
biomedicines

Review

SR-B1, a Key Receptor Involved in the Progression of
Cardiovascular Disease: A Perspective from Mice and Human
Genetic Studies

Irene Gracia-Rubio 1,* , César Martín 2 , Fernando Civeira 1,3,4 and Ana Cenarro 1,3,5

����������
�������

Citation: Gracia-Rubio, I.; Martín, C.;

Civeira, F.; Cenarro, A. SR-B1, a Key

Receptor Involved in the Progression

of Cardiovascular Disease: A

Perspective from Mice and Human

Genetic Studies. Biomedicines 2021, 9,

612. https://doi.org/10.3390/

biomedicines9060612

Academic Editor: Shinji Takai

Received: 26 April 2021

Accepted: 24 May 2021

Published: 27 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Instituto de Investigación Sanitaria
Aragón (IIS Aragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; civeira@unizar.es (F.C.);
ana.cenarro@gmail.com (A.C.)

2 Instituto Biofisika (UPV/EHU, CSIC) y Departamento de Bioquímica y Biología Molecular,
Universidad del País Vasco UPB/EHU, 48940 Bilbao, Spain; cesar.martin@ehu.eus

3 Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto Salud Carlos III,
28029 Madrid, Spain

4 Departamento de Medicina, Psiquiatría y Dermatología, Universidad de Zaragoza, 50009 Zaragoza, Spain
5 Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
* Correspondence: igracia@iisaragon.es or irenegraciarubio@gmail.com; Tel.: +34-976-765-500 (ext. 142895)

Abstract: High plasma level of low-density lipoprotein (LDL) is the main driver of the initiation
and progression of cardiovascular disease (CVD). Nevertheless, high-density lipoprotein (HDL)
is considered an anti-atherogenic lipoprotein due to its role in reverse cholesterol transport and
its ability to receive cholesterol that effluxes from macrophages in the artery wall. The scavenger
receptor B class type 1 (SR-B1) was identified as the high-affinity HDL receptor, which facilitates the
selective uptake of cholesterol ester (CE) into the liver via HDL and is also implicated in the plasma
clearance of LDL, very low-density lipoprotein (VLDL) and lipoprotein(a) (Lp(a)). Thus, SR-B1 is a
multifunctional receptor that plays a main role in the metabolism of different lipoproteins. The aim
of this review is to highlight the association between SR-B1 and CVD risk through mice and human
genetic studies.

Keywords: Scavenger receptor B class 1; cardiovascular disease; mice and human genetic studies;
high-density lipoprotein; low-density lipoprotein

1. Introduction

Cardiovascular disease (CVD) remains the primary cause of mortality and morbidity
worldwide [1]. The principal risk factor for developing CVD is relatively high plasma level
of low-density lipoprotein cholesterol (LDLc) [2–4]. Numerous epidemiological and clinical
investigations have revealed that plasma level of high-density lipoprotein cholesterol
(HDLc) correlates inversely with the risk of CVD [5,6]. This association has been described
by anti-atherogenic capacities of HDL, comprising its role in reverse cholesterol transport
(RCT), in which cholesterol from peripheral tissues is transferred to the liver for excretion
in bile and its ability to receive cholesterol from macrophages in the artery wall [7,8].
However, Mendelian randomization studies [9,10] and pharmacological interventional
studies [11,12] do not support the concept that HDLc directly reduces the risk of CVD [8].
In addition, a retrospective analysis of large epidemiological studies showed that high
HDLc concentration is associated with higher risk for CVD [13,14]. These results support
the hypothesis that HDL metabolism and functionality is more important than HDLc
levels for CVD risk prediction [14]. Acton et al. identified the scavenger receptor B
class 1 (SR-B1) as a high-affinity HDL receptor, which facilitates the selective uptake of
cholesterol esters (CE) in HDL into the liver [15]. This receptor is also implicated in the
plasma clearance of LDL, very low-density lipoprotein (VLDL) and lipoprotein(a) (Lp(a)),
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lipoproteins with pro-atherogenic properties [16–19]. Therefore, SR-B1 is involved in
cholesterol homeostasis, lipoprotein metabolism and atherosclerosis [4]. In addition, SR-B1
plays a relevant role in HDL-mediated cellular signaling [20], and might play a crucial role
in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) [21], since this receptor
is linked to dyslipidemia [22]. Given that SR-B1 is a multifunctional receptor involved
in the metabolism of different lipoproteins, the purpose of this review is to highlight the
association between SR-B1 and CVD risk through mice and human genetic studies.

