It is made available under a CC-BY-NC 4.0 International license .

1 Prevalence and Determinants of Prehospital Impression of Stroke in Ischemic Stroke Patients

- 2
- 3 Mauro Caffarelli MD^{1,2}, Andrew J. Wood MPH², Remle P Crowe, PhD³, Edilberto Amorim
- 4 MD,² Hooman Kamel MD,⁴ Anthony S. Kim MD MAS², Elan L. Guterman MD MAS^{2,5.}
- ¹ Department of Pediatrics, University of California, San Francisco, San Francisco, CA
- 6 ² Department of Neurology, UCSF Weill Institute for Neurosciences, University of California,
- 7 San Francisco. San Francisco, CA
- 8 ³ ESO, Inc., Austin, Tx
- 9 ⁴ Department of Neurology, Weill Cornell Medicine, New York, NY
- ⁵ UCSF Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco.
- 11 San Francisco, CA
- 12
- 13 Corresponding Author: Mauro Caffarelli, MD
- 14 <u>Mauro.caffarelli@ucsf.edu</u>
- 15 550 16th Street, 4th Floor, Box 0110, San Francisco, CA 94143
- 16
- 17 Word Count: 1993 body; 3782 document
- 18

It is made available under a CC-BY-NC 4.0 International license .

19 ABBREVIATIONS

CI	Confidence Interval
EHR	Electronic Health Record
EMS	Emergency Medical Services
ED	Emergency Department
GCS	Glasgow Coma Scale
HDE	Health Data Exchange
RR	Relative Risk
SVI	Social Vulnerability Index

20

It is made available under a CC-BY-NC 4.0 International license .

22 ABSTRACT: 265 words

23	BACKGROUND: Emergency Medical Services (EMS) clinicians are front-line in evaluating
24	patients with stroke in the community. Their ability to correctly identify stroke influences
25	downstream management decisions. We sought to use a large national database of prehospital
26	clinical data to determine risk factors associated with missed EMS stroke identification.
27	METHODS: Retrospective study examining EMS evaluation of adults with Emergency
28	Department (ED) stroke diagnosis. We leveraged the ESO Data Collaborative research dataset
29	containing EHR data from 2019-2022 that has a subset of encounters with linked hospital
30	diagnostic codes. Our primary outcome was the presence of an EMS diagnosis of stroke. We
31	evaluated the association between demographic and clinical variables with EMS stroke
32	identification using Pearson $\chi 2$ test for demographic variables and multivariable GLM for
33	clinical variables with adjustment for demographic variables.
34	RESULTS: We identified 34,504 EMS encounters for patients with ED stroke diagnosis. Of
35	these, 11,077 (32.1%) strokes had missed EMS stroke identification and instead had an EMS
36	impression of "Generalized Weakness" (25.9%), "Altered Level of Consciousness" (24.9%), and
37	"Dizziness" (7.2%). Patients more likely to have missed prehospital stroke identification were of
38	Black race (p=0.0001) and Hispanic ethnicity (p=0.0001). Clinical variables associated with
39	higher risk of missed EMS stroke identification were suspected alcohol or drug use (RR 1.48,
40	95% CI 1.37-1.59), low GCS (RR 1.17, 95% CI 1.10-1.24), tachycardia (RR 1.05, 95% CI 1.01-
41	1.09), and hypotension (RR 1.47, 95% CI 1.34-1.61).
42	

43 CONCLUSIONS: Approximately 1-in-3 patients transported by EMS did not have their stroke

- 44 identified in the prehospital setting. Factors associated with lower odds of missed EMS stroke
- 45 identification provide a starting point for future performance improvement initiatives.

It is made available under a CC-BY-NC 4.0 International license .

46 Background.

47 Emergency medical services (EMS) provide care for over 250,000 patients hospitalized with 48 stroke in the US annually. Prehospital stroke recognition and pre-arrival alerting are linked with improved rates of time-sensitive treatment with thrombolysis and thrombectomy.^{1–4} Conversely, 49 50 lack of EMS stroke recognition may result in transport to a facility not equipped to treat patients 51 with stroke and may result in delays in care.

