2 SRR3159775 25 R + C D 0 H Exp
A.1.3 SRR3159776 25 R + C D 0 H Exp
A.2.1 SRR3159777 25 R + C LL 0 M Exp
A.2.2 SRR3159778 25 R + C LL 0 M Exp
A.2.3 SRR3159779 25 R + C LL 0 M Exp

B PRJEB10085 B.1 ERR974915 21 M + C LL 0 M Stat [52]B.2 ERR974916 30 R+C D 200 H Stat

C PRJNA298469 C.0 SRR2628535 25 M LL 0 M Stat [7]

D PRJNA289402

D.0 SRR3195326 26 R+C HL 120 M Stat

[53]

D.1.1 SRR3195327 26 R+C HL 120 M Stat
D.1.2 SRR3195329 26 R+C HL 120 M Stat
D.1.3 SRR3195331 26 R+C HL 120 M Stat
D.2.1 SRR3195332 26 R+C HL 120 F Stat
D.2.2 SRR3195334 26 R+C HL 120 F Stat
D.2.3 SRR3195335 26 R+C HL 120 F Stat
D.3.1 SRR3195338 26 R+C HL 120 F Stat
D.3.2 SRR3195339 26 R+C HL 120 F Stat
D.3.3 SRR3195340 26 R+C HL 120 F Stat

E PRJEB38787

E.1 ERR4227585 25 M LL 100 P Exp
This

study
E.2 ERR4227586 25 M+C D 100 H Exp
E.3 ERR4227587 25 M+C LL 100 M Exp
E.4 ERR4227588 25 M+C HL 100 M Exp

Figure 1. Schematic representation of our de novo transcriptome meta-assembly pipeline.
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2.2.1. Data Pre-Processing

Every raw read file (run accessions SRR/ERR) was treated as one sample, even if
two or more files were replicates of the same experimental condition. Once collected and
transformed into fastq files, all samples were treated separately. Raw reads were analysed
with FastQC v0.11.6 to assess the quality of the data [56]. PRINSEQ-lite.pl v0.20.4 was
used to remove reads that contained more than one ambiguous nucleotide [57]. Then,
Trimmomatic v0.32 was used with the following parameters (ILLUMINACLIP: TruSeq3-
PE.fa:2:30:10 SLIDINGWINDOW: 4:25 LEADING: 3 TRAILING: 3 MINLEN: 25) to truncate
the low quality regions of certain sequences and cut adapters and other Illumina-specific
sequences from the reads [58]. Output data was sorted into three different batches as
paired, unpaired and singleton reads. Finally, read quality was re-assessed using FastQC,
and the resulting plots visually compared to those obtained in the beginning to check the
effect of the filtering procedure.

2.2.2. Transcriptome Assembly

Pre-processed reads (paired, unpaired and singleton reads) were assembled per ex-
periment in two steps to yield five transcriptomes, one per experiment. We used Trinity
v2.4.0 software [59] for de novo transcriptome assembly. During the first step, samples
of each experiment were assembled four times, combining values (one/two) of mini-
mum count for k-mers to be assembled (–min_kmer_cov) with normalization turned off
(–no_normalize_reads) or on (default) to provide maximal sensitivity for reconstructing
lowly expressed transcripts. In all cases, we used the default parameters with a minimum
contig length (–min_contig_length) of 100 nt. Second, to reconstruct one single transcrip-
tome per experiment, the four assembled transcriptome replicates were pooled together
with the tr2aacds.pl script (using default parameters) from the EvidentialGene v2016.07.11
software package [60,61].

2.2.3. Transcriptome Decontamination

To ensure the purity of the five transcriptomes, we determined the guanine-cytosine
(GC) content distribution across reconstructed transcripts. Furthermore, we explored
the potential contamination of the five transcriptomes individually by comparing their
transcripts against the NCBI nucleotide database (nt) using BLASTN v2.2.28 [62,63]. We
used a conservative approach with an E-value threshold of 1 × 10−50 and an identity
threshold of 90% to maximize the identification of true matches. The best hit for each query
was selected, and the organism name (sscinames) of these top matches were collected,
tabulated and quantified. Abundant organisms other than Euglena were flagged as putative
contaminants. To obtain uncontaminated transcriptomes, the original reads were first
aligned to the corresponding genomes (downloaded from Ensembl [64] using Bowtie
2 v2.2.6 in local mode (–local –no-unal)) [65,66]. Reads for which the alignment score
exceeded the default minimal value of 20 + 8.0 * ln(L), where L is the read length, were
removed. Then, the remaining (i.e., unaligned) reads were assembled again following the
procedure described in Section 2.2.2.

2.2.4. Generation of a Consensus Transcriptome

The five resulting transcriptomes (one per experiment) were further combined and
analysed with the tr2aacds.pl and evgmrna2tsa2.pl (-onlypubset) scripts from Eviden-
tialGene to select the overall best candidate transcripts. The remaining reconstructed
transcripts were discarded because they were classified either as redundant, fragmented or
uninformative coding sequences, based on untranslated region (UTR) length, gaps, amino
acid quality, and stop and start codon presence. After reducing redundancy, Evidential-
Gene clustered the best transcripts by groups of likely isoforms using CD-HIT v4.6.8 [67,68]
and a similarity threshold of 90% on the amino-acid sequences. Sequences were considered
as true isoforms (i.e., representing the same gene) when sharing high-identity (≥98%)
exon-sized fragments, as determined with BLASTN v2.2.28 (E-value cut off of 1 × 10−19).
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Transcripts proposed by EvidentialGene as the most representative isoform for each gene
were selected for annotation (see Sections 2.4 and 2.5) and for studying gene expression
(Sections 2.6–2.8).

2.3. Assessment of Transcriptome Quality

Additional analyses were performed to determine the quality of the assembled tran-
scripts. The same set of analyses was also performed on the two other transcriptomes
publicly available (GEFR01 [7] and GDJR01 [53]) for comparison with the present study.
First, basic statistics based on the length of transcripts and the number of ORFs were
computed. Read representation was determined by mapping back the cleaned reads (see
Section 2.2.1) to each of the three transcriptomes with the aligner Bowtie 2 v2.2.6 (–local,
–no-unal) as described in [65]. Note that unpaired and singleton reads were excluded from
all quality statistics. In parallel, we used two evaluation tools, Detonate v1.11 [69] and
TransRate v1.0.3 [70], to get reference-free quality scores for the three transcriptomes.

To check the presence of the spliced leader (SL) sequence [14] in the three public tran-
scriptomes, we used wordmatch from the EMBOSS software package [71] and three length
thresholds (12, 14 and 24 nt) found in the literature [52,53]. Matches were only considered
when falling at the 5′-end of a transcript, whether in forward or reverse orientation, as
transcripts are not oriented in the transcriptomes. More precisely, each transcript was
first reverse-complemented, and both versions (forward and reverse) were truncated at
40 nt before running wordmatch. Besides, transcripts actually corresponding to rRNA
sequences were identified by combining RNAmmer v1.2 [72] and MegaBLAST v2.2.28 [62]
searches (E-value cut-off of 1 × 10−50, the latter using accessions X12890.1 (E. gracilis rrnC
operon), M12677.1 (SSU rRNA 18S) and X53361.2 (LSU rRNA 28S) as queries. Regarding
coding sequences, we estimated the numbers of putative genes with GeneMarkS-T (beta
version) [73] and measured transcriptome completeness with BUSCO v.3.0.1 [74,75] using
both “Eukaryota” and “Protists ensembl” datasets.