2. SR-B1 in Lipoprotein Metabolism

SR-B1 is mainly identified for promoting selective uptake of CE from HDL or other
lipoproteins to cells by a non-endocytic process [23–28]. Moreover, SR-B1 mediates selective
hepatic uptake of HDL-CE, free cholesterol (FC), triglycerides (TG), and phospholipids
by a three step mechanism [24–27]. First, cholesterol-rich donor lipoprotein particles
could bind to the extracellular loop domain of the receptor. Then, SR-B1 could promote
the transfer of CE from the lipoprotein particles to the plasma membrane, and finally,
the cholesterol poor lipoprotein particles could release back into the circulation [3,23,24].
Furthermore, SR-B1 requires oligomerization to promote selective lipid uptake, but not
HDL binding [26–31]. Although the mechanism by which SR-B1 facilitates the transfer
of CE to the plasma membrane is not fully understood, a model has been proposed in
which a hydrophobic tunnel is formed by the extracellular domain of the receptor between
lipoprotein particles and the cell membrane through which CE diffuse in a concentration
gradient manner [27,32]. The recent publication of the high-resolution crystal structure of
the extracellular domain of LIMP-2, a homologue of SR-B1, supports the validity of this
mechanism [33].

In addition to selective CE uptake, SR-B1 also facilitates the efflux of free cholesterol
between cells and lipoproteins [34,35]. Briefly, this mechanism carried out by HDL is
known as RCT and consists of the transport of cholesterol via HDL from peripheral tissues
such as macrophages or endothelial cells to the liver for cholesterol excretion, bile acid
production or steroid hormone synthesis in steroidogenic organs [26,36]. Apart from SR-B1,
two more receptors are involved in this process: ATP-binding cassette A1 (ABCA1), that
mediates unidirectional efflux of cholesterol and phospholipids to apolipoprotein (apo) A-I
and apo E [27,37], and ATP-binding cassette G1 (ABCG1), that promotes unidirectional
efflux of cholesterol to nascent HDL particles [27,38].

3. SR-B1, an Important Participant in the Development of Cardiovascular Disease

SR-B1 has been involved in the progression of atherosclerosis [4]. SR-B1, via HDL,
contributes to the transport of cholesterol from macrophages through cholesterol efflux to
the liver, and is also implicated in reducing inflammation and oxidation [3,4,27]. SR-B1 in-
teraction with HDL modulates macrophage inflammation through activation of Akt and de-
creased activation of nuclear factor-κB (NF-κB), promoting the release of anti-inflammatory
cytokines, including interleukin 10 and transforming growth factor-beta (TGF-ß) [26,39].
In the endothelial cells, SR-B1 inhibits inflammation via endothelial nitric oxide synthase
(eNOS) activation and expression of the antioxidant enzyme, 3-beta-hydroxysteroid-delta
24-reductase (DHCR24) [4,40]. HDL and apo A-I also reduce oxidative modification of
apo B containing lipoproteins [4]. Furthermore, SR-B1 in macrophages and endothelial
cells could suppress the progression of atherosclerosis by modifying cholesterol trafficking
and reducing atherosclerotic lesion through limiting foam cell formation [41,42]. Moreover,
SR-B1 in macrophages and endothelial cells could also promote the uptake by HDL of mod-
ified lipoproteins that contribute to the development of early atherosclerotic lesions [43–45].
Hepatic SR-B1 mediates the clearance of VLDL, LDL, and Lp(a), whose accumulation in
plasma facilitate the progression of atherosclerosis [16–19]. SR-B1 promotes the reduction
of apoptosis, and mediates efferocytosis of apoptotic cells in macrophages of atheroscle-
rotic lesions [46,47]. Platelet SR-B1 has been implicated as a negative controller in the
development of thrombosis [48,49] (Figure 1) (Table 1).
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Figure 1. The role of SR-B1 in progression of atherosclerosis. LDL, low-density lipoprotein; Lp(a), lipoprotein (a); VLDL,
very low-density lipoprotein; ↑ increase; ↓ decrease.

Table 1. The role of SR-B1 in atherosclerosis. LDL, low-density lipoprotein; Lp(a), lipoprotein (a);
VLDL, very low-density lipoprotein; ↑ increase; ↓ decrease.

Anti-Atherogenic Properties Pro-Atherogenic Properties

Liver ↑ Cholesterol efflux [16–19]

↑ Clearance LDL, VLDL and Lp(a) [16–19]

Macrophages ↑ Cholesterol efflux [16–19] ↑ Uptake modified
lipoproteins [43–45]

↓ Inflammation [39]

↓ Foam cell formation [40]

↑ Efferocytosis [47]

↓ Apoptosis [46]

Endothelial cells ↓ Inflammation [40] ↑ Uptake modified
lipoproteins [43–45]

↓ Foam cell formation [41]

Platelets ↓ Thrombosis [48,49]

4. Studies in Gene-Targeted Mice Related to Lipoprotein Metabolism and
Cardiovascular Disease

Studies using mice models contribute to elucidate the role of SR-B1 in cholesterol
homeostasis, lipoprotein metabolism and atherosclerosis, as shown by global gene deletion
or overexpression of SR-B1 [4,26]. Despite the fact that the tissue expression of SR-B1 in
humans is similar to that in mice [17], the metabolism of lipids and lipoproteins is different
between both species [50,51]. Mice transport the bulk of plasma cholesterol in HDL, while
plasma cholesterol in humans is carried predominantly by apo B containing lipoproteins
such as LDL and VLDL [52]. This discrepancy between mice and humans is caused by
the lack of cholesteryl ester transfer protein (CETP) in mice. This protein mediates the
exchange of cholesterol and TG between HDL and LDL/VLDL. Therefore, humans have
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an alternative pathway for cholesterol transported by HDL to reach the liver through
transferring cholesterol to LDL and VLDL and then, these lipoproteins are uptaken to the
liver by the LDL receptor [41,49].