52 Prior single-center studies estimate that 30% of strokes are not identified during EMS evaluation.^{3,5} However, these studies were conducted before thrombectomy was established as 53 54 the standard of care for patients with stroke due to a large vessel occlusion. Work has been done to improve EMS training on stroke recognition and the use of prehospital stroke screening 55 scales,⁶ but whether these efforts have improved rates of EMS stroke identification is unclear.^{7,8} 56 Moreover, the clinical and social factors associated with an increased risk of missed 57 58 stroke diagnosis during EMS evaluation are unknown, despite prior studies showing associated 59 delayed treatment and worse outcomes in people from historically underserved or marginalized backgrounds.^{9–11} Prior studies are largely limited to patients presenting to urban academic 60 61 hospitals with findings that may not be generalizable to non-academic or rural hospitals. This 62 study aimed to quantify the proportion of EMS transported patients who were diagnosed with strokes that were not identified during prehospital evaluation. Secondarily we aimed to identify 63 the clinical and sociodemographic factors associated with missed prehospital stroke 64 65 identification using a geographically broad national dataset of linked EMS and hospital records. 66 Methods.

67

68

Study Design and Setting:

It is made available under a CC-BY-NC 4.0 International license .

69	We conducted a retrospective analysis of adults who were transported by EMS after a
70	911 activation and were subsequently diagnosed with stroke during the emergency department
71	(ED) evaluation. We used the ESO Data Collaborative public-use research dataset. ESO is a
72	leading provider of pre-hospital Electronic Health Record (EHR) systems for EMS clinical
73	documentation in the US. ¹² ESO EHR collects data in accordance with the National EMS
74	Information System. Data elements in the prehospital EHR include information related to EMS
75	dispatch and the prehospital clinical encounter. EMS clinicians document encounters using
76	prespecified data fields, which include diagnostic impressions and whether a 'stroke treatment
77	protocol' was used. The ESO Data Collaborative consists of all records from agencies who have
78	agreed to share their de-identified EHR data for the purposes of research. Annually, a de-
79	identified dataset is constructed with all records from participating agencies. This dataset
80	includes EMS responses in every region of the country. A subset of destination facilities (i.e.
81	hospitals) participate in the ESO Health Data Exchange (HDE) which allows prehospital data to
82	be directly linked with hospital EHR data using HL7 messaging including ICD-10 diagnosis
83	codes and discharge dispositions. This study was approved by the institutional review board of
84	the University of California, San Francisco.

85

86 Study Population:

We identified adult patients aged 18 years or older who were transported to a hospital following
a 9-1-1 EMS response, and were diagnosed with an acute ischemic stroke in the ED between
January 1, 2019 and December 31, 2022. A diagnosis of acute ischemic stroke in the ED was
defined as having an ICD-10 primary discharge diagnosis code of cerebral infarction (I63.x).

It is made available under a CC-BY-NC 4.0 International license .

92

93 Outcome:

94 The primary outcome was missed EMS stroke identification. Missed EMS stroke identification
95 was defined as no recorded diagnostic impression of stroke during EMS evaluation and no
96 indication of stroke protocol use.

97 This definition assumes that the EMS diagnostic impression is an accurate reflection of 98 whether or not an EMS clinician suspects a patient is experiencing a stroke. To determine 99 whether this was a reasonable assumption, we examined the narrative history recorded by the 100 EMS clinician from a random sample of 300 encounters in the cohort and found that a minority 101 of patients were misclassified using this definition (Appendix; Supplemental Tables 1 & 2).