Lastly, we used CD-HIT-2D v4.6.8 [67,68] to identify similar predicted protein se-
quences between transcriptomes with our transcriptome as a reference. We explored
different word sizes (2 to 5) at several thresholds of sequence identity (ranging from 0.5 to
0.9). Sequences from the other two public transcriptomes that could not be clustered with
sequences of our consensus transcriptome were tentatively aligned using BLASTP v2.2.28
instead [62]. We further calculated the expression of presumably “missing” sequences
in GDJR01 (D) and GEFR01 (B-C), respectively, following the procedure described in
Section 2.5. The sequence was deemed invalid and not considered missing if its expression
was below one transcript per kilobase million (TPM) in the transcriptome from which it had
been identified. In a complementary analysis, highly similar nucleotide sequences from
the three transcriptomes were clustered all together at once using CD-HIT-EST (identity
threshold of 0.9, word size of 8, coverage of the shorter sequence of 0.9). Within each cluster,
transcripts were pooled per transcriptome and their properties used to compare the three
transcriptomes over all clusters, in terms of redundancy, length and identity. Analyses were
performed either on all clusters or only on clusters shared across the three transcriptomes.

2.4. Transcript Annotation

The annotation procedure was carried out in three steps. First, assembled transcripts
(i.e., the EvidentialGene representative isoforms) were annotated with EggNOG-mapper
v1 [76,77]. We used HMMER to compare our data with the eukaryotic database of EggNOG,
prioritizing coverage. Second, we annotated our transcripts by similarity using PSI-BLAST
v2.2.28 searches [62] (E-value cut-off of 0.001) against Swiss-Prot [78]. Third, we aligned the
assembled transcripts to the NCBI protein (nr) database [63] using TBLASTN v2.2.28 [62]
(same E-value cut-off). We recovered Gene Ontology terms (GO) [79] and Kyoto Ency-
clopedia of Genes and Genomes Orthologs terms (KO) [80] of each transcript for further
term enrichment analysis and network representation (see Section 2.7 for details). For
that purpose, EggNOG features were assigned when possible to a transcript; if annotation
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was missing, PSI-BLAST v2.2.28 annotation was provided instead, or even TBLASTN
v2.2.28 features whenever the two first previous methods failed. For mitochondrion and
plastid-specific analyses, the components of the photosynthetic and respiratory electron
transport chains were identified by BLASTP v2.2.28 searches [62] (E-value cut-off of 0.001)
against reference proteins described in the literature. Hence, respiratory subunits were
taken from [9,81,82], whereas subunits of photosystem I, photosystem II, cytochrome b6f
complex, cF1Fo ATP-synthase were sourced from [83], and LHC polyproteins from [84].

2.5. Taxonomic Analyses

Taxonomic affinities were determined based on BLASTX v2.2.28 [62] searches against a
broadly sampled proteome database, composed of 73 manually selected eukaryotes [85] and
19,802 representative prokaryotes subsampled from a curated database of 27,762 genomes [86].
For each assembled transcript, a last common ancestor (LCA) was computed based on
their closest relatives (best hits, if any) in the database, provided they had a bit-score
≥80 and were within 95% of the bit-score of the first hit (MEGAN-like algorithm [86,87]).
Organellar (plastid and mitochondrion) encoded proteins were distinguished from nuclear-
encoded proteins by querying (BLASTP) two E. gracilis organelle databases assembled from
the NCBI RefSeq “Proteins” portal [63]. To identify with certainty an organelle-encoded
protein, only hits with a minimum percentage identity of 99% and a strictly identical length
were considered. Such organelle-encoded sequences were expected at least from our own
reads, which were generated in the absence of poly-A selection.

In parallel, tetranucleotide frequencies (TNFs) were computed for individual tran-
scripts using the default settings of compseq from the EMBOSS software package [71].
Then, assembled transcripts for which a taxonomic affiliation had been obtained were
ranked following their GC content and split into four partitions of equal size in terms of
number of transcripts. Finally, ten principal component analyses (PCAs) were computed
on TNFs, each one based on 1000 randomly chosen transcripts, using the prcomp function
of the STATS v3.4.3 R base package [88]. For each PCA, two different colour schemes were
applied on data points: the broad taxonomic affiliation of the transcript LCA (divided
into four groups: Viridiplantae, Kinetoplastida, other Eukaryota and Bacteria), and the
GC-content partition of the transcript.

2.6. Expression Quantification

The abundance of assembled transcripts was estimated by using RSEM v1.2.31 [89] and
Bowtie2 v2.2.6 aligner [65,66]. Specifically, we used the align_and_estimate_abundance.pl
Perl script wrapped in the Trinity v2.4.0 software package [59]. Data was then processed
with abundance_estimates_to_matrix.pl Perl script without normalization parameters to
generate the final expression matrix. Expression values are provided in transcripts per
kilobase million (TPM) and pooled per gene (i.e., gene-level counts) [90].

Each count value was log2-transformed and converted to a Z-score to make samples
comparable (sample mean was subtracted from each sample observation and divided
by sample standard deviation). Batch effects were tentatively removed with the help of
the SVA v.3.26.0 R package [91], so as to adjust data for unwanted sources of variation.
However, such correction proved to be ineffective and thus abandoned (see Results and
Discussion). For downstream analyses, only the 2500 most variable genes were retained
(based on their expression variance across the 23 samples).

2.7. Gene Clustering Based on Expression Profiles

The 2500 most variable genes were clustered using the Partitioning around medoids
(PAM) algorithm (from the CLUSTER v.2.0.7 R package) [92], which creates a fixed number
of clusters (k) by minimizing the sum of the dissimilarities of the observations to their
closest representative object (medoid). To capture both positive and negative relationships
between gene pairs, we used a dissimilarity matrix of expression based on the squared
Pearson correlation (d = 1 − r2). The optimal cluster segregation was selected by cycling
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through the number of potential solutions, ranging from k = 5 to 75. In each solution, an
average of maximal absolute correlations within-cluster (w-k cormax) and an average of
minimum absolute correlations between-cluster medoids (b-k cormin) were computed. To
intercept the point where optimal cluster segregation occurred, a reinterpretation of the
Dunn index was used, and we computed the b-k cormin and w-k cormax ratio, choosing
the solution with the minimal ratio value. At this optimal point, decreasing or increasing
the number of cluster solutions would not better explain the data [93]. Heat map and
hierarchical clustering analyses (correlation was used as the distance and centroid linkage
clustering as the method) of expression data were carried out using the pheatmap function
from the pheatmap v1.0.12 R package [94] and, when necessary, row-wise data (gene
expression of the transcripts) was aggregated using k-means clustering to facilitate visual
inspection of expression across conditions.

2.8. Gene Ontology (Enrichment) Analyses

The clusters based on the 2500 most variable genes were further analysed to visu-
alize overrepresented biological terms using the whole GO and KEGG term space from
Section 2.4 as a background. We explored enriched pathways within the expression clus-
ters using ClueGo v2.5.0 tool [95], a visualization plug-in implemented in the Cytoscape
v3.6.0 environment [96]. Term overrepresentation was estimated by an enrichment test
based on the hypergeometric distribution followed by Benjamini–Hochberg adjustment for
multiple testing. An annotation network was built with the ClueGo plug-in from kappa
scores, which reflect the associations between genes and GO and KEGG terms. Network
specificity was set between 3 and 12 GO hierarchy levels, and term selection was set to a
minimum of 3% genes per cluster. Kappa score threshold was set to 0.3, and we allowed
GO parent-child term fusion. Moreover, we explored the network with the MCODE algo-
rithm [97], implemented as a Cytoscape plug-in, to detect densely connected regions or
hubs in the network. Those hubs were found in the network establishing a degree cut-off
of 2 for network scoring criteria, without including loops. Option Fluff was selected and
parameters for Cluster Finding panel were set at 0.1 and 0.2 for node density and node
score cut-off, respectively, a minimum of 2 edges per node of cluster cores (K-Core) and a
maximum depth of 100.

