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Abstract: A machine learning approach is a useful tool for risk-stratifying patients with respiratory
symptoms during the COVID-19 pandemic, as it is still evolving. We aimed to verify the predictive
capacity of a gradient boosting decision trees (XGboost) algorithm to select the most important
predictors including clinical and demographic parameters in patients who sought medical support
due to respiratory signs and symptoms (RAPID RISK COVID-19). A total of 7336 patients were
enrolled in the study, including 6596 patients that did not require hospitalization and 740 that required
hospitalization. We identified that patients with respiratory signs and symptoms, in particular, lower
oxyhemoglobin saturation by pulse oximetry (SpO2) and higher respiratory rate, fever, higher heart
rate, and lower levels of blood pressure, associated with age, male sex, and the underlying conditions
of diabetes mellitus and hypertension, required hospitalization more often. The predictive model
yielded a ROC curve with an area under the curve (AUC) of 0.9181 (95% CI, 0.9001 to 0.9361). In
conclusion, our model had a high discriminatory value which enabled the identification of a clinical
and demographic profile predictive, preventive, and personalized of COVID-19 severity symptoms.

Keywords: machine learning; COVID-19; hospitalization; predictive model

1. Introduction

The coronavirus disease 2019 (COVID-19) posed considerable health pressure on a
global scale. In countries with socialized healthcare systems, the sudden influx of patients
with respiratory symptoms quickly outgrew the capacity [1,2].

In the early phase of the COVID-19 pandemic, meta-analysis studies documented that
dyspnea, anorexia, dizziness, and fatigue were significantly associated with the critical
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outcome [3]. Likewise, oxyhemoglobin saturation by pulse oximetry (SpO2), body temper-
ature, and mean arterial pressure on admission can also predict COVID-19 patients with
a high probability of mortality [4]. The COVID-19 timeline was described as the median
duration from illness onset to dyspnea of 8.0 days (interquartile range, 5.0–13), whereas
from onset of symptoms to first hospital admission was 7.0 days (4.0–8.0) [5,6].

Importantly, the COVID-19 burden is related to underlying comorbidities, in particular
hypertension, diabetes mellitus (DM), cardiovascular disease, and chronic kidney disease,
which are more likely to be presented with increasing age [7,8]. Other clinical determinants
of COVID-19 severity comprise male sex, obesity, smoking, chronic obstructive pulmonary
disease (COPD), cerebrovascular disease, malignancy, and chronic liver disease [8].

Therefore, the early identification of factors that predict hospitalization in patients
affected by COVID-19 contributes to therapeutic decisions, patient flow management, and
allocation of resources. To address these issues, machine learning algorithms allow us to
assess comorbidities and clinical features most significantly associated with COVID-19
progression and mortality [9].

In line with these findings, a framework based on male sex, age ≥60 years, known con-
tact with an infected person, and the appearance of five initial clinical symptoms, including
cough, fever, headache, sore throat, shortness of breath, enabled the prediction of COVID-19
test results with high accuracy [10]. Importantly, COVID-19 symptoms can be monitored
through wireless devices, such as sensors connected to the body and the information can
be transmitted through the internet using cell phones. This approach has implications
for the prioritization of hospital resources and prevents the spread of SARS-CoV-2 [11].
Moreover, healthcare technology, such as ultrasound and computerized tomography, can
also be combined with artificial intelligence to benefit the health system response to the
identification of disease clusters, monitoring of cases, mortality risk, COVID-19 diagnosis,
disease management, and future pandemic waves of COVID-19 and other respiratory
viruses in general [11,12].

Thus, our study aimed to define the main symptoms, signs, and demographic data
that were most often associated with the risk of hospitalization in patients with respiratory
signs and symptoms that were evaluated in a tertiary hospital during the first wave of
COVID-19, from March to August 2020, in São Paulo, Brazil.