102

103 Measurements:

104 Demographics, diagnostic impressions, clinical information (e.g. vital signs and Glasgow 105 Coma Scale [GCS]), and the EMS agency treatment protocol associated with each encounter are 106 entered into the prehospital EHR by EMS clinicians as part of the required documentation 107 following a 911 call. We evaluated patient age, sex, race, ethnicity, Census region, urbanicity of 108 the community where the encounter took place, the first recorded prehospital vital sign 109 measurements, GCS, and whether the EMS clinician suspected alcohol or substance use. Age 110 was divided into ordinal groups of <40, 40-59, 60-79, and >80 years. Race was recorded by the 111 EMS clinicians and categorized as White, Black or African American, Asian or Pacific islander, 112 or Other/unknown. Ethnicity was categorized as Hispanic or non-Hispanic; these were collected because of previously-reported disparities in stroke care for Hispanic patients.^{9,11} Social 113 114 vulnerability index (SVI) – a measure of socioeconomic factors associated with adverse

115	community-level hazards and stressors – was categorized into four quartiles from least to most
116	vulnerable. Urbanicity was determined by Rural-Urban Commuting Area Codes and categorized
117	as: Metropolitan (population > 49,999) or Non-metropolitan (population < 50,000). Census
118	regions were categorized as Northeast, South, Midwest; or West. GCS and vital sign
119	measurements were divided into ordinal groups in alignment with conventionally accepted
120	normal and abnormal ranges for adults to ease the interpretation of effect estimates.
121	
122	Statistical Analysis:
123	We calculated the proportion of patients with ED-diagnosed stroke where there was missed EMS
124	identification of stroke during prehospital evaluation. We identified sociodemographic and
125	clinical characteristics associated with missed EMS stroke identification using Pearson $\chi 2$ test
126	for the unadjusted analyses and binomial family and log link generalized linear models for the
127	adjusted analyses. The models allowed us to examine the association of initial vital sign
128	measurements, level of consciousness, and suspected alcohol or drug use, with the risk of missed
129	EMS stroke identification. We calculated unadjusted and adjusted estimates separately for each
130	exposure, adding patient age, sex, race, GCS, and urbanicity in the adjusted analyses.
131	Because ED encounters in rural areas are not well represented in existing literature, we
132	sought to determine whether urbanicity modifies the likelihood and risk factors of having missed
133	EMS stroke identification. To do this, we repeated the models after stratifying by whether the
134	encounter originated in an urban or rural environment. All reported risk ratios (RRs) are from
135	adjusted models unless otherwise specified. Statistical analyses were performed using Stata
136	(version 15.1, StataCorp, College Station, TX).
137	

It is made available under a CC-BY-NC 4.0 International license .

138	Results
139	We analyzed 34,504 EMS encounters for patients that were diagnosed with stroke in the
140	ED. Most (94.7%) encounters that occurred in a metropolitan area. Approximately half were
141	female (51.3%). Two thirds (64.3%) of patients were White, and 16.9% were Black and 8.1%
142	had documentation of Hispanic ethnicity.
143	There were 11,077 (32.1%) encounters which did not have a prehospital diagnostic
144	impression of stroke by EMS evaluation. The most common EMS diagnostic impressions for
145	those without stroke recognition were "Generalized Weakness" (25.9%), "Altered Level of
146	Consciousness" (24.9%), "Dizziness" (7.2%), "Other Cardiovascular" (5.7%), and "Pain" (3.7%)
147	(Table 1).
148	A larger proportion of Black patients had missed EMS stroke identification compared to
149	White patients (34.9% vs 31.4%, p<0.001). Similarly, a larger proportion of Hispanic patients
150	had missed EMS stroke identification compared to non-Hispanic patients (36.5% vs 31.7%,
151	p<0.001). A larger proportion of patients with high SVI had missed EMS stroke identification
152	compared to patients with low SVI (28.2% vs 21.4%, p<0.001) Stroke patients with missed EMS
153	stroke identification during EMS evaluation were otherwise similar with respect to age, sex, and
154	urbanicity. (Table 2).
155	
156	Clinical Risk Factors for Missed Prehospital Stroke Identification:

Suspected alcohol or drug use, GCS score, and vital sign abnormalities were associated with risk
of missed EMS stroke identification. Suspected alcohol or drug use was associated with a 48%
increased risk of missed EMS stroke identification (RR 1.48, 95% CI, [1.37 to 1.59]). Severe
depression in consciousness (GCS 3-8) was associated with a 17% increased risk of missed EMS

161	stroke identification (RR 1.17, [1.10 - 1.24]). Tachycardia (RR 1.05, [1.01 - 1.09]), hypotension
162	(RR 1.22, [1.15 - 1.30]), and bradypnea $(RR 1.44, [1.19 - 1.74])$ were also associated with an
163	increased risk of missed EMS stroke identification (Table 3).
164	After stratifying the main analysis by whether the encounter occurred in a metropolitan
165	area, suspected alcohol or drug use, GCS, and vital sign abnormalities remained associated with
166	an increased risk of missed EMS stroke identification in both settings (Supplemental Table 3).
167	
168	Discussion
169	This is the largest cohort study of the EMS stroke diagnostic sensitivity in the United
170	States; we found that nearly one-third of strokes were missed during EMS evaluation. Our
171	findings are consistent with estimates obtained before mechanical thrombectomy was established
172	as standard therapy for large vessel occlusive stroke. ^{13,14} This suggests that the rates of missed
173	EMS stroke identification remain largely unchanged despite efforts to improve stroke
174	recognition in the prehospital setting.
175	Black and Hispanic patients had a significantly higher risk of missed EMS stroke
176	identification. Prehospital notification is already shown to be less likely to be used for Black and
177	Hispanic patients with stroke. ^{3,5} Our findings suggest that the failure to recognize stroke in the
178	field may contribute to reduced rates of hospital pre-arrival stroke notification in Black and
179	Hispanic patients. We additionally found that a report of alcohol or substance use increased the
180	risk of missed EMS stroke identification. This novel finding suggests that alcohol use may
181	distract clinicians from developing a suspicion of stroke.
182	This is the first study to examine prehospital clinical characteristics that modulate the risk
183	of missed EMS stroke identification: we found that prehospital hypotension, tachycardia, and

It is made available under a CC-BY-NC 4.0 International license .

184 loss of consciousness were associated with an increased risk of missed EMS stroke 185 identification. This may be related to incorrect clinical assumptions that hypotension and 186 tachycardia are reflective of a separate pathophysiological process – such as sepsis – that misleads the clinician away from a stroke diagnosis.^{15,16} Patients with a low GCS (3-8) also was 187 188 associated with a higher risk of missed EMS stroke identification compared to patients with near normal GCS. The inability to obtain a nuanced neurological assessment in nearly comatose 189 190 patients likely obscures ascertainment of stroke. While it is unlikely these patients are managed 191 with any less urgency than patients who have stroke recognized by EMS, it is possible that 192 patient triage and hospital destination decisions differ between the two groups. Further research 193 is needed to compare management between patients where the stroke was recognized versus 194 missed in those who present with disorders of consciousness.

195 We found that *half* of patients who had missed EMS stroke identification were given a 196 diagnostic impression of generalized weakness or altered level of consciousness. Attempts to 197 improve rates of EMS stroke identification and hospital prenotification have focused on 198 educational interventions targeted to EMS clinicians evaluating patients already suspected to have a stroke.^{7,8} While shown to be useful in rates of EMS stroke identification, the benefit of 199 one brief educational module was not sustained after 3 months;¹⁷ a separate enhanced paramedic 200 201 stroke assessment method in patients with suspected stroke actually lengthened the time of prehospital care episodes and delayed thrombolysis.¹⁸ Our finding suggests that educational 202 203 efforts should focus on expanding the use of prehospital neurological assessments to all patients 204 who present with weakness and altered level of consciousness.