The absence of SR-B1 has been shown to accelerate the onset of atherosclerosis al-
though SR-B1 knockout mice displayed two-fold elevated HDLc levels [53–55] whereas
mice overexpression of SR-B1 showed decreased atherosclerosis [56,57], exhibiting the
potential important role of SR-B1 in the pathophysiology of CVD. The increased atheroscle-
rosis observed in SR-B1 knockout mice could be a consequence of reduced cholesterol
efflux from macrophages to HDL and an impaired delivery of HDL-CE to the liver [54].
However, the expression of human CETP in SR-B1 deficient mice reduced HDLc plasma
levels, although this genetic manipulation was not able to protect mice from atherosclerosis,
suggesting that SR-B1 could have protective properties in addition to its role in the RCT
mediated by HDL particles [58].

Studies in which global SR-B1 deletion has been carried out have demonstrated its
relevance in lipoprotein metabolism [53]. Total cholesterol levels were significantly increased
in SR-B1 knockout mice as well as HDLc and HDL size. This fact was a result of enhancement
of the core of the HDL particles with CE and was suggested to occur due to the failure
of hepatic SR-B1 to selectively uptake this core of CE [53]. As a consequence, the biliary
cholesterol and adrenal cholesterol were decreased in SR-B1 deficient mice [53,55,59] and
showed elevated concentrations of LDLc, VLDL cholesterol, and Lp(a) after human Lp(a)
infusion [18,53]. These mice also had a modified cholesterol distribution in platelets, that
altered platelet aggregation [48]. Other proatherogenic effects have been associated with the
blockage of SR-B1 function, including altered transport of HDLc through the endothelial
cells [3,39] and impaired reendothelialization in mouse arteries [3,60]. Moreover, previous
studies have shown that female SR-B1 knockout mice were more susceptible to accelerated
atherosclerosis and infertility than male mice [55]. A similar phenotype as that exhibited by
SR-B1 deficient mice was found in hypomorphic liver-specific SR-B1 knockout mice [53,55,61].
Besides, Huby et al. have exposed that hypomorphic SR-B1 knockout mice, that displayed a
reduce expression of SR-B1 in multiple non-hepatic tissues, needed additionally specific dele-
tion of hepatocyte SR-B1 to increase the predisposition for the development of atherosclerotic
lesions [3,62].

SR-B1 deficient mice in the background of apo E or LDL receptor depletion have
revealed accelerated atherosclerosis and increased LDLc without significant modifications
in HDLc levels, proposing that reduced LDLc clearance could play a role in the increased
atherosclerosis in these mice [63,64]. SR-B1 depletion in apo E knockout mice showed severe
dyslipidemia, early occlusive atherosclerotic coronary artery disease (CAD), spontaneous
myocardial infarctions, severe cardiac dysfunction, and mice died prematurely between
six and eight weeks of age [28,65]. Consequently, these double knockout mice might be a
suitable animal model to evaluate the mechanisms involved in the development of complex
CAD, myocardial infarction and heart failure, as well as for preclinical testing of potential
genetic or pharmacological treatments for coronary heart disease (CHD) [55]. Interestingly,
in support of the anti-atherogenic properties of hepatocyte SR-B1, liver-specific transgenic
or adenoviral overexpression of SR-B1 in hyperlipidemic apo E or LDL receptor knockout
mice had demonstrated the reduction in atherosclerosis predisposition [3,56,66].

Regarding SR-B1 in macrophages, Van Eck and collaborators investigated the role
of macrophage SR-B1 in atherosclerosis by employing the bone marrow transplantation
technique to particularly modulate SR-B1 expression in leukocytes in atherosclerosis-
susceptible LDL receptor knockout mice [3,43]. In agreement with a pro-atherogenic role
of macrophage SR-B1, the early steps involved in the development of atherosclerosis in
the LDL receptor knockout mice were prevented by the particular depletion of SR-B1
function in bone marrow-derived cells [3,43]. Moreover, in normolipidemic C57BL/6
mice fed with an atherogenic cholic acid-containing diet, the deficiency of bone marrow-
specific SR-B1 reduced the development of atherosclerosis [3,43]. In contrast to small
macrophage-rich lesions, a notable anti-atherogenic function for macrophage SR-B1 was
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found in advanced phases of the disease. Transplantation of deficient SR-B1 bone marrow
into lethally irradiated LDL receptor knockout mice promoted the development of greater
lesions in the context of a similar extent of hyperlipidemia [3,43]. In addition, SR-B1
inactivation in bone marrow derived cells induced apoptotic cell accumulation within
atherosclerotic plaques, due to reduced efferocytosis by SR-B1-deficient macrophages,
increasing necrotic core development [46].