2. Materials and Methods
2.1. Study Population

We reviewed data from all patients referred to the Paulist School of Medicine at
Hospital São Paulo, a tertiary university hospital at the Federal University of São Paulo
(EPM-UNIFESP), São Paulo, SP, between March 2020 and August 2020 with respiratory
syndrome during the first wave of the COVID-19 pandemic. A total of 7336 patients
were enrolled in the study individuals, and 6596 patients were not hospitalized, whereas
740 patients required hospitalization. On that occasion, the Unit of Respiratory Infection
was temporarily created as a reference for patients with respiratory signs and symptoms
during the COVID-19 pandemic.

Exclusion criteria were patients under 18 years old and those who after medical
evaluation did not meet the criteria for respiratory disease.

2.2. Assessment

We evaluated medical history, and clinical parameters including vital signs, such as
blood pressure, respiratory rate, heart rate, temperature, and oxyhemoglobin saturation by
pulse oximetry (SpO2), demographic data, and pre-existing comorbidities. All data were
registered in the electronic health record (EHR). Hospitalization was based on medical
decisions, in particular, when SpO2 was lower than 94% and respiratory rate was greater
than 24 bpm. After hospitalization, more than 90% of the individuals tested positive for
SARS-CoV-2 using RT-PCR from nasopharyngeal samples. For those who were not hospi-
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talized, clinical status was monitored by phone calls to retrieve the status (hospitalization
or non-hospitalization).

Data were automatically retrieved from the EHR and manually inputted by the re-
searchers. Discrepancies were solved by one of the investigators (V.M.F.) after reviewing
the entirety of the patient’s chart. When discrepancies could not be solved or data were not
registered, it was marked as “not available”.

From the total of 7336 patients, missing data ranged from 0% to 29.5% of collected
information. The least missing data variables were sex and age (no missing data) and
the most missing data variables were respiratory rate and seasonal influenza vaccine in
the current year (26.6% and 29.5%, respectively) (Table S1). Regarding comorbidities,
data were missing from 11.6% to 11.7% of the total sample, the biggest being active or
previous cancer (858 patients) and the least being active smoking (851 patients) (Table S1).
Regarding symptoms, data were missing from 11.8% to 11.9% of the total sample, the
biggest being sore throat (871 patients) and the least being sneezing, abdominal pain, and
chills (866 patients) (Table S1).

The Ethics Committee from the Federal University of São Paulo approved the study
(CAAE: 41400720.7.0000.5505). All the methods were performed following guidelines and
regulations. In addition, this study was carried out under the Declaration of Helsinki. The
requirement for informed consent was waived by the Ethics Committee because our study
used anonymized data for analysis.

2.3. Statistical Analysis
2.3.1. Predictive Model

For the predictive model, the categorical variables were transformed into dummy
variables. We removed the variables with more than 30% missing values and imputed
the others using nearest neighbors (Table S2). Once the nearest neighbors are determined,
the model is used to predictor nominal variables, and the mean is used for numeric data.
Variables with zero or near-zero variance were removed from the model. To fit the boosted
tree models, we used one-hot encoding, and to fit the Lasso regression we normalized
the predictors.

To adjust to the class imbalance, the synthetic minority over-sampling (SMOTE)
method was used to create synthetic classes in the training set (balancing). The SMOTE
algorithm generated new examples of the minority class using the nearest neighbors of
these cases.

2.3.2. Model Training

We split the data into derivation (training, n = 5868) and validation (test, n = 1468)
data sets. To create the data sets, we used a random split stratified by the target into
training (80%) and test (20%). Next, we fitted gradient boosting decision trees (XGBoost),
random forest, light GBM, and Lasso regression to all available predictors. The best hyper-
parameters were selected for each model, using machine learning approaches by 10-fold
cross-validation in a train set aimed to maximize the area under the receiver operating
characteristic curve (AUC-ROC) and to reduce the bias. Additionally, we fitted a reduced
model using the highest scores of the best model (top 11 predictors).