Limitations to this study include the reliance on an EMS diagnostic impressions of stroke
and protocols used as a proxy for when EMS clinicians suspected stroke. This study did not

It is made available under a CC-BY-NC 4.0 International license .

207	examine how EMS stroke identification influences downstream management – such as hospital
208	pre-arrival notification by EMS, hospital destination decisions, and in-hospital stroke care.
209	Finally, this study demonstrates but does not explain racial and ethnic disparities in EMS stroke
210	identification, and whether this is reflective of individual bias occurring on the part of the EMS
211	clinician or structural factors that drive disparate health characteristics in racialized populations
212	at-large.
213	Our findings highlight that a large proportion of patients with stroke do not have the
214	stroke identified by EMS. Patients who identify as Black and Hispanic are disproportionately
215	affected, and poor mental status and vital sign abnormalities not traditionally associated with
216	stroke are also associated with an increased risk of missed EMS stroke identification.
217	Educational interventions to improve EMS stroke identification can focus on maintaining a
218	suspicion of stroke in diverse clinical contexts to improve stroke identification.
219	

- 221 Sources of Funding:
- 222 Dr. Caffarelli receives research support from the UCSF Department of Pediatrics, UCSF Clinical
- and Translational Science Institute, Hellman Society, and Pediatric Epilepsy Research
- Foundation.
- Andrew Wood is supported by the National Institute on Aging (5R01AG074710) and the
- 226 National Institute of Neurological Disorders and Stroke (K23NS116128).
- 227 Dr. Amorim is a principal investigator in several active grants supported by the NIH
- 228 (1K23NS119794), the Department of Defense (EP220036), American Heart Association
- 229 (20CDA35310297 and Harold Amos Medical Faculty Development Award), Cures Within
- 230 Reach, and the Zoll Foundation.
- 231 Dr. Kim receives funding from NIH/NINDS, NIH/NCATS, NIH/NIMHD, and AHA.
- 232 Dr. Guterman receives funding from the National Institute of Neurological Disorders and Stroke
- 233 (K23NS116128), National Institute on Aging (5R01AG056715), and American Academy of
- 234 Neurology.
- 235
- 236
- 237 Disclosures
- Dr. Caffarelli is named as sole inventor on a patent on the use of electroencephalography forstroke diagnosis with no associated licensing agreements.
- 240 Dr. Kamel has a PI role in the ARCADIA trial, which received in-kind study drug from the
- 241 BMS-Pfizer Alliance for Eliquis and ancillary study support from Roche Diagnostics; a
- 242 Deputy Editor role for *JAMA Neurology*; clinical trial steering/executive committee roles for
- 243 the STROKE-AF (Medtronic), LIBREXIA-AF (Janssen), and LAAOS-4 (Boston Scientific)

- trials; consulting or endpoint adjudication committee roles for AbbVie, AstraZeneca,
- 245 Arthrosi Therapeutics, Boehringer Ingelheim, Eli Lilly, and Novo Nordisk; and household
- 246 ownership interests in TETMedical, Spectrum Plastics Group, and Ascential Technologies.
- 247 Dr. Kim is an Associate Editor of NEJM and Journal Watch: Neurology
- 248 Dr. Guterman receives personal compensation from JAMA Neurology and stock from REMO
- Health, which are unrelated to the submitted work.
- 250
- 251
- 252
- 253