3. Results and Discussion
3.1. Data Collection/Datasets

Out of the eight datasets publicly available for E. gracilis, only four [PRJNA310762
(A), PRJEB10085 (B), PRJNA298469 (C), PRJNA289402 (D)], were retained to assemble our
consensus transcriptome, along with our own experiment PRJEB38787 (E; Table 1), which
used Duplex-Specific thermostable nuclease (DSN) normalization to avoid poly-A selection.
These five datasets totalled circa 2.6 billion raw Illumina reads (100-nt long), of which 70%
belong to our experiment. After quality treatment, between 5 and 7% of reads were lost
in experiments PRJNA310762 (A), PRJNA298469 (C) and PRJNA289402 (D), whereas the
rejection of reads was more important in experiments PRJEB10085 (B) and PRJEB38787
(E). In PRJEB10085 (B), 19% of reads were truncated as a consequence of low-quality
regions, whereas in PRJEB38787 (E), 50% of reads were discarded because of the high
number of ambiguous nucleotides, especially in reverse reads. Hence, we got 57.8 million
of good quality reads out of 62 after pre-processing of experiment PRJNA310762 (A) [7],
310 million reads out of 383 for experiment PRJEB10085 (B) [52], and 267.7 million from
experiment PRJNA289402 (D). In the latter case, we used all samples as input, whereas
Yoshida et al. (2016) only used the reads from cells grown in mixotrophic conditions to
build their assembly [53]. Finally, Ebenezer et al. (2019) used 410 million reads as input for
their transcriptome assembly, probably as the result of combining reads from PRJEB10085
(B) and PRJNA298469 [7].

After quality filtering, ca. 1.5 billion reads were retained, pre-processed read files
of each individual experiment were assembled in four replicates using Trinity and then
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condensed into one individual transcriptome per experiment using EvidentialGene, which
served as the basis for creating the consensus transcriptome (see Materials and Methods
for details). Overall, PRJEB38787 (E), PRJEB10085 (B), PRJNA289402 (D), PRJNA310762 (A)
and PRJNA298469 (C) experiments accounted for 55, 20, 17, 4, and 2% of the pre-processed
reads used for the individual assemblies, respectively.

3.2. De Novo Assembly Evaluation
3.2.1. Individual Assemblies

The presence of sequences within a data set that originate from sources other than the
sequenced sample is a known limitation of RNA-Seq experiments (e.g., [98,99] in human
datasets). For some studies, such as large-scale phylogenomics, contaminants can be very
problematic and must be dealt with using an array of different approaches [100]. Thus,
before combining the individual five transcriptomes into a final consensus transcriptome,
all assembled sequences were BLASTed against the NCBI nucleotide (nt) database [63] to
identify possible contaminants. Using stringent thresholds, we found in the five transcrip-
tomes only 948 unique hits of reconstructed transcripts that matched organisms other than
E. gracilis. These organisms were considered as possible contaminants. Among them, we
selected the five organisms whose abundance was the greatest (Homo sapiens, Saccharomyces
cerevisiae, Escherichia coli, Ovis aries and Caenorhabditis elegans). It is noteworthy that sheep
(and cow) DNA is commonly sequenced on our genomic platform. By mapping all pre-
processed reads to the nuclear genome of these five species, we found that contaminants
were less than 0.01% of the reads matching one of the contaminant genomes. In comparison,
it has been shown that 0.13% of contaminant reads were present on average in a subset of
150 sequencing data files from the 1000 Genomes Project [101]. In the case of PRJNA298469
(C), we flagged as contaminants 68 reads per million reads (RPM), a larger proportion
compared to the other experiments, which varied between 2 and 29 RPM (Table 2). Con-
taminant reads were removed and new assemblies of each experiment were generated
anew from decontaminated reads, following the same procedure as above (see Section 2.2.2
for details). Afterwards, a new BLAST analysis was performed to quantify whether the
contamination level was reduced. As expected, hits matching to C. elegans, Escherichia coli,
H. sapiens, O. aries and Saccharomyces cerevisiae decreased, while hits matching to Euglena
remained similar (Supplementary Figure S1). Besides, we traced the non-Euglena sequences
that persisted in the final consensus transcriptome presented just below (see Section 3.2.2).
Overall, from 716 unique hits of non-Euglena sequences identified with the latter BLAST
analysis, only 64 were still present in the final consensus transcriptome (see Section 3.3.2 for
details on the contamination sources). As a case in point, the complex genetic makeup of
E. gracilis (e.g., [52]) makes it difficult to determine when a sequence, even if very peculiar,
has been acquired from a very distantly related species or whether it can be a contaminant
(see also Section 3.3.2 for an attempt to differentiate the two cases). For example, the
glyoxylate cycle is localized within the mitochondria in E. gracilis and isocitrate lyase and
malate synthase form only one bifunctional enzyme, called EgGCE [102,103]. A bifunc-
tional enzyme for the glyoxylate cycle is also found in the worm C. elegans (opisthokonts),
revealing an independent acquisition of the bifunctional enzyme by convergent evolution
in these two organisms [104].

The five decontaminated individual transcriptomes were then evaluated with Tran-
sRate to check their uniformity. Four transcriptomes yielded ca. 42,342 (±6159) transcripts
on average, whilst the number of reconstructed sequences in experiment PRJEB10085 (B)
was more than twice the average, 95,490 sequences (Table 2). In addition, the computed
GC content was 58% for experiment PRJEB10085 (B), a lower percentage compared to the
other assembled transcriptomes, which was around 64%. Finally, we discovered a high
frequency of sequences under 500 nt and characterized by a lower GC content (Supple-
mentary Figure S2). After those small sequences were removed (representing 62% of the
transcripts), TransRate statistics were recomputed and yielded values more in line with
other experiments, both in terms of number of sequences (36,287) and GC content (62%).
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We could not determine what the removed sequences were by similarity searches. They
might represent some sort of artefact, contamination, or even be the result of a specific
feature of experiment PRJEB10085 (B), for example the sequencing of a different strain, i.e.,
E. gracilis var. saccharophila Klebs (SAG 1224/7a) [52], whereas the other four experiments
all used the Z strain (SAG 1224-5/25).

Table 2. Basic statistics based on transcript properties of reconstructed transcriptomes from collected data. ACC: study
accession, REF: bibliographic reference, RAW: number of downloaded reads, PRE: number of good reads after pre-processing,
CNT: number of reads removed after pre-processing considered as contamination (reads per million; rpm), SEQ: number
of transcripts, MIN: minimal sequence length, MAX: maximal sequence length, MEAN: mean sequence length, TOTAL:
combined sequence length, SEQ < 200: number of transcripts under 200 n, SEQ > 1 k: number of transcripts over 1000 nt,
SEQ > 10 k: number of transcripts over 10,000 nt, ORF: number of sequences with a predicted open reading frame, ORF (%):
for contigs with an ORF, the mean % of the contig covered by the ORF, N[z]: minimum contig length needed to cover [z]%
of the transcriptome. GC (%): percentage of guanine-cytosine content, PART and PART (%): number and percentage of
sequences contributed to the final consensus transcriptome (see below). In PRJEB10085 (B) (filtered), sequences <500 nt
were further discarded (see text).