2.3.3. Assessment of Accuracy

The accuracy of the derivation cohort model was tested on the data of the validation
cohort. We used the area under the receiver operating characteristic curve (AUC-ROC)
and balance accuracy to discriminate the ability of the models in the train and test set.
The 95% confidence intervals (CI) of AUC-ROC were estimated by bootstrap resampling
(2000 samples) to reduce overfit bias. To evaluate the goodness of fit of models, the pre-
dicted versus observed target values were plotted in a confusion matrix of the validation
cohort. We select the model with the highest AUC-ROC score and balanced accuracy to
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fit the reduced model (RAPID RISK COVID-19). The reduced model was fitted using the
XGBoost algorithm.

The software R version 4.0.2 (Vienna, Austria) and the packages tidy models.

3. Results

In Figure 1, we documented the number of respiratory cases that required hospital-
ization (n = 740) and the cases that presented mild respiratory disease (n = 6596) during
the first wave of the COVID-19 pandemic at São Paulo Hospital, Federal University of
São Paulo, SP, Brazil, from March to August 2020. Therefore, the temporal distribution of
evaluated patients shown in Figure 1 reflects the overall tendency registered in Brazil, ex-
cept for an initial spike at end of March, when restrictive measures were established in São
Paulo. During the whole interval evaluated, the number of patients hospitalized remained
somewhat constant despite occasional peaks of patients, with an overall hospitalization
rate of 10%.
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Figure 1. The total number of patients with respiratory signs and symptoms and the need for
hospitalization and non-hospitalization, from March to August 2020, at São Paulo Hospital, São
Paulo, Brazil.

Patients who required hospitalization were more likely to be men with a median age
of 58 years (Table 1). The signs which were more often associated with the need for hospital-
ization comprised lower blood pressure (systolic and diastolic), higher temperature, heart
rate, and respiratory rate, whereas oxygen saturation was lower (Table 1). Additionally,
we verified that a group of symptoms represented a useful tool for risk-stratifying patients
with severe respiratory disease. These symptoms included fatigue, dry cough, breathing
difficulty, anorexia, and nausea/vomiting. Conversely, sneezing, running nose, sore throat,
headache, and thoracic pain were frequently found in those patients with mild respiratory
disease (Table 1). Other symptoms, such as diarrhea, productive cough, anosmia, myalgia,
dysgeusia, chills, abdominal pain, and wheezing were equally found in the two groups.
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Table 1. Comparison of demography, signs, and symptoms between patients who required hospi-
talization and those who did not require hospitalization from March to August 2020 at São Paulo
Hospital, Brazil.

Variables
No Hospitalization (n = 6596) Hospitalization (n = 740) p

Median Interquartile Range Median Interquartile Range

Females (n, %) 3570 (54%) 324 (44%) <0.001
Age (year-old) 39 (28, 51) 58 (47, 69) <0.001

Duration of symptoms (days) 4 (2, 8) 7 (4, 10) <0.001
Systolic blood pressure

(mmHg) 133 (121, 146) 129 (114, 145) <0.001

Diastolic blood pressure
(mmHg) 84 (75, 94) 80 (70, 90) <0.001

Heart rate (bpm) 90 (80, 101) 96 (85, 110) <0.001
Temperature (◦C) 36.50 (36.00, 36.80) 36.50 (36.00, 36.90) 0.007

Respiratory rate (bpm) 18 (16, 20) 24 (20, 28) <0.001
SpO2 (%) 97.00 (96.00, 98.00) 94.00 (90.00, 96.00) <0.001

Influenza vaccine 1897 (39%) 149 (47%) 0.007
Fever 2500 (42%) 289 (57%) <0.001

Fatigue 1628 (27%) 184 (37%) <0.001
Sneezing 496 (8.3%) 20 (4.0%) <0.001

Dry cough 2702 (45%) 262 (52%) 0.004
Productive cough 720 (12%) 75 (15%) 0.065

Running nose 1304 (22%) 45 (8.9%) <0.001
Sore throat 1428 (24%) 38 (7.6%) <0.001
Diarrhea 851 (14%) 88 (17%) 0.051