1. McKinney JS, Mylavarapu K, Lane J, Roberts V, Ohman-Strickland P, Merlin MA. Hospital 254 255 Prenotification of Stroke Patients by Emergency Medical Services Improves Stroke Time 256 Targets. Journal of Stroke and Cerebrovascular Diseases. 2013;22(2):113-118. 257 doi:10.1016/j.jstrokecerebrovasdis.2011.06.018 258 2. Oostema JA, Nasiri M, Chassee T, Reeves MJ. The Quality of Prehospital Ischemic Stroke 259 Care: Compliance with Guidelines and Impact on In-hospital Stroke Response. Journal of 260 Stroke and Cerebrovascular Diseases. 2014;23(10):2773-2779. 261 doi:10.1016/j.jstrokecerebrovasdis.2014.06.030 262 3. Lin CB, Peterson ED, Smith EE, et al. Emergency Medical Service Hospital Prenotification Is Associated With Improved Evaluation and Treatment of Acute Ischemic Stroke. Circ: 263 264 Cardiovascular Quality and Outcomes. 2012;5(4):514-522. doi:10.1161/CIRCOUTCOMES.112.965210 265 266 4. Nielsen VM, Song G, DeJoie-Stanton C, Zachrison KS. Emergency Medical Services Prenotification is Associated with Reduced Odds of In-Hospital Mortality in Stroke Patients. 267 268 Prehospital Emergency Care. 2023;27(5):639-645. doi:10.1080/10903127.2022.2079784 269 5. Govindarajan P, Friedman BT, Delgadillo JQ, et al. Race and Sex Disparities in Prehospital 270 Recognition of Acute Stroke. Callaway C, ed. Acad Emerg Med. 2015;22(3):264-272. 271 doi:10.1111/acem.12595 272 6. Crocco TJ, Grotta JC, Jauch EC, et al. EMS Management of Acute Stroke—Prehospital 273 Triage (Resource Document to NAEMSP Position Statement). Prehospital Emergency Care. 274 2007;11(3):313-317. doi:10.1080/10903120701347844 275 7. Kidwell CS, Starkman S, Eckstein M, Weems K, Saver JL. Identifying Stroke in the Field: 276 Prospective Validation of the Los Angeles Prehospital Stroke Screen (LAPSS). Stroke. 277 2000;31(1):71-76. doi:10.1161/01.STR.31.1.71 278 8. Bray JE, Martin J, Cooper G, Barger B, Bernard S, Bladin C. An Interventional Study to 279 Improve Paramedic Diagnosis of Stroke. Prehospital Emergency Care. 2005;9(3):297-302. 280 doi:10.1080/10903120590962382 281 9. Levine DA, Duncan PW, Nguyen-Huynh MN, Ogedegbe OG. Interventions Targeting 282 Racial/Ethnic Disparities in Stroke Prevention and Treatment. Stroke. 2020;51(11):3425-283 3432. doi:10.1161/STROKEAHA.120.030427 284 10. Hsia AW, Edwards DF, Morgenstern LB, et al. Racial Disparities in Tissue Plasminogen 285 Activator Treatment Rate for Stroke: A Population-Based Study. Stroke. 2011;42(8):2217-286 2221. doi:10.1161/STROKEAHA.111.613828 287 11. Rinaldo L, Rabinstein AA, Cloft H, Knudsen JM, Castilla LR, Brinjikji W. Racial and Ethnic 288 Disparities in the Utilization of Thrombectomy for Acute Stroke: Analysis of Data From 289 2016 to 2018. Stroke. 2019;50(9):2428-2432. doi:10.1161/STROKEAHA.118.024651 290 12. ESO - EMS Homepage. Accessed September 28, 2022. https://www.eso.com/ems/

- 13. Albers GW, Marks MP, Kemp S, et al. Thrombectomy for Stroke at 6 to 16 Hours with
 Selection by Perfusion Imaging. *N Engl J Med.* 2018;378(8):708-718.
- 293 doi:10.1056/NEJMoa1713973
- 14. Nogueira RG, Jadhav AP, Haussen DC, et al. Thrombectomy 6 to 24 Hours after Stroke with
 a Mismatch between Deficit and Infarct. *N Engl J Med.* 2018;378(1):11-21.
 doi:10.1056/NEJMoa1706442
- 297 15. Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International
 298 Sepsis Definitions Conference: *Critical Care Medicine*. 2003;31(4):1250-1256.
 299 doi:10.1097/01.CCM.0000050454.01978.3B
- 300 16. Angus DC, Van Der Poll T. Severe Sepsis and Septic Shock. *N Engl J Med*.
 301 2013;369(9):840-851. doi:10.1056/NEJMra1208623
- 302 17. Oostema JA, Chassee T, Baer W, Edberg A, Reeves MJ. Brief Educational Intervention
 303 Improves Emergency Medical Services Stroke Recognition. *Stroke*. 2019;50(5):1193-1200.
 304 doi:10.1161/STROKEAHA.118.023885
- 305 18. Price CI, Shaw L, Islam S, et al. Effect of an Enhanced Paramedic Acute Stroke Treatment
 306 Assessment on Thrombolysis Delivery During Emergency Stroke Care: A Cluster
 307 Randomized Clinical Trial. *JAMA Neurol*. 2020;77(7):840.
- doi:10.1001/jamaneurol.2020.0611
- 309