Galle-Treger and collaborators have also demonstrated the SR-B1 anti-atherogenic
properties. In their study, they generated mice deficient for SR-B1 in monocytes/macropha-
ges and transplanted their bone marrow into LDL receptor knockout or in mice ex-
pressing CETP. These mice exhibited accelerated aortic atherosclerosis characterized by
larger macrophage-rich areas and decreased macrophage apoptosis when were fed with a
cholesterol-rich diet [67]. They found that expression of apoptosis inhibitor of macrophage
was induced in SR-B1-deficient macrophages; therefore, they suggested that macrophage
SR-B1 was involved in plaque growth by controlling macrophage apoptosis [67]. These
results contrast with those obtained by Tao et al. reporting increased apoptotic cell accu-
mulation using the same experimental approach [46]. These contradictions might show
that macrophage-SR-B1 exerted various protective activities that depended on the lesion
stage development [46,67]. In this sense, the shift from SR-B1 as a pro-atherogenic factor
to an anti-atherogenic factor seemed to take place at a lesion size between 150.000 and
250.000 mm 2 [3]. Furthermore, LDL receptor knockout mice that received bone marrow
from mice deficient in ABCA1 and SR-B1 exhibited a noticeable increase in the extent of
atherosclerosis as compared to ABCA1 deficiency bone marrow in LDL receptor knockout
recipient mice [3,68]. These studies showed that the role of SR-B1 in macrophages within
atherosclerotic lesions appeared to be dependent on the lipid context and the stage on
atherosclerosis development. Therefore, to better evaluate the function of macrophage
SR-B1 in human atherosclerosis, mice models with a more human-like lipoprotein profile
would be needed [3].

Opposite effects than those shown in SR-B1 deficient mice were found in hepatic
overexpression of SR-B1 in mice. These mice displayed lower levels of circulating HDLc,
increased HDL-CE clearance and transport of cholesterol from the liver into the bile,
and increased biliary cholesterol content [56,57,59,60]. Hepatic overexpression of SR-B1
was associated with reduced concentrations of VLDL and LDL [57,61] as well as increased
plasma clearance of Lp(a) [18]. Arai et al. have proposed that at least a part of the protection
against atherosclerosis related to SR-B1 overexpression could be attributed to its role on
apo B containing lipoproteins such as LDL and VLDL [66]. Studies developed by Vaisman
and collaborators have presented that endothelial cell-specific overexpression of SR-B1
in high fat/high cholesterol diet-fed C57BL/6 mice and apo E knockout mice decreased
atherosclerosis susceptibility [3,69].

In summary, mice studies have showed the relevant involvement of SR-B1 in the
development of CVD. In addition, mice models are needed in order to evaluate the diverse
roles of SR-B1 in the different cells and tissues to develop new SR-B1-target treatments
for CVD. However, mice experiments have some limitations due to the differences in
lipoprotein metabolism between mice and humans.

5. Human Genetic Variants of SCARB1 in Lipoprotein Metabolism and
Cardiovascular Disease

The evaluation of gene variants in SCARB1 has contributed to elucidate the association
of SR-B1 in the regulation of lipoprotein metabolism in humans (Table 2) (Figure 2). The
first study to show the involvement of genetic variants at SCARB1 on SR-B1 in humans
described three common polymorphisms, at exons 1 and 8 and intron 5 in Spanish Cau-
casians (Table 2) (Figure 2) [70]. The single nucleotide variant (SNV) in exon 1 at base
pair (bp) 4 encoded a change from glycine to serine at the second aa position, c.4G>A,
p.(Gly2Ser). At exon 8, the SNV was confirmed to compromise a change in bp 1050 en-
coding aa 350 (c.1050T > G, p.(Ala350 = )), but there was no aa change. Finally, SNV
close to exon 5 was located in adjacent intron but was not in the canonical splice-site
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sequence (c.726 + 54C > T). Subsequent analyses demonstrated the involvement of SR-B1
variants in lipoprotein metabolism. In this sense, exon 1 variant (c.4G > A, p.(Gly2Ser))
was significantly related to an increase of HDLc and lower LDLc levels in men linked with
a reduced atherogenic profile. Women carriers of exon 8 genetic variant exhibited reduced
LDLc values. Intron 5 variant was related to higher body mass index in women and lower
TG levels in men [70]. Further population-base studies of SCARB1 gene polymorphisms
established the involvement of these genetic variants in plasma lipoprotein profile [71,72],
although several studies resulted in conflicting results [73,74] or failed to find an associa-
tion [75,76]. These studies focused on different populations, including women and estrogen
therapy [71], diabetics [72,75], different ethnic groups [77–80] individuals with familial
hypercholesterolemia [51,81], and CVD patients [73–83]. Moreover, additional factors
related to lipoprotein metabolism were evaluated in association with these genetic variants
including the response to different diets [84,85] and pharmacological interventions [86,87].
The differences found in lipoprotein metabolism between studies is possible to be ex-
plained by sample size, gender, ethnic groups, physical condition, and other variables [87].
The precise role of SCARB1 genetic variants in the alterations observed in lipoprotein
metabolism is unknown [51]. The polymorphism located in exon 1, p.(Gly2Ser), results in
an aa change in the protein. Further experiments showed that selective cholesterol uptake
resided in the extracellular domain of SR-B1 receptor, but the aa change takes place in the
intracellular N-terminus [51,71]. Although exon 8 polymorphism does not involve an aa
change, it has been shown that it decreases protein expression by changing RNA secondary
structure, therefore could alter the functionality of the receptor [88,89]. Intron 5 SNV has
no recognized effect on splicing or gene expression [71]. Several studies have suggested
that none of these three polymorphisms is functional and that the associations found are a
consequence of linkage to other genetic variants at the SR-B1 locus or neighboring loci yet
to be recognized [51,87].