Breathing difficulty 1955 (33%) 302 (60%) <0.001
Anorexia 614 (10%) 94 (19%) <0.001
Headache 2219 (37%) 93 (18%) <0.001
Myalgia 1845 (31%) 138 (27%) 0.10

Nausea/vomiting 735 (12%) 91 (18%) <0.001
Wheezing 136 (2.3%) 11 (2.2%) 0.9

Thoracic pain 1059 (18%) 67 (13%) 0.012
Abdominal pain 320 (5.4%) 34 (6.7%) 0.2

Anosmia 1133 (19%) 80 (16%) 0.084
Dysgeusia 1127 (19%) 80 (16%) 0.10

Chills 672 (11%) 46 (9.1%) 0.14

SpO2: oxyhemoglobin saturation by pulse oximetry.

Previous influenza vaccination was observed in those who required hospitalization
(Table 1; 47% vs. 39%, p = 0.007), which could be explained by the highest age in this
group and, therefore, higher access to influenza vaccination before the pandemic. To note,
when our study was conducted, there was no report about the therapeutic potential of
dexamethasone and remdesivir on this occasion.

When the underlying comorbidities were analyzed, we found that hypertension,
cardio- and cerebrovascular diseases, diabetes mellitus (DM), chronic kidney disease,
autoimmune disease, neoplasia, obesity, and solid organ transplant were correlated to
the need for hospitalization (Table 2). Unexpectedly, asthma, COPD, and smoking were
not associated with hospitalization requirements. To note, hospitalization 15 days before
seeking medical assistance was reported more often in those who required hospitalization
(Table 2; p < 0.001).
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Table 2. Comparison of comorbidities between patients who required hospitalization and those who
did not require hospitalization from March to August 2020 at São Paulo Hospital, Brazil.

Variables No Hospitalization
(n = 6596)

Hospitalization
(n = 740) p

Hypertension 1227 (21%) 232 (46%) <0.001
Cardiac disease 227 (3.8%) 68 (14%) <0.001

Diabetes mellitus 469 (7.8%) 136 (27%) <0.001
Cerebrovascular disease 42 (0.7%) 17 (3.4%) <0.001
Chronic kidney disease 162 (2.7%) 66 (13%) <0.001

Immunosuppression 230 (3.8%) 55 (11%) <0.001
COPD 95 (1.6%) 13 (2.6%) 0.10

Asthma 355 (5.9%) 19 (3.8%) 0.044
Tuberculosis 39 (0.7%) 6 (1.2%) 0.2

Other respiratory diseases 87 (1.5%) 12 (2.4%) 0.10
Neoplasia 89 (1.5%) 30 (6.0%) <0.001

Solid organ transplant 145 (2.4%) 63 (12%) <0.001
Obesity 305 (5.1%) 56 (11%) <0.001

Smoking 621 (10%) 45 (8.9%) 0.3
Pregnancy 79 (1.3%) 3 (0.6%) 0.2

Previous hospitalization 37 (0.6%) 23 (4.5%) <0.001
COPD: Chronic obstructive pulmonary disease.

Next, we split the data into derivation (training, n = 5868) and validation (test, n = 1468)
data sets (Table 3). The models were fitted using all available predictors that were related to
symptoms at onset, vital signs at onset, comorbidities, and demography (n = 45 predictors).
In both data sets, hospitalization was required in 10% of the patients (Table 3). The results
showed that boosted trees (XGBoost and light GBM), random forest, and Lasso regression
had values of AUC-ROC between 0.899 and 0.930 in the test set (Table 4). To fit the reduced
model, we choose the top 11 predictors of the best algorithm. We selected the XGBoost as
the best model (higher values of AUC-ROC combined with higher balanced accuracy in
the test set).