Statistic A B B (Filtered) C D E

ACC PRJNA310762 PRJEB10085 PRJEB10085 PRJNA298469 PRJNA289402 PRJEB38787
REF [7,52,53] This study

RAW 61,531,862 383,416,636 383,416,636 27,096,926 285,148,782 1,902,226,200
PRE 57,862,467 310,302,570 310,302,570 25,244,887 267,779,751 875,299,135
CNT 740 (12 rpm) 9080 (29 rpm) 9080 (29 rpm) 1750 (68 rpm) 1191 (4 rpm) 2403 (2 rpm)
SEQ 38,559 95,490 36,287 42,363 37,425 51,021
MIN 101 101 500 101 101 101
MAX 13,929 21,744 21,744 11,354 26,839 10,795

MEAN 1043 647 1312 810 1120 610
TOTAL 40,861,413 64,426,688 47,615,807 34,438,742 42,382,170 31,671,589

SEQ < 200 4330 17,074 0 782 3051 3989
SEQ > 1 k 16,289 18,638 18,638 10,932 17,048 7104

SEQ > 10 k 4 15 15 1 13 1
ORF 24,757 29,060 27,842 27,063 24,817 26,882

ORF (%) 88% 82% 83% 89% 87% 93%
N90 576 347 654 419 606 367
N70 1140 667 1101 686 1187 528
N50 1607 1282 1574 1014 1658 753
N30 2257 2033 2243 1452 2318 1090
N10 3600 4026 3707 2358 3812 1850

GC (%) 64% 58% 62% 64% 64% 64%
PART 22,234 - 27,730 10,129 19,663 11,602

PART (%) 24.3% - 30.3% 11.1% 21.5% 12.7%

3.2.2. Final Consensus Transcriptome

To obtain our final transcriptome, we combined the individual five decontaminated
transcriptomes into a consensus transcriptome. Regardless of the aforementioned differ-
ences in the amount of pre-processed reads per dataset, the contribution of transcripts from
each study in the final consensus transcriptome was rather balanced, where PRJEB10085 (B),
PRJNA310762 (A), PRJNA289402 (D), PRJEB38787 (E), and PRJNA298469 (C) accounted for
30.3%, 24.3%, 21.5%, 12.7%, and 11.1%, respectively (Table 2). The resulting transcripts were
classified into non-redundant protein-encoding genes, and one representative isoform was
selected for each gene. Our new transcriptome was then compared with the other two pub-
licly available transcriptomes, GDJR01 (D) [53] and GEFR01 (B-C) [7] (Table 3). Ebenezer
et al. (2019) [7] used a combination of in-house generated sequences (PRJNA298469 (C))
and publicly available data from O’Neill et al. (2015) [52] (PRJEB10085 (B)) to assemble
a transcriptome. Assembly transcriptome statistics were computed with TransRate. The
overall number of sequences reported in the present work is 91,040, with N50 of 1432 nt,
whereas in GDJR01 (D), it was 113,152 (N50 1604), and 72,506 (N50 1242) in GEFR01 (B-C).
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The mean length of our transcripts was 1096 nt, a value closer to GDJR01 (D) than GEFR01
(B-C), which was ca. 200 nt smaller. The number of protein coding regions predicted by
GeneMarkS-T (58,542) and the number of open reading frames (ORF) found with Tran-
sRate (62,287) are slightly smaller than in GDJR01 (D), but about twice greater than in
GEFR01 (B-C). Our own sequences were classified into 49,922 predicted non-redundant
protein-encoding genes, which is comparable to GDJR01 (D), but almost eighteen thousand
genes more than in GEFR01 (B-C). As expected, these recomputed numbers are similar
to those reported in the original publications of Yoshida et al. (2016) [53] and Ebenezer
et al. (2019) [7]. Additionally, O’Neill et al. (2015) [52] found over 32,000 unique compo-
nents for their E. gracilis transcriptome. The total size of our consensus transcriptome is
100 Mb, whilst the size of GDJR01 (D) is 122 Mb, 63 Mb for GEFR01 (B-C) and 38.4 Mb for
O’Neill et al. (2015) [52] transcriptome. Overall, the genome size of E. gracilis has been
estimated from total DNA content to range between 1 Gbp to 9 Gbp [54]. In contrast, the
most recent estimation based on high throughput sequencing data was 332–500 Mb in
size for the whole haploid genome [7] but, because half of the genome is gapped or has
unknown base representation, the authors pointed out that this latter estimation was likely
to be approximate.

Table 3. Basic statistics of transcript properties computed for the three public transcriptome assem-
blies, including the consensus transcriptome generated in the present work, and completed with data
retrieved from the publications of Ebenezer et al. (2019) [7] and Yoshida et al. (2016) [53]. Row titles
are as in Table 2, except for CDS: number of unique coding sequences (i.e., ORFs or UNIGENEs),
GMS-T and GMS-T (%): number and percentage of predicted protein coding regions calculated by
GeneMarkS-T.

Statistic GEFR01 GDJR01 HBDM01

REF [7,53] This study
SEQ 72,506 113,152 91,040 1

MIN 202 201 201
MAX 25,763 21,553 26,839

MEAN 869 1087 1096
TOTAL 63,049,595 122,976,775 100,187,451

SEQ < 200 0 1 0 1 0 1

SEQ > 1 k 19,740 49,277 37,294
SEQ > 10 k 25 27 24

ORF 2 30,467 65,943 62,287
ORF (%) 79% 73% 85%

N90 374 523 545
N70 704 1130 965
N50 1242 1604 1432
N30 1916 2181 2049
N10 3344 3347 3410

GC (%) 61% 63% 63%
CDS 32,128 49,826 49,922

GMS-T 35,929 63,432 58,542
GMS-T (%) 49% 56% 64%

1 Submission tools for sequence repositories do not accept transcripts ≤ 200 nt. Hence, the number of sequences
in the public version of HBDM01 is lower than reported elsewhere in this work. 2 ORFs were determined with
TransDecoder, whereas CDS were determined with EvidentialGene (or a similar tool, depending on the study).

The pre-processed reads from the five experiments were aligned back to the three
public transcriptomes as a metric of completeness. In most cases, the percentage of mapping
was over 80%, reaching even more than 90%, with the exception of reads produced by
ourselves PRJEB38787 (E), which had a representation of ~75% and ~50% in GEFR01 (B-C)
and GDJR01 (D), respectively (Table 4). It is probable that our reads have a lower mapping
percentage because they were generated from DSN-normalized total RNA samples, for
which analyses of a preliminary sequencing lane revealed many reads corresponding to
non-mRNA sequences (e.g., rRNA). However, the specifically low mapping to GDJR01
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(D) cannot be explained easily because “transcripts” matching to rRNA sequences were
identified in all three public transcriptomes (Supplementary Archive File S1).

Table 4. Mapping fraction of pre-processed reads from each collected dataset (rows) to the three
public transcriptome assemblies (columns), GEFR01 [7], GDJR01 [53] and HBDM01 (this study).

Code Accession Reference GEFR01 GDJR01 HBDM01

A PRJNA310762 [7] 87.40% 92.51% 93.38%
B PRJEB10085 [52] 84.68% 90.13% 91.49%
C PRJNA298469 [7] 80.26% 91.66% 90.39%
D PRJNA289402 [53] 85.25% 95.04% 94.28%
E PRJEB38787 This study 75.28% 51.39% 80.76%

Using BUSCO on our predicted proteins, we found that the consensus transcriptome
contained 84.8% of complete eukaryotic orthologs and half of them were duplicated, while
10.6% were missing (Figure 2). In comparison, we estimated the completeness of GDJR01
(D) at 80.8% of complete orthologs, of which a fifth were duplicated, and completeness
of GEFR01 (B-C) at 76.9%, with only 4% of them duplicated. Moreover, we observed
that lower percentages of complete orthologs were accompanied by higher numbers of
fragmented and missed sequences. Overall, our consensus transcriptome appears to be the
most complete, GEFR01 (B-C) being the least. Ebenezer et al. (2019) [7] also determined
BUSCO completeness in GDJR01 (D) and GEFR01 (B-C) transcriptomes in addition to the
original transcriptome presented by O’Neill et al. (2015) [52] and similarly concluded that
GEFR01 (B-C) was the least complete transcriptome. Beyond transcripts missing due to low
expression, discrepancies in the number of complete orthologs predicted by the different
studies may also be due to the use of different tools for protein prediction. Whereas we
used cdna_bestorf.pl script from EvidentialGene, the other studies used TransDecoder [59],
which, reportedly, tends to predict larger amounts of proteins, but performs worse for true
transcripts [105]. Despite these differences, the general representation scores of the reads
in the assembled transcripts were similar across the three public transcriptomes, even if
depending on the exact evaluation software used (Table 5).