Figure 2. Localization of intronic (A) and exonic (B) variants involved in lipoprotein metabolism described in this review
are shown in a schematic SCARB1 gene (A) and SR-B1 protein (B).
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Table 2. Effects of SCARB1 gene variants on serum lipid profile. cDNA position was related to the SCARB1 gene (NM.005505.5; encoding SR-B1). † Nucleotide position 1 is the first
nucleotide at the ATG initiation codon. * Acton et al., 1999 results are presented in this table since it was the first time that these variants were described, although several studies have
shown different results. NA indicates not applicable. Apo, apolipoprotein; CE, cholesterol ester; CHD, coronary heart disease; CVD, cardiovascular disease; HDL, high-density lipoprotein;
HDLc, high-density lipoprotein cholesterol; LDL, low-density lipoprotein; LDLc, low-density lipoprotein cholesterol; Lp(a), lipoprotein (a); SR-B1, scavenger receptor B class 1; VLDL, very
low-density lipoprotein; ↓ decrease; ↑ increase.

DNA Variant † Protein Variant Study Subjects rsID Exon/Intron Variant Effect Reference

c.4G > A p.(Gly2Ser)

Spanish Caucasians

4238001 Exon 1
↑ HDLc in men

Acton et al., 1999 * [70]

↓ LDLc levels in men

c.1050T > G p.(Ala350Ala) 5888 Exon 8 ↓ LDLc values in women

4c.795 + 54C > T NA NA Intron 5
↑ body mass index in women

↓ TG levels in men

c.-140_-150del NA Taiwanese Chinese population NA NA
↑ levels of HDLc

Hsu et al., 2003 [77]
↓ promotor activity (in vitro)

c.403G > A p.(Val135Ile)
Amish population

5891 Exon 3

↑ levels of HDLc in women Roberts et al., 2007 [72]

US non-Hispanic white with extreme
HDL-C level ↑ apo B levels Niemsiri et al., 2014 [79]

c.127-18310G > A NA
US non-Hispanic white with extreme

HDL-C level

11057844 Intron 1

Associated to HDLc Niemsiri et al., 2014 [80]c.*1530 + 1593T NA 701106 Intron 12

c.*1540 = NA 838880 3 prime UTR

c.285–891C > T NA

US non-Hispanic white with extreme
HDL-C level

2343394 Intron 2

↑apo B levels Niemsiri et al., 2014 [80]

Multiethnic groups

Associated with carotid intima-media
thickness Naj et al., 2010 [90]

Related to CHD

↓ SCARB1 protein levels West et al., 2009 [91]

c.127–15326G > A NA
Multiethnic groups

10744182 Intron 1

↑ common carotid intima-media
thickness Naj et al., 2010 [90]

Hen Chinese population No association Zeng et al., 2017 [92]

c.127–10172C > G NA
Multiethnic groups

10846744 Intron 1

↑ common carotid intima-media
thickness independent of lipid levels Naj et al., 2010 [93]

Hen Chinese population ↑ HDLc levels Zeng et al., 2017 [92]↑ CHD risk
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Table 2. Cont.

DNA Variant † Protein Variant Study Subjects rsID Exon/Intron Variant Effect Reference

c.1401 + 1428A > T NA
The suburban community of Rancho

Bernardo 838893 Intron 11

Related to endogenous estradiol levels,
HDLc, TG, and the ratio TG:HDLc in
postmenopausal Caucasian women Chiba-Falek et al., 2010 [94]

Associated with ↓level of liver SR-B1 in
women under the age of 45

Hen Chinese population No association Zeng et al., 2017 [92]

c.889C > T p.(Pro297Ser) Caucasian population with HDLc above
the 95th percentile (Netherlands) 387906791 Exon 7

↑ HDLc levels

Vergeer et al., 2011 [41]

↓ Cholesterol efflux macrophages
(in vitro)

↓ adrenal steroigenesis (in vitro)