Table 3. Datasets (train and test sets) used in predicting hospitalization in patients with respiratory
symptoms during the COVID-19 pandemic.

Characteristic Train
n = 5868

Test
n = 1468

Female sex 3102 (53%) 792 (54%)
Age 41 (29, 53) 40 (30, 54)

Symptom duration 4 (2, 8) 4 (2, 8)
Systolic blood pressure 133 (121, 147) 132 (120, 145)
Diastolic blood pressure 84 (74, 94) 82 (74, 92)

Heart rate 90 (80, 102) 89 (80, 100)
Temperature 36.50 (36.00, 36.80) 36.50 (36.00, 36.70)

Respiratory frequency 18 (17, 20) 18 (17, 20)
SpO2 97.00 (96.00, 98.00) 97.00 (96.00, 98.00)

Influenza vaccine 1632 (40%) 414 (39%)
Fever 2258 (44%) 531 (41%)

Fatigue 1456 (28%) 356 (27%)
Occasional Cough 420 (8.1%) 96 (7.4%)

Dry cough 2370 (46%) 594 (46%)
Phlegm cough 641 (12%) 154 (12%)
Running nose 1059 (20%) 290 (22%)

Sore throat 1173 (23%) 293 (23%)
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Table 3. Cont.

Characteristic Train
n = 5868

Test
n = 1468

Diarrhea 733 (14%) 206 (16%)
Dyspnea 1822 (35%) 435 (34%)
Anorexia 580 (11%) 128 (9.9%)
Headache 1851 (36%) 461 (36%)
Myalgia 1597 (31%) 386 (30%)

Nausea and vomiting 652 (13%) 174 (13%)
Chest wheezing 120 (2.3%) 27 (2.1%)

Chest pain 889 (17%) 237 (18%)
Abdominal pain 295 (5.7%) 59 (4.6%)

Anosmia 959 (19%) 254 (20%)
Dysgeusia 960 (19%) 247 (19%)

Chills 570 (11%) 148 (11%)
Hypertension 1193 (23%) 266 (20%)
Heart disease 238 (4.6%) 57 (4.4%)

Diabetes mellitus 466 (9.0%) 139 (11%)
Cerebrovascular disease 47 (0.9%) 12 (0.9%)
Chronic kidney disease 188 (3.6%) 40 (3.1%)

Immunosuppression 231 (4.5%) 54 (4.2%)
COPD 84 (1.6%) 24 (1.8%)

Asthma 307 (5.9%) 67 (5.2%)
Tuberculosis 29 (0.6%) 16 (1.2%)

Respiratory disease 79 (1.5%) 20 (1.5%)
Neoplasia 97 (1.9%) 22 (1.7%)
Transplant 171 (3.3%) 37 (2.8%)

Obesity 284 (5.5%) 77 (5.9%)
Smoking 535 (10%) 131 (10%)
Pregnant 61 (1.2%) 21 (1.6%)

Prior hospitalization 47 (0.9%) 13 (1.0%)
Hospitalization 592 (10%) 148 (10%)

Continuous values are present in medians and percentiles (25 and 75%). SpO2: oxyhemoglobin saturation by
pulse oximetry; COPD: chronic obstructive pulmonary disease.

Table 4. Results of model performance in predicting hospitalization in patients with respiratory
symptoms during the COVID-19 pandemic. The predictions were retrieved in the test set (n = 1468).