Figure 2. BUSCO-generated charts showing the relative completeness of the three public transcriptome assemblies,
GEFR01 [7], GDJR01 [53] and HBDM01 (this study). BUSCO datasets were based on odb9. (a) “Eukaryota” (303 BUSCOs);
(b) “Protists ensembl” (215 BUSCOs).
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Table 5. TransRate and Detonate assembly scores for the three public transcriptome assemblies,
GEFR01 [7], GDJR01 [53] and HBDM01 (this study). Scores indicate how well transcripts are sup-
ported by the RNA-Seq data.

Assembly Score GEFR01 GDJR01 HBDM01

TransRate Score 0.1789 0.0304 0.0430
TransRate Optimal Score 0.2051 0.1729 0.0764

Detonate Score −97,461 × 106 −97,561 × 106 −97,459 × 106

As already mentioned, one evidence supporting the evolutionary relationship between
trypanosomatids and euglenids are trans-splicing mechanisms [14]. We found that the
SL-sequence was present in no more than 10.8% of transcripts in our transcriptome, far
from the approximately 53–60% prevalence reported before [14,53], and closer to the 16%
found by [52]. However, when performing the exact same analysis on the other two public
transcriptomes, we find contrasting results, with SL-sequence matches recovered in at most
of 2% and 30.3% of GEFR01 and GDJR01, respectively (Table 6). This indicates that the
transcriptome of Yoshida et al. (2016) [53] has the most complete transcripts in 5-end, even
though our own assembly includes 200 transcripts with a full-length perfect match to the
24-nt SL-sequence (vs. 45 and 5 for GEFR01 and GDJR01, respectively). Comparison of the
mapping coverage for the three public transcriptomes shows that partial matches (12–14 nt)
are much more numerous than full-length matches, as expected, but that the former are
concentrated at the very beginning of the transcripts, which suggests that they are genuine
SL-sequences (Supplementary Figure S3).

Table 6. SL-sequence related statistics for the three public transcriptome assemblies, GEFR01 [7],
GDJR01 [53] and HBDM01 (this study). These correspond to exact matches limited to the first
40 nucleotides of each transcript.

Threshold (nt) Statistic GEFR01 GDJR01 HBDM01

24

Forward matches 24 5 86
Reverse matches 21 0 114

Total matches 45 5 200
Average length (nt) 24.00 24.00 24.00

14

Forward matches 176 16,580 3370
Reverse matches 200 12,999 3265

Total matches 376 29,579 6635
Average length (nt) 16.28 15.57 15.59

12

Forward matches 749 18,322 4403
Reverse matches 766 16,016 5397

Total matches 1515 34,338 9800
Average length (nt) 13.37 15.19 14.68

Finally, we determined whether sequences of the other two available transcriptomes
were present in our consensus transcriptome through two complementary approaches:
one pairwise, sensitive and based on protein sequences, and one global, conservative and
based on nucleotide sequences (Supplementary Table S1b). First, when using CD-HIT-
2D with our transcriptome as a reference, a word size of 2 and an identity threshold of
0.4, 26.1% (34,490) of total sequences from GDJR01 (D) were missing and 37.6% (28,552)
of total sequences from GEFR01 (B-C). Missing sequences were BLASTed (TBLASTN E-
value cut-off of 0.001) against our transcriptome, and 20.5% (27,152) of total sequences
of GDJR01 (D) were recaptured and 24.8% (18,870) of GEFR01 (B-C) (Supplementary
Table S1a). After computing TPM values using the pre-processed reads generated in this
study, we found that only 518 missing sequences of GDJR01 (D) were expressed above
1 TPM and 1595 in GEFR01 (B-C), which means that potentially 0.5% and 2% of the truly
expressed sequences from GDJR01 (D) and GEFR01 (B-C), respectively, are missing from
our consensus transcriptome. Hence, these sensitive analyses suggest that we captured
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more than 98% of the sequences produced in the other transcriptomes hitherto published.
Second, CD-HIT-EST was used to compute clusters of related transcripts at an identity
threshold of 90%. We recovered 121,851 clusters, in which the three transcriptomes had
very similar patterns of presence and representation (Supplementary Table S1b). Hence,
each transcriptome had at least one transcript in 60,220 to 66,041 clusters, whereas they each
provided the representative (longest) sequence in 39,434 to 41,610 clusters. Singleton cluster
statistics were slightly different, with GEFR01 having 29,997 specific clusters, followed
by GDJR01 (27,058) and then our own transcriptome (19,028). When focusing on the
24,164 clusters shared between the three transcriptomes, we see that our transcriptome
contributes the highest number of representative sequences, which confirms that they
are generally longer than their homologues in the other two transcriptomes. This is also
visible in a direct comparison of the mean an maximum transcript length across the three
transcriptomes, whether on the 121,851 or the 24,164 clusters (Supplementary Figure S4).
In contrast, comparison of the median and max identity between transcripts of the three
datasets reveals that GEFR01 sequences are the most similar on average to the sequences
from the two other transcriptomes. They are also the less redundant, with the lowest
number of transcripts per cluster.

Altogether, these comparative analyses indicate that the three publicly available
transcriptomes each have a distinct edge on the other two: Ebenezer et al. (2019) [7]
assembled a compact set of sequences nonetheless providing a large fraction of unique
transcripts, whereas Yoshida et al. (2016) [53] obtained a more redundant transcriptome,
but with many transcripts complete at their 5-end, as evidenced by the detection of SL-
sequences, and for our part, we generated the longest transcripts on average, including a
few hundred featuring a full-length SL-sequence, with moderate redundancy.

3.3. Global (Transcriptome) Annotation
3.3.1. Functional Annotation of Transcripts

The combination of annotation strategies in our 49,922 predicted non-redundant
protein-encoding genes yielded 9916 sequences with GO terms, 7775 KEGG orthologs,
13,298 sequences with a functional annotation and 13,850 with a taxonomic affiliation
(Supplementary Table S2; see also Section 3.3.2). In the same way, O’Neill et al. (2015) [52]
found 14,389 proteins with annotated functions out of the 32,128 predicted proteins of their
transcriptome, whereas out of the 49,826 unique components reported by Yoshida et al.
(2016) [53], approximately 11,314 were functionally annotated. Ebenezer et al. (2019) [7]
annotated over 19,000 sequences, but without discerning what kind of attributes were
associated in each case.

In comparison to the annotation performed in the other transcriptomes, we were able
to find all the enzymes of the mevalonate pathway, including the diphosphomevalonate
decarboxylase (EC 4.1.1.33), which was missing in the work of O’Neill et al. (2015) [52],
thereby revealing that the last reaction is catalysed by a canonical enzyme. Regarding
the carbohydrate-active enzymes, we found results similar to those outlined by O’Neill
et al. (2015) [52]. Hence, we identified a great number of glycosyltransferases (311) and
glycoside hydrolases (80), of which a quarter (19) were different types of glucanases
(Supplementary Table S3). Corroborating the results of Yoshida et al. (2016) [53], we found
two transcripts encoding glucan synthases, but could not identify transcripts encoding a 1,3-
β-D-glucan phosphorylase, despite that such an enzyme has been previously characterised
biochemically [106,107].