It is made available under a CC-BY-NC 4.0 International license .

311 Table 1: EMS primary impressions of patients without stroke recognition

EMS Primary Impression, n (%)	-
Weakness	2866 (25.87)
Altered Level of Consciousness	2755 (24.87)
Dizziness	794 (7.17)
Other Cardiovascular	631 (5.70)
Pain	405 (3.66)
Headache	357 (3.22)
Syncope	324 (2.92)
Nausea/Vomiting	315 (2.84)
Other Injury	254 (2.29)
Malaise	190 (1.72)
Hyperglycemia	183 (1.65)
Respiratory Distress	174 (1.57)
Traumatic Brain Injury /Concussion	169 (1.53)
No Complaints or Injury/Illness Noted	166 (1.50)
Behavioral/Psychiatric Episode	154 (1.39)
Seizures	135 (1.22)
Visual Disturbance	131 (1.18)
Alcohol/Drug	83 (0.75)
Sepsis/Septic Shock	70 (0.63)
Urinary Tract Infection	59 (0.53)

312

313 EMS: Emergency Medical Services

It is made available under a CC-BY-NC 4.0 International license .

315 Table 2. Patient Demographic Characteristics.

316

D				
	Overall	EMS Impression		
		Stroke	Not Stroke	p-value*
Ν	34504	23427	11077	
Age, mean (SD)	71.6 (14.3)	71.9 (14.2)	70.9 (14.5)	<0.0001
Female, n (%)	17652 (51.3%)	11938 (51.1%)	5714 (51.8%)	0.29
Race, n (%) Asian, Native Hawaiian,				<0.0001
or Pacific Isl. Black or African	645 (1.9%)	429 (1.8%)	216 (1.9%)	
American	5823 (16.9%)	3789 (16.2%)	2034 (18.4%)	
White	22185 (64.3%)	15211 (64.9%)	6974 (63.0%)	
Other, unknown, or		2000 (47 40/)		
American Native	5851 (17.0%)	3998 (17.1%)	1853 (16.7%)	10,0001
Hispanic ethnicity, n (%) Social Vulnerability Index	2351 (8.1%)	1493 (7.6%)	858 (9.0%)	<0.0001
Quartile, N (%)				<0.0001
Least Vulnerable	8307 (24.1%)	5944 (25.4%)	2363 (21.4%)	
Quartile 2	9083 (26.4%)	6319 (27.0%)	2767 (25.0%)	
Quartile 3	8625 (25.0%)	5810 (24.8%)	2815 (25.4%)	
Most Vulnerable	8452 (24.5%)	5333 (22.8%)	3119 (28.2%)	
Urbanicity, n (%)				0.22
Non-Metro Area	1834 (5.3%)	1221 (5.2%)	613 (5.5%)	
Metro Area	32617 (94.7%)	22168 (94.8%)	10449 (94.5%)	
Census Region, n (%)				<0.0001
Midwest	2052 (18.7%)	1380 (18.4%)	672 (19.4%)	
Northeast	716 (6.5%)	559 (7.4%)	157 (4.5%)	
South	5376 (49.0%)	3631 (48.3%)	1745 (50.4%)	
West	2827 (25.8%)	1941 (25.8%)	886 (25.6%)	

317

318

319 *p-values calculated using chi-square for categorical variables and t-test for means

It is made available under a CC-BY-NC 4.0 International license .