Model AUC-ROC
[95% CI] Accuracy Balanced

Accuracy F1-Score Precision

XGBoost Full 1 0.927
[0.901–0.945] 0.905 0.800 0.946 0.962

Random Forest 1 0.930
[0.909–0.945] 0.905 0.779 0.947 0.957

Lasso 1 0.899
[0.874–0.925] 0.844 0.823 0.907 0.974

Light GBM 1 0.925
[0.905–0.944] 0.896 0.822 0.941 0.968

XgBoost Reduced 2

(RAPID RISK COVID)
0.917

[0.899–0.935] 0.886 0.793 0.935 0.962

1 Predictors of the full model (n = 45): sex, age, duration of symptoms, systolic blood pressure, diastolic blood
pressure, heart rate, temperature, respiratory frequency, SpO2, influenza vaccine, fever, fatigue, occasional cough,
dry cough, phlegm cough, running nose, sore throat, diarrhea, dyspnea, anorexia, headache, myalgia, nausea and
vomiting, chest wheezing, chest pain, abdominal pain, anosmia, dysgeusia, chills, hypertension, heart disease,
diabetes mellitus, cerebrovascular disease, chronic kidney disease, immunosuppression, chronic obstructive
pulmonary disease, asthma, tuberculosis, respiratory disease, neoplasia, transplant, obesity, smoking, pregnancy,
and prior hospitalization. 2 Predictors of reduced model (n = 11): SpO2, respiratory rate, age, sex, duration of
symptoms, presence of hypertension, temperature at admission, presence of DM, heart rate, and systolic and
diastolic blood pressure at admission.
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We then fitted a reduced model using the top 11 predictors retrieved from the XGBoost
algorithm, which provided the RAPID RISK COVID-19. The reduced predictive model
utilizing SpO2, respiratory rate, age, duration of symptoms, sex, temperature at admission,
presence of hypertension, heart rate, systolic and diastolic blood pressure at admission,
and presence of DM (SHAP, Figure 2A) yielded an AUC-ROC of 0.9181 (95% CI, 0.9001 to
0.9361) (Figure 2B). We showed that the reduced model retrieved similar scores (AUC-ROC,
balanced accuracy, precision, and F1-score) compared to the full model (Table 4). To note,
SHAP or SHAPley Additive exPlanations is a visualization tool that can be used for making
a machine learning model more explainable by visualizing its output. It can be used for
explaining the prediction of XGBoost by computing the contribution of each feature to
the prediction.
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4. Discussion

Through this study, we were able to demonstrate that patients with respiratory signs, in
particular, lower SpO2 and higher respiratory rate, fever, higher heart rate, and lower levels
of blood pressure required hospitalization more often during the first wave of COVID-19
pandemic in a reference university hospital is São Paulo, Brazil. Additionally, age, male
sex, longer symptom duration, and comorbidities, such as hypertension and DM, also led
to an increase in hospitalization requirements.

Although our study comprised a single center, we observed that our data reflect the
pattern of COVID-19 evolution during the first wave of the pandemic in Brazil, when the R0
value was estimated at 3.1 [13]. In addition, the state of São Paulo represented the largest
state affected by the COVID-19 pandemic, presenting an incidence of 294 hospitalizations
per 100,000 inhabitants on that occasion [14]. Most hospitalized patients were reported to
be men, elderly, and present underlying comorbidities, including hypertension, chronic
lung disease, DM, and cerebrovascular disease [14].

Despite not testing all patients, COVID-19 was the main cause of hospital deaths in
2020 (19.5%), exhibiting an increase of 16.7% in comparison to 2019 in Brazil [15]. Im-
portantly, no influenza pandemic was documented during the current study, so we may
assume that we were dealing mainly with cases of COVID-19. As Hospital São Paulo was a
reference for respiratory symptoms during the pandemic, our data reflect, therefore, the
general population.

Our model (RAPID RISK COVID-19) is a useful tool for risk-stratifying patients with
respiratory symptoms, as the COVID-19 pandemic is still evolving. On top of that, a
shortage of reagents can difficult the diagnosis of SARS-CoV-2 infection. Therefore, for



J. Clin. Med. 2022, 11, 4574 10 of 16

population health policies, our findings provide evidence to guide those patients who are
admitted to a basic health unit or consulted via telemedicine for the need for hospital-
ization. Notably, peripheral blood oxygenation, heart and respiratory rates, temperature,
and blood pressure are inexpensive and easily accessible, as medical professionals can
determine health care priorities with real-time assessment. This approach is of paramount
importance for identifying high-risk COVID-19 patients, in particular, in low- and middle-
income countries.