In E. gracilis, the photoreceptor is considered by some authors to be a rhodopsin-like
protein where the retinal chromophore is a carotenoid [108]. We found five enzymes
involved in retinol metabolism (EC 2.3.1.76; EC 3.1.1.64, EC 2.3.1.135; EC 1.1.1.105, EC
1.3.99.23) but, in line with Ebenezer et al.’s (2019) [7] findings, we could not find any
rhodopsin-like protein candidates. Instead, we found 47 genes involved in visual per-
ception processes (GO:0007601) and, more broadly, 333 genes related to photoresponse
(Supplementary Table S4), including 13 cAMP/cGMP phosphodiesterases involved in



Genes 2021, 12, 842 15 of 29

amplification of luminous signal, 15 GTPase regulators, nine arrestins, which are important
for regulating signal transduction at G protein-coupled receptors, eight cryptochromes,
and three cyclic nucleotide-gated channels of rod photoreceptors. In addition, we found
13 proteins of the paraflagellar rod, a structure observed in euglenids, kinetoplastids and
dinoflagellates [109–111]. Such a structure is associated with the paraflagellar body (also
called paraxonemal body, PAB) in E. gracilis [112]. We also found 49 transcripts coding for
photoactivated adenylate cyclases (PAC), which are light-sensitive proteins of PAB [113].
Of these, 43 clearly show a bacterial affinity in our analyses, whereas two are highly similar
two trypanosomatid sequences [114].

To better understand the general functionality of the consensus transcriptome, we
reported the GO annotation results as high-level terms of the three ontologies without the
detail of the specific fine-grained terms. For such a task, we used the generic GO Slim
Mapper tool of The Saccharomyces Genome Database [115], and the list of summarized
GO terms (GO slim) can be found in Supplementary Table S5. As we used a compendium
of culture conditions, we expected to capture the sum of functionalities represented by the
studies individually. We found a total number of 164 GO terms after GO slim analysis,
represented by core metabolism (41), transport (13), cell organization (15) and maintenance
(25), nucleotide metabolism (35) and protein synthesis (17), vesicle or cilium organization
(15) among others. The annotation from O’Neill et al. (2015) [52] was classified into 157 GO
categories while Yoshida et al. (2016) [53] determined, under mixotrophic conditions, that
the main functional categories were genetic information processing (399 components),
translation (291 components), and energy metabolism (239 components). Besides, genes
belonging to the latter three categories were generally down-regulated during anaerobic
treatment [53]. In the same way, Ebenezer et al. (2019) [7] indicated that major categories
were dominated by core metabolic, structural and informational process supergroups,
consistent with the current work and previous studies [52,53].

3.3.2. Taxonomic Annotation of Transcripts

As a complex alga resulting from a secondary endosymbiosis between a euglenozoan
host and a chlorophyte alga, E. gracilis bears genes from multiple origins [16,25]. In terms
of sequence similarity (and depending on the current sampling in reference organisms),
its nuclear genome is expected to be composed of four main gene classes: (i) Euglena-
specific genes, (ii) kinetoplastid-specific genes, (iii) eukaryotic genes (i.e., widespread in
other eukaryotes), and (iv) (green) genes acquired during the secondary endosymbio-
sis [31]. Over the last fifteen years, this issue has been extensively studied, both using
similarity [52,53] and phylogenetic [7,9,31,32,116–119] approaches, either at small (i.e.,
targeted subsets) [9,116–118] or larger (i.e., transcriptomic) scales and, when at larger
scale, either by focusing on the chloroplast [119] or by surveying “unbiased” transcript
collections [7,31,32,52,53]. All these studies have revealed that E. gracilis display sequence
similarities to a panel of organisms that is larger than predicted by a simple theory of
secondary symbiogenesis [120,121]. Unsurprisingly, our large-scale similarity analyses
of the consensus transcriptome confirm the results of these previous works (Figure 3).
A first observation is that only 28% of the predicted non-redundant protein-encoding
genes (13,850 out of 49,922) bear any exploitable similarity with sequences in reference
databases. Among those, 937 (7%) correspond to organisms to which we could not assign a
specific taxon, whereas 4054 (29%) were only identified as “Eukaryota”. The remaining
gene similarities are distributed among kinetoplastids (1364, 10%), green plants (977, 7%)
and other subgroups of eukaryotes, whether photosynthetic, such as cryptophytes (530,
4%) and haptophytes (468, 3%), or not, e.g., opisthokonts (947, 7%). Bacterial groups
account for 1690 transcripts (12%), among which the most prominent are proteobacteria
(34% of bacteria) and cyanobacteria (212, 13%). Only 40 (2%) and 15 (0.9%) transcripts are
affiliated to the PVC group or Chlamydiae, respectively [122]. As expected [31], focusing on
119 nuclear-encoded genes involved in mitochondrial and photosynthetic electron transfer
chains increases the similarity signal in favour of kinetoplastids (20 out of 86, 22%) and
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green plants (20 out of 33, 58%), respectively (Supplementary Figure S5; see also HTML
Supplementary Files S2 and S3).

Figure 3. Taxonomic analysis of reconstructed transcripts (BLASTX MEGAN-like affiliations). The Krona chart is a zoom on
the 13,850 transcripts to which a taxonomy could be associated, i.e., 28% of the 49,922 reconstructed transcripts. Among this
classified fraction, 937 (7%) correspond to organisms to which we cannot assign a specific taxon (“other cellular organisms”).
The thin blue slice is labelled “Archaea” (0.2%). The interactive chart is available as HTML Supplementary File S1.

Similarly to other complex algae (e.g., cryptophytes and chlorarachniophytes [123],
ochrophytes and haptophytes [124,125]), E. gracilis transcriptomes show a heavily mixed
ancestry in terms of gene donor lineages. However, it is a known (yet somewhat neglected)
issue that publicly available transcriptomes can be contaminated by foreign sequences
because of ecology (e.g., predator–prey, host–parasite or symbiotic relationships), or due to
cross-contamination (either in the lab or on sequencing platforms) (see [126] and references
therein). That is why we exerted special care to avoid including non-Euglena transcripts
when assembling the five individual transcriptomes (see Section 3.2.1). In our final consen-
sus transcriptome, we still identified 64 sequences as contaminants, of which 23 are false
positives, owing to strong sequence similarity with different kinetoplastids (9 transcripts),
green plants or algae (7), or non-green microalgae (7). Since the transcriptome had already
been publicly released at the time, the other 41 remaining sequences were retained in
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subsequent analyses, but tagged as contaminants (Supplementary Table S6). Moreover, we
used the taxonomic annotation of the 13,850 annotated transcripts to determine whether
contaminants could be identified by their base composition pattern (see [127] and refer-
ences therein). To this end, PCA plots were computed based on transcript tetranucleotide
frequencies. Two types of colour annotation were then applied: one following a scale
of GC-content and one following the taxonomy (Supplementary Figure S6). It appears
that the taxonomic signal is mixed throughout these PCAs, whereas GC-content clearly
corresponds to the PC1 axis. Thus, it was not possible in our case to identify and sort out
contaminated transcripts (if any) from Euglena transcripts with this approach.