Changes in platelet function (in vitro)

No alterations in carotid intima-media
thickness

Changes in HDL, LDL and VLDL
composition

c.335C > T p.(Ser112Phe)

Caucasian ancestry population with high
levels of HDLc

397514572 Exon 3 Alterations in HDL binding (in vitro)

Brunham et al., 2011 [7]
c.523A > G p.(Thr175Ala) 187831231 Exon 4

Modifications in selective uptake of
HDL-CE (in vitro)

Changes in the delivery of FC from cells
to HDL (in vitro)

c.386C > T p.(Ser129Leu)

Multiethnic population with high HDLc
and high Lp(a)

150222965 Exon 3

↓CE uptake from HDL and Lp(a)
(in vitro)

Yang et al., 2016 [89]
c.631–14T > G delExon5 113910315 Intron 4

c.631–53 C > T
c.726+55 G > A delExon5 77740046 59809936 Introns 4,5
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Table 2. Cont.

DNA Variant † Protein Variant Study Subjects rsID Exon/Intron Variant Effect Reference

c.1127 C > T p.(Pro376Leu)

European ancestry with extremely
elevated HDLc levels (Ashkenazi Jews)

74830677 Exon 8

Alteration in posttranscriptional
processing of SR-B1 (in vitro)

Zanoni et al., 2016 [95]
Abolishment of selective uptake of

HDL-CE (in vitro and in vivo)

↑ CVD risk

CVD patients from MASHAD cohort No differences found in HDLc levels
Samadi et al., 2019 [96]

HDL lipid peroxidation

c.956G > T p.(Gly319Val)

Homogenous population of Iceland

150728540 Exon 7 ↑ HDLc levels

Helgadottir et al., 2018 [8]c.331G > A p.(Val111Met) 5890 Exon 3 ↓ hepatic reverse cholesterol

c.94G > A p.(Val32Met) 771247110 Exon 1 No ↑ CVD risk

c.520C > T p.(Arg174Cys) Patients with extreme levels of HDLc
(Canada) 367669186 Exon 4 ↓ Cholesterol transport May et al., 2021 [97]
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In humans, more genetic variants in SCARB1 have been reported (Table 2) (Figure 2).
A study developed in the Taiwanese Chinese population found two novel variants in the
SCARB1 gene promoter region. One of them was an 11-bp CCCCGCCCCGT deletion from
positions −140 to −150 (c.-140_-150del) from the transcription start site, corresponding
to a Sp1 binding site, and the other one was a C→ to T substitution at position −142 (c.-
142C>T). In vitro experiments showed that the promoter containing the −140 to −150del
allele exhibited reduced activity and this finding was in accordance with the higher plasma
HDLc levels presented in these subjects. However, no significant results were identified
in the c.-142C>T [77]. Research developed in the Amish population showed that the
missense variant in exon 3, c.403G>A, p.(Val135Ile) was associated with higher levels of
HDLc in women [72]. This genetic variant was also related to higher apo B levels in a
study developed in US non-hispanic white people with extreme values of HDLc [80]. The
objective of the study carried out by Niemsiri et al. was to resequence the SCARB1 gene in
selected US non-Hispanic white individuals with extreme HDLc levels to identify common
and rare variants and then to evaluate the role of the identified variants with plasma HDLc,
LDLc, TG, and apo B levels [80]. Single-locus analysis revealed three nominally significant
associations with HDLc: c.127–18310G>A, c.*1530+1593T, and c.*1540=, that have been
reported to be genome-wide significant [80,93]. In addition, three common SCARB1
polymorphisms (c.285–891C>T, c.285–170G>C, and c.426+150T>C) showed significant
associations with apo B [80]. Notably, c.285–891C>T has been previously established to
be related to carotid intima-media thickness and incidence of CHD [90]. The risk of allele
c.285–891C>T has also been found to be associated with lower SR-B1 protein levels [91].

Naj et al. found that the c.127–15329G>A genetic variant was associated with higher
common carotid intima-media thickness, one of the subclinical atherosclerosis features, in
multiple ethnic groups [90]. Chiba-Falek et al. showed that c.1401+1428A>T was associated
with endogenous estradiol levels, HDLc, TG, and the TG:HDLc ratio in postmenopausal
Caucasian women. In addition, this study found that this variant was related to decreased
level of liver SR-B1 in women under 45 years old, suggesting that this SNV could be
associated with CHD [94]. However, no associations of these variants were found in the
Han Chinese population [92]. Naj et al. also showed that the C allele of c.127–10172C>G
variant was related to higher common carotid intima-media thickness in African American,
Chinese, European American, and Hispanic subjects, although, this association was inde-
pendent of lipid levels [90]. However, this genetic variant in the Han Chinese population
seemed to increase CHD risk as well as the HDLc level [92].