Lower SpO2, higher frequency respiratory rate, fever, fatigue, and cough are important
features for the prediction of the COVID-19 severity and were identified as risk factors for
hospitalization at the beginning of the pandemic [16–18]. These signs may be explained
by the direct SARS-CoV-2 infection of the epithelial lung and bronchial cells, as well as,
several other organs [19,20], associated with the dysregulation of the renin–angiotensin–
aldosterone pathway, which leads to tissue remodeling, inflammation, vasoconstriction,
and vascular permeability; endothelial cell damage and thrombo-inflammation, which
promotes an imbalance of fibrinolysis and thrombin production, and dysregulated im-
mune response, characterized by T cell lymphopenia due to exhaustion, inhibition of
interferon signaling by SARS-CoV-2, and hyperactive innate immunity with higher levels
of neutrophils and monocytes, which is ultimately involved in the cytokine storm [20].
SARS-CoV-2 viremia is implicated in worsening COVID-19 [21] and may lead to a systemic
response, as documented by higher fever, heart rate, lower blood pressure levels, and
fatigue. However, other symptoms, such as a running nose, sore throat, sneezing, headache,
and olfactory abnormalities indicate mild cases of COVID-19 [22].

Importantly, machine learning algorithms may also predict the early onset of acute
distress respiratory syndrome in critically ill adults with COVID-19 when oxygen satura-
tion, respiratory rate, and blood pressure were evaluated accordingly to age and sex [23].
XGBoost models may also predict COVID-19 progression and mortality when trained with
data from the last 24 h. Therefore, respiratory rate, SpO2, age greater than 75 years, and lab-
oratory parameters (lactate dehydrogenase, calcium, glucose, and C-reactive protein) were
important for risk-stratifying patients with COVID-19 during the first wave, from January
to August 2000 [24], which represent the same period when our study was conducted.

To note, using machine learning approaches we fitted machine learning models that
achieve higher AUC-ROC values (greater than 0.90) using 45 predictors. The performance
of different models was very similar, especially in boosted trees. The models keep a similar
performance in the test set that was held separate from the train data indicating a low
risk of overfitting. However, in clinical practice, we fitted a reduced model using the top
11 predictors to facilitate the applicability of the algorithm. This model was named RAPID
RISK COVID-19 and had performance metrics similar to the complete model in the test set.

In addition, the odds ratio for clinical decompensation within 24 h reaches 5.17 when
a SpO2 < 93% is associated with leucocytosis and a low glomerular filtration rate is present
in patients with heart failure [25]. Lower SpO2 values ≤ 90%, measured in an out-of-
hospital setting, were associated with a greater than 50% decrease in the probability of
being discharged alive, regardless of age [26], supporting, therefore, the decision for prompt
hospital admission. The lower levels of PaO2/FIO2, when associated with lymphopenia,
higher levels of C-reactive protein and lactate dehydrogenase, and higher chest tomogra-
phy scores may also predict prolonged hospitalization [27]. Age, cardiovascular disease,
CKD, dyspnoea, tachypnea, confusion, systolic blood pressure, and SpO2 ≤ 93% or oxy-
gen requirement discriminate the composite outcome of in-hospital mortality, mechanical
ventilation, or admission to the intensive care unit [28]. In a Brazilian and Spanish cohort,
seven variables (age, number of comorbidities, heart rate, blood urea nitrogen, C-reactive
protein, platelet count, and SpO2/FIO2) enabled early identification of risk factors pre-
dicting in-hospital mortality [29]. SpO2 can also be incorporated into the ROX index
([SpO2/FIO2]/frequency respiratory) to estimate the failure of high-flow cannula failure
in COVID-19 patients with acute hypoxemic respiratory failure [30]. Clinicians can take
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advantage of the results obtained from these models, as an online risk calculator is already
available [31].