3.4. Systematic Functional Annotation of Top Differentially Expressed Genes

To better understand the functional organization of the most relevant E. gracilis genes
under the assayed culture conditions, we computed a network of ontologies, based on
transcript expression levels across all samples and studies (Supplementary Table S7). For
this purpose, we only selected GO and KEEG terms that corresponded to the 2500 most
variable genes (in terms of expression) to determine which biological functions were
represented and how they were related to each other. The resulting organized network
contained 119 nodes, with an average of nine neighbours per node, and 436 genes from
the initial 2500 genes were retained (some genes being part of multiple hubs). We then
used the MCODE algorithm to find evidence of higher order organization (Figure 4).
The network was composed of nine modules (or hubs), each defined by one ontological
category (Supplementary Table S8). Hub number 1 (72 transcripts) reflects “regulation of
DNA damage checkpoint”, with transcripts involved in apoptosis, control of transcription
and other developmental processes. Unlike hub number 7 (see below), hub 1 has a stress
response component. Hub 2 (191 transcripts) is the largest hub, and comprises genes
involved in translational initiation and termination, or protein targeting to a membrane, and
is thus defined by “ribosome” terms. Hub 2 is connected to hubs 3, 5 and 6 in the network.
Categorized as a “thylakoid” hub, hub 3 (133 transcripts) is the second largest hub. It mainly
comprises photosynthetic electron transport chain transcripts and other components that
respond to light stimuli. According to taxonomic annotation, the majority of the genes
represented in this hub come from green organisms. Transcripts involved in protein
kinase activity were found in Hub 4 (23 transcripts), defined as “cyclin-dependent protein
serine/threonine kinase regulator activity”. Hub 5 (25 transcripts) corresponded mainly
to processes involved in genetic information processing, such as spliceosome, exosome,
chromosome-associated proteins, or chaperones. Hub 6 (79 transcripts) is defined by several
categories related to mitochondrial protein complexes and mitochondria transport, and has
a central position in the network (connections to hubs 1, 2, 3 and 8). Hub 7 (46 transcripts)
was defined by “DNA integrity checkpoint” ontology terms and consisted of cell cycle
processes, such as transition from G1 phase to S or the previously mentioned DNA integrity
checkpoint. Hub 8 (53 transcripts) was categorized as “response to temperature stimulus”
and was composed mainly of transcripts that encode heat shock proteins. Components
of hub 9 (22 transcripts) were related to “negative regulation of translation”. Overall,
our 2500 most relevant genes appear to be distributed around the central role of the
mitochondrion, whose origin traces back to the euglenozoan host cell [31]. In this respect,
our taxonomic analysis specifically revealed that more than 10% of genes are related to
kinetoplastids (the closest available proxy for the host cell) in all hubs, except for hub 3,
categorized as “thylakoid” (Supplementary Table S9).

3.5. Cluster Annotation Enrichment Analysis and Gene Co-Expression

From the same top 2500 variable genes, we identified positive and negative rela-
tionships between pairs of genes based on gene expression. We tried to capture genes
that behave conjointly across the various experimental conditions and group them into
clusters. According to our expectations where a gene would be binary regulated (up or
down), the optimal k solution should range between 25 (32) and 213 (8192) (accounting
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for 5 to 13 distinct experimental conditions with a total sample number of 23; see Table 1).
We computed the optimal number of clusters and determined that 36 clusters was the most
suitable solution for the selected genes (Supplementary Figure S7). To better understand
the underlying biological processes inside the clusters, ontologies that were overrepre-
sented were extracted and analysed. Only five out of the 36 clusters were characterized by
significantly overrepresented ontological terms (Supplementary Table S10). In total, those
five clusters were composed of 631 transcripts out of the 2500 initially used for clustering,
and 52% of them had at least one annotation attribute. Their expression can be visualized
in hierarchically clustered heat maps (Figure 5).

Results from the enrichment tests revealed that “nucleosome category” was overrep-
resented in cluster 1, which contains transcripts of the “DNA damage checkpoint” and
“ribosome” hubs of the ontological network, hub 1 and 2, respectively (see above). These
transcripts encode histones, and core components of “nucleosome”, that participate in
wrapping and compacting DNA into chromatin. The observation that DNA packaging,
transcription and translation shared the same gene expression pattern may be relevant
because in euglenids, as well as in dinoflagellates, chromosomes are permanently con-
densed [128]. Furthermore, transcripts encoding different components of the chloroplast
reaction centres of hub 3 were also found in this cluster. This cluster was characterized by a
larger down-regulated expression in PRJEB38787 (E), while other experiments were slightly
over and under zero. Cluster 4 was enriched in “photosynthetic electron transport” and
“DNA damage checkpoint” related terms mainly present in hub 3, with several transcripts
encoding ATP synthase subunits in the former and cell cycle and apoptosis regulator
proteins in the latter. Gene expression in cluster 4 was homogeneous with values ranging
between one or minus one, except for a group of genes greatly down-regulated in studies
PRJNA310762 (A), PRJEB10085 (B), PRJNA298469 (C), and likely to be not expressed in
such experiments. About a third of the transcripts from cluster 19 encode different types
of serine/threonine proteins and are ontologically typified by “cyclin-dependent protein
serine/threonine kinase regulator activity”, which are processes closely related to cell
cycle regulation. Their expression was slightly negative in the experiment PRJEB38787
(E) and positive in PRJEB10085 (B) while it remained unaltered in the rest of the experi-
ments. “Neuroblast proliferation” and “neuroblast division” categories illustrated cluster
24, which, considering the unicellular nature of E. gracilis, was more likely to be related to
cytoskeletal structure of eukaryotic cells formed during cell division or cell polarity than
regulation of neurogenesis. In study PRJNA289402 (D), ABC transporters, fatty acid and
polyketide synthesis were more down-regulated than in the remaining studies. Lastly,
cluster 25 was enriched in “positive regulation of mitochondria organization” due to the
presence of putative mitochondrial heat shock proteins that were co-regulated across stud-
ies. Besides, expression of cluster 25 was disparate for PRJNA289402 (D), compared with
the other studies. A main difference was a group of transcripts largely downregulated in
the PRJNA289402 (D) experiment, while they were upregulated in the remaining studies.
Those transcripts putatively encode different components of the nitrogen metabolism,
some chloroplastic electron transport chain components and ATP-dependent RNA helicase.
A few transcripts related to cell cycle and translation, present in the annotation network,
were found in cluster 25.

The cluster patterns reported above show that expression is driven by study rather
than experimental conditions of the studies. Even if disappointing, these findings were
similar after the tentative SVA correction of the batch effect present in the studies (Supple-
mentary Figure S8). Presumably, our approach was not able to properly capture the batch
effect, maybe due to an unbalanced batch-group design of the studies [129]. Nonetheless,
we observed that a selection of 133 genes, coding for the components of the photosynthetic
and respiratory electron transport chains, were grouped together. This subset of genes,
located in the chloroplast and in the mitochondrion, respectively, was selected because
most of the experimental conditions (light/dark, presence or absence of acetate in the
medium, oxic/anoxic environment) of the studies were expected to affect respiration and
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photosynthesis. As illustrated in Figure 6, the expression of these genes is also driven
by the study rather than by the reported physico-chemical parameters of each experi-
ment. Yet, most components of the mitochondrial electron transport chain among the
133 selected genes were grouped together after hierarchical clustering of their expression,
while chloroplastic components exploded into different subgroups. Concretely, genes
coding for light-harvesting complexes grouped together distantly from other chloroplastic
components. These transcripts are nuclear-encoded and showed a taxonomic affinity to
Streptophyta (Supplementary Table S11).