Vergeer and collaborators sequenced the gene encoding SR-B1 in the Caucasian pop-
ulation with high HDLc levels and reported a family with a mutation in the nucleotide
889 producing a proline to serine substitution at aa position 297, c.889C>T, p.(Pro297Ser).
This aa change was located at the extracellular loop, suggesting it to be functionally
relevant [98,99]. These subjects displayed increased HDLc, reduced capacity to efflux
cholesterol from macrophages, impaired platelet function, and decreased adrenal steroido-
genesis. In addition, primary murine hepatocytes expressing SR-B1 p.(Pro297Ser) exhibited
reduced cholesterol uptake from HDL. However, carotid intima-media thickness was sim-
ilar in carriers and family controls. Vergeer et al. explained that the statistical power to
distinguish a difference in carotid intima-media thickness was low, assumed the small
number of carriers and their relatively young age [41]. Further experiments found that
p.(Pro297Ser) mutation alters the protein composition of HDL and LDL/VLDL [99]. Ap-
plying the same strategy explained above, Brunham et al. identified two novel missense
mutations, c.335C>T, p.(Ser112Phe), and c.523A>G, p.(Thr175Ala) by sequencing SCARB1
gene in the Caucasian ancestry population with elevated HDLc level. p.(Ser112Phe) and
p.(Thr175Ala) mutations occurring in the large extracellular loop of the SR-B1 protein.
None of those mutation carriers had a history of CVD [98]. In vitro studies showed that
both mutant receptors exhibited altered HDL binding, selective uptake of HDL-CE, and
delivery of FC from cells to HDL. These results suggest that increased plasma HDLc in
these settings could not be associated with reduced risk of CVD [100].
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As mentioned before, Yang and collaborators described, by experiments in vitro and
in vivo, the role of Lp(a) as ligand of SR-B1, which mediates the selective uptake of Lp(a)-
associated lipids [18]. To assess this new mechanism in humans, two cohorts, that included
multi-ethnic populations, were examined for combined elevations of HDLc and Lp(a)
to evaluate its interaction with SCARB1 genetic variants and with reduced function of
SR-B1 protein [89]. Five novel missense or splice site variants in SCARB1 were identified.
One SNV in exon 3 results in a missense serine to leucine substitution at aa 129 (c386C>T,
p.(Ser129Leu)). Two mutations produce the deletion of exon 5: the splicing variant c.631–
14T>G and a compound mutation at c.631–53C>T and c.726+55G>A. In the SR-B1 isoform
2, c.1495G>A induces a p.(Gly499Arg) substitution in the carboxy-terminal tail. Finally,
a missense substitution at exon 3 results in aa change in the extracellular loop of SR-
B1: p.(Glu130Gly) (c.386A>G). The function of p.(Gly499Arg) and p.(Glu130Gly) was not
tested. In addition, they also distinguished two common polymorphisms described before,
p.(Gly2Ser) and p.(Ala350A=). Posterior in vitro studies showed that the p.(Ser129Leu)
polymorphism and the mutations that caused the deletion of exon 5 lower CE uptake from
HDL and Lp(a) [89]. The consequence of high HDLc/high Lp(a) phenotype on human
CVD is not established. In this sense, Lp(a) is a pro-atherogenic lipoprotein [19,89], whereas
high HDLc could reduce CVD risk [5,6]; however, not all conditions that elevate HDL are
protective in humans [95,96].

Recently, Zanoni et al. identified a missense mutation in SCARB1, which replaces
proline at the 376 position by leucine (c.1127C>T, p.(Pro376Leu)), by targeted sequencing of
coding regions of lipid-modifying genes in individuals of European ancestry with extremely
elevated HDLc levels. This aa substitution occurs on the extracellular loop proximal to the
C-terminal transmembrane domain. In the homozygous subject, p.(Pro376Leu) mutation
altered posttranslational processing of SR-B1, abolished selective HDLc uptake in vitro
and in vivo experiments and reduced the carotid intima-media thickness. In addition, a
meta-analysis of 16 studies showed that p.(Pro376Leu) carriers had a significantly higher
risk of CAD compared with non-carriers [95]. In agreement with these results, Samadi
et al. concluded that carriers of p.(Pro376Leu) mutation were more susceptible to develop
CVD, although no differences were found in HDLc levels;serum HDL lipid peroxidation,
measured as dysfunctional HDL, was increased in the presence of p.(Pro376Leu) muta-
tion [96]. This study was developed in CVD patients from the Mashhad Stroke and Heart
Atherosclerotic Disorders (MASHAD) cohort. Some authors have suggested that given the
extremely low and variable carrier rate of this genetic variant between study groups in the
meta-analysis and taking into account that this study was relatively specific to Ashkenazi
Jews, p.(Pro376Leu) mutation could be an indirect indicator for a substratum of the popula-
tion [8,101]. Subsequent to the publication of Zanoni and collaborators’ results, Helgadottir
et al. decided to study the hypothesis that alleles in SCARB1 gene related to higher levels
of HDLc are also associated with increased risk of CAD in the relatively homogeneous
population of Iceland. They identified three novel SCARB1 missense genetic variants,
c.956G>T, p.(Gly319Val), c.331G>A, p.(Val111Met), and c.94G>A, p.(Val32Met), associated
with increased HDLc levels. p.(Gly319Val) and p.(Val111Met) variants take place in the
large extracellular loop of the SR-B1 protein. Moreover, they also identified a missense
variant, p.(Val135Ile) described before in Amish population and in US non-Hispanic white
people [72,80]. They studied the association between the described polymorphisms in
Iceland population and CAD risk, although no linkage was found. The lack of relation
between these polymorphisms producing high HDLc levels and the risk of CAD suggested
no alteration in the hepatocellular trafficking of cholesterol to bile. However, they proposed
that an enhancement of CETP-mediated exchange of CE from HDL to apo B containing
lipoproteins could prevent the increase in HDLc in genetically impairment of SR-B1. There-
fore, no effect was found on the hepatic cholesterol clearance in carriers of the Icelandic
variants. To validate this hypothesis, they evaluated the formation of gallstone since it
has been described as a manifestation of cholesterol hypersecretion to bile [8,102]. They
found a significant increase of gallstone formation in p.(Val111Met) carriers, supporting the
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finding that an increase of HDLc levels in humans impairs cholesterol excretion through
bile [8]. May et al. described a patient from the Lipid Genetics Clinic at the London Health
Sciences Centre, University Hospital (London, ON, Canada) who had elevated levels of
HDLc. This subject was found to carry a heterozygous variant of SCARB1 consisting in a
missense arginine to cysteine substitution at aa 174 (p.Arg174Cys). This mutation showed
reduced cholesterol transport, suggesting an impairment in the cholesterol clearance [97].