321 Table 3. Patient Clinical Characteristics.

	EMS Impression		Risk of missed EMS stroke identification	
	Stroke	Not Stroke		
	(n = 23427)	(n = 11077)	RR (95% CI)*	aRR (95% CI)**
Alcohol and Drug Use				
None indicated	23013 (98.2%)	10696 (96.6%)	[ref]	[ref]
Indicated	414 (1.8%)	381 (3.4%)	1.51 (1.40, 1.63)	1.48 (1.37, 1.59)
GCS				
8 or less	1021 (4.5%)	658 (6.1%)	1.17 (1.10, 1.24)	1.17 (1.10, 1.24)
9 - 12	3696 (16.4%)	1051 (9.8%)	0.66 (0.63, 0.70)	0.67 (0.63, 0.70)
13 - 15	17905 (79.1%)	9018 (84.1%)	[ref]	[ref]
Heart Rate				
<60 (bradycardia)	1293 (5.5%)	590 (5.4%)	0.99 (0.92, 1.06)	1.01 (0.94, 1.08)
60-100 (normal)	17622 (75.5%)	8216 (74.5%)	[ref]	[ref]
> 100 (tachycardia)	4418 (18.9%)	2215 (20.1%)	1.05 (1.01, 1.09)	1.05 (1.01, 1.09)
Systolic Blood Pressure				
<90 (hypotension)	228 (1.0%)	241 (2.2%)	1.48 (1.35, 1.63)	1.47 (1.34, 1.61)
90-140 (normal)	6841 (29.4%)	3621 (32.9%)	[ref]	[ref]
>140 (hypertension)	16229 (69.7%)	72151 (64.9%)	0.88 (0.86, 0.91)	0.87 (0.84, 0.90)
Diastolic Blood Pressure				
<60 (hypotension)	1120 (4.9%)	750 (6.9%)	1.21 (1.14, 1.28)	1.22 (1.15, 1.30)
60-90 (normal)	12495 (54.3%)	6189 (56.9%)	[ref]	[ref]
>90 (hypertension)	9408 (40.9%)	3931 (36.2%)	0.89 (0.86, 0.92)	0.87 (0.84, 0.90)
Respiratory Rate				
<8	58 (0.3%)	56 (0.5%)	1.54 (1.27, 1.85)	1.44 (1.19, 1.74)
8-20	20223 (88.8%)	9502 (88.1%)	[ref]	[ref]
>20	2492 (10.9%)	1233 (11.4%)	1.04 (0.99, 1.09)	1.05 (1.00, 1.10)
Oxygen Saturation				
< 89	933 (4.1%)	476 (4.5%)	1.05 (0.98, 1.13)	1.09 (1.01, 1.18)
89 +	21561 (95.9%)	10215 (95.5%)	[ref]	[ref]
Fever				
<95	51 (0.6%)	38 (0.7%)	1.17 (0.92, 1.49)	1.24 (0.98, 1.56)
95-100.4	9043 (98.3%)	5197 (96.7%)	[ref]	[ref]
>100.4	106 (1.2%)	138 (2.6%)	1.55 (1.39, 1.73)	1.54 (1.37, 1.72)

- 323
- 324

- 326 single clinical exposure
- 327 **Adjusted GLMs were calculated to include the single exposure along with covariates of
- 328 patient age, sex, race, GCS, and urbanicity.
- 329 ED: Emergency Department, EMS: Emergency Medical Services, GCS: Glasgow Coma Score,
- 330 GLM: Generalized Linear Model, RR: Relative Risk, aRR: adjusted Relative Risk.
- 331

^{325 *}Unadjusted generalized linear models (GLMs) were run for each clinical characteristic as the