Figure 4. Annotation network of ontological terms showing the functional organization and relationships between the
2500 most variable genes. GO and KEGG terms were considered as a large pool in which the genes could be associated with
0 to N terms. Such associations served as the basis to infer the network (see text). Colours correspond to ontological terms
(or groups of related ontological terms).
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Figure 5. Selected co-expression clusters computed on the 2500 most variable genes. Only the five clusters characterized by
significantly overrepresented ontological terms (featuring 631 transcripts) are shown. Heat maps and trees regroup samples
behaving similarly across genes on the horizontal axis and genes behaving similarly across samples on the vertical axis;
gene expression is vertically clustered to facilitate visualization (see text). Samples are colour-coded both by condition
(F = fermentative, M = mixotrophic, H = heterotrophic, P = phototrophic) and by study (A = PRJNA310762, B = PRJEB10085,
C = PRJNA298469, D = PRJNA289402, E = PRJEB38787). (a) Cluster 1; (b) cluster 4; (c) cluster 19; (d) cluster 24; (e) cluster 25.
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Figure 6. Expression heat map of 133 genes involved in electron transport chains. Heat maps and trees regroup samples
behaving similarly across genes on the horizontal axis and genes behaving similarly across samples on the vertical axis (see
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text). Samples are colour-coded both by condition (F = fermentative, M = mixotrophic, H = heterotrophic, P = phototrophic)
and by study (A = PRJNA310762, B = PRJEB10085, C = PRJNA298469, D = PRJNA289402, E = PRJEB38787). Genes are
colour-coded by organelle (CP = chloroplast; MT = mitochondrion).

Overall, our last analysis indicates that genes that share common metabolic functions
are packed together, as would be expected, even though the expression is driven by study
rather than culture condition. Beyond the technical issues that may have contributed to a
loss of exploitable signal (e.g., heterogeneous experimental “design”, see Table 1, uncor-
rected batch effects), these negative results can also be interpreted as additional evidence
for the idea that, similar to what is known in trypanosomatids, nuclear gene expression in
E. gracilis is not primarily regulated at the transcriptional level. In these parasites, gene reg-
ulation mostly occurs at the post-transcriptional level, through stabilization/degradation of
mRNA molecules and control of mRNA translation (see [8] for a recent review of the issue).
While the former mechanism should in principle change transcript abundance, the latter
one might not be visible in comparative transcriptomics. For example, Yoshida et al. (2016)
observed little change at the transcriptomic level following anaerobic treatment. More-
over, these changes in gene expression were inconsistent with respect to the activation of
paramylon degradation and wax ester production [53]. In a more systematic investigation,
Ebenezer et al. (2019) reported a striking lack of correlation between transcriptomic and
proteomic data when comparing light and dark conditions [7]. As already mentioned, the
raw transcriptomic data from these two studies were included in the present work (along
with those of O’Neill et al. (2015) [52] and our own data), which allowed us to compare
gene expression across a wider range of culture conditions at once. A few meaningful
clusters of genes (i.e., following functional term enrichment) could be identified based on
shared expression patterns across samples, which suggests that there is some biological
signal in transcript abundance. However, the dominance of batch effects on these levels
further questions the usefulness of transcriptomics for functional studies in E. gracilis.

4. Conclusions

Owing to its singular evolutionary origin, a merger between a chlorophyte alga and a
phagotrophic unicellular belonging to a non-model eukaryotic group [20], E. gracilis is a
fascinating, multifaceted chimeric organism, whose significance is constantly growing in
domains as varied as the production of bio-based products [43], the treatment of wastewater
([130]), the provision of food supplements for space exploration [131], or the elucidation
of mechanisms it shares with its parasitic trypanosome cousins [8,9,15] (see also the other
articles of the present Special Issue).

By building a consolidated transcriptome of this photosynthetic eukaryote, we aimed at
providing a solid resource to the community, taking into account previous work [7,52,53], yet
enriched with unreleased data (obtained back in 2012–2014; Supplementary Figure S9) [132].
Our final consensus transcriptome comprises 91,040 unique transcripts and 49,922 predicted
non-redundant protein-encoding genes. It appears to be the most complete up-to-date,
at least according to sequence metrics, the number of universal orthologs found, read
percentages supporting the assembly, and the fact that most of the E. gracilis sequences
available to date have been included. Hence, we have been able to capture more than
98% of the sequences produced in the other transcriptomes hitherto published, while the
number of predicted genes is in the same range [7,53]. This suggests that there was still
some room for improvement, contrary to expectations for the opposite [7], and it might
be related to the inclusion of reads obtained without poly-A selection, but following DSN
normalization.

Annotating these transcripts, whether from a functional or taxonomic point of view,
remains a challenge, notably because of the lack of well-characterized closely related
organisms, the trypanosomes being relatively derived parasites [133]. This results in a
mere 26–27% of our predicted genes annotated by sequence similarity, above the 23% of
Yoshida et al. (2016) [53], but below the 45% of O’Neill et al. 2015 [52] and the 52–55% of
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Ebenezer et al. (2019) [7], who further considered orthogroup sharing as annotation. In
principle, this should encourage more large-scale studies, e.g., comparative transcriptomics
performed in a wide range of culture conditions and stresses, in order to build a reliable
gene expression network from co-expression data, and thereby provide alternative means
for annotating genes of unknown function. Alas, as it now appears quite clearly, gene
expression is mostly controlled at the post-transcriptional level in euglenozoans [7,8],
including the regulation of chloroplast development in photosynthetic euglenids [134].
This implies that functional studies in E. gracilis have to be carried out through proteomics
rather than transcriptomic approaches (e.g., [119,135]). This is fully possible considering the
availability of several high-quality transcriptome assemblies to feed reference databases for
proteomic fragment identification, including the one presented in this work. In this respect,
the unfortunate lack of a complete genome beyond the draft level, even if frustrating, is
not an insuperable issue [7].

Regarding the highly mixed taxonomic affinities of Euglena transcripts, our similar-
ity searches yielded proportions in line with previous studies, even when those studies
were based on more reliable phylogenetic approaches [136], such as the comprehensive
work of Ebenezer et al. (2019) [7]. Altogether, the current knowledge points to the “shop-
ping bag” [23–25] (or “red-carpet” [26]) model for the evolutionary origin of Euglena, i.e.,
transient endosymbioses during which multiple rounds of HGT/EGT have progressively
shaped the plastid proteome. Yet, it is noteworthy that such a gene mixture would also
be compatible with a kleptoplastidic origin for photosynthetic euglenids, in which the
transient “endosymbioses” would actually imply stolen plastids and not intact symbionts.
Moreover, some predatory euglenids, such as Peranema trichophorum, can feed either by
phagocytosis of whole cells or by drilling a hole in their prey and then sucking up its cellular
contents [137], a process known as myzocytosis [138]. Beyond providing a selective force
for transferring genes to the host nucleus to service the ingested plastids, as in the recently
characterized ARS (Antarctic Ross Sea) dinoflagellate bearing haptophyte-derived klep-
toplastids [139], a kleptoplastidic model would also better fit the three membranes of the
euglenid chloroplasts [20,140] and the presence of kleptoplastids acquired by myzocytosis
in the early branching Rapaza viridis [141].
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10.3390/genes12060842/s1. Figure S1: Taxonomic distribution of best BLAST hits before and after
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of transcript length. Figure S3: Mapping coverage analysis for the 24-nt SL-sequence on the 5-end
of the transcripts. Figure S4: Comparison of transcript count, length and identity over clusters of
highly similar transcripts. Figure S5: Taxonomic analysis of reconstructed transcripts corresponding
to mitochondrial and photosynthetic electron transfer chains. Figure S6: PCA plots computed
on the tetranucleotide frequencies of taxonomically annotated reconstructed transcripts. Figure S7:
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before and after SVA batch effect correction. Figure S9: Quality-control of the total RNA prepared in
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Annotation of the 49,922 predicted non-redundant protein-encoding genes. Table S3: List of 392 genes
corresponding to carbohydrate-active enzymes. Table S4: List of 380 genes involved in visual
perception processes and photoresponse. Table S5: List of 164 GO slim terms generated by the
Slim Mapper tool. Table S6: List of 64 possibly contaminant transcripts persisting in the final
consensus transcriptome. Table S7: Expression values in transcripts per kilobase million (TMP) for
the 49,922 genes. Table S8: Composition of the 9 hubs in the ontology network. Table S9: Taxonomic
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