SCARB1 genetic variants research and the description of mutations in human SCARB1
have established the involvement of SR-B1 in regulating lipoprotein metabolism in hu-
mans [27]. However, based on the divergent results, more research is needed in order to
elucidate the role of SR-B1 variants in the increment of HDLc levels and CVD risk.

6. Genome-Wide Association Studies of SCARB1

Genome-wide association studies (GWAS) have been used to distinguish disease
susceptibility loci, proposing novel genetic variants at new loci related to CVD and serum
HDLc concentrations [103]. GWAS for plasma lipids first associated SCARB1 common
polymorphisms with HDLc in 2010 [93]. In this study, the principal SNV in SCARB1
implicated from this GWAS, c.*1540G>T, was related to increased HDLc [93]. However, the
relationship of the haplotype to SCARB1 expression has not been confirmed yet at molecular
level [104]. Recently, two studies identified significant associations for the SCARB1 locus
with CAD risk [103,104]. Remarkably, these studies did not find that this CAD-associated
haplotype is in linkage disequilibrium with the HDLc associated haplotype from GWAS
for lipids. However, Webb and collaborators showed that the lead variant, c.127–4800C>T,
has a strong association with plasma LDLc and TG levels, and this genetic variant has
also been related to increased lipoprotein-associated phospholipase A2 activity [103]. In
addition, c.127–14490G>A is related to expression of SCARB1 in the intestine [103]. The
causal mechanisms explaining the apparent lack of association between HDLc, CAD traits
and SCARB1 significant signals continue to be unknown, suggesting that further functional
genomic investigations to better comprehend the function of these regulatory variants are
needed [105].

7. Conclusions

SR-B1 not only plays a role in the metabolism of HDL but also is involved in the clear-
ance of LDL, VLDL, and Lp(a), proposing an important participation in the development
of CVD [16–18]. Therefore, mice and human genetic studies have shown genetic variants
in SCARB1 gene-induced higher levels of these mentioned lipoproteins and can alter their
composition. In addition, SR-B1 variants can modify cholesterol efflux of macrophages
and hepatic reverse cholesterol transport, reduce adrenal steroidogenesis, alter platelet
functions, as well as decrease the selective uptake of CE.

The available data propose that plasma HDLc levels are not an optimal therapeutic
target and that the quality of the HDL particles circulating in plasma could be more critical
for therapeutic interventions than HDLc concentration [14], since high HDLc levels may
not always be protective against CVD [95,106]. In fact, European Society of Cardiology and
European Atherosclerosis Society Guidelines for the Management of Dyslipidaemias [107]
do not recommend HDLc as a target for treatment. The differential HDLc uptake by SR-B1
among subjects may be one factor associated with modified HDL quality and functionality
associated with CVD risk without substantial modification of HDLc concentration.

The contradictory results in human SR-B1 variants in the relationship between in-
creased HDLc levels and CVD risk, as well as GWAS of SCARB1, suggest the involvement
of other pathways. Furthermore, human SR-B1 variants provide evidence that modulating
different functions of SR-B1 might improve the development of CVD [8]. It is important
to mention that the role of SR-B1 in CVD is cell/tissue type-specific [3,4,44], highlighting
the complexities of potential therapeutic development with SR-B1 modulating agents [8].
Therefore, further research is needed in order to develop a proper SR-B1-based therapeu-
tic approach.
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