Age is a risk factor for COVID-19 progression and mortality [7,8,14,22,32–34], as aging
is frequently associated with the presence of a high number of underlying comorbidities [7]
and changes in the immune system including a profile of exaggerated inflammatory re-
sponse of the innate immune system and immunosenescence of adaptive immune system,
which ultimately increases the severity of COVID-19 [35]. Age-related laboratory pro-
file is characterized by higher levels of pro-inflammatory and tissue damage markers, in
particular, in elderly men [36]. The lower response to vaccination associated with lower
titles of neutralizing antibodies against SARS-CoV-2 [37] poses elderly individuals with a
worse outcome.

Male sex is also associated with a higher risk for COVID-19 progression and mortal-
ity [14,32,33,38,39]. Sex disparity in COVID-19 severity may be explained by molecular
and cellular features. Therefore, females have lower levels of pro-inflammatory and tissue
damage markers when compared to males [36,39]. Differences in molecular mechanisms
provide a survival advantage in females with COVID-19, as ACE2 and Toll-like receptors
(TLR) signaling genes are located in the X chromosome, providing a more versatile and
stronger immune response, whereas estrogen contributes to T-cell activation [40]. There-
fore, males have a distinct interaction not only between immune cells but also between
epithelium and immune cells, which explain the severe outcomes [39].

The presence of underlying comorbidities aggravates the COVID-19 setting. SARS-
CoV-2 has a susceptibility to tissue invasion based on the expression of angiotensin-
converting enzyme-2 (ACE2) receptors in different organs [19]. Therefore, chronic diseases
favor virus entrance and increase the COVID-19 burden [22]. Endothelial damage due to
direct virus toxicity and inflammatory response are hallmarks of COVID-19 severity [20,41].
Thus, the presence of cardiometabolic disease, which is another pandemic worldwide,
identifies patients with a greater risk of COVID-19 severity. Therefore, hypertension is
an independent risk factor for COVID-19 progression and mortality [14,16,18,38]. Blood
pressure control is associated with a decrease in the COVID-19 burden and should be
encouraged during the pandemic, in patients with advanced atherosclerosis and target
organ damage [42].

Likewise, DM is associated with higher rates of mortality due to COVID-19 [14,16,18,32,38].
DM is often associated with hypertension, and cardio- and cerebrovascular diseases, which
increase the risk for hospitalization [43]. Recent DM-related pathophysiologic mechanisms
in COVID-19 unveiled direct toxicity of islet cells, increase in insulin resistance, and immune
system dysfunction associated with microthrombi and endotheliitis, which aggravates
glucose control in those patients with pre-existing DM and those with newly diagnosed
DM [44]. Adequate blood glucose control ameliorates the COVID-19 burden [45] and
should be equally pursued during the pandemic.

Cardiac disease is associated with higher expression of ACE2 and tissue susceptibility
to SARS-CoV-2 infection [19], which puts patients with cardiac disease at great risk of
hospitalization and mortality [18,25,32,38]. The heart is affected by the inflammatory
response, in particular, the cytokine storm and macrophage activation, which promotes
endotheliitis, microvascular dysfunction, and thrombosis, in addition to direct damage, an
imbalance of ACE2 and angiotensin II, and an increase in myocardial oxygen consumption
due to fever, hypoxemia and augmented adrenergic drive [46]. Similarly, cerebrovascular
disease can also aggravate COVID-19 [14,34], as SARS-CoV-2 may directly invade neuron
cells and also promote endotheliopathy and inflammation [19].

Obesity may also pose COVID-19 patients at high risk for progression [16,32,43],
including young patients [47]. Adipose tissue is a reservoir for SARS-CoV-2 replication, as
ACE2 is abundantly expressed, which ultimately aggravates the inflammatory milieu [19].
Obese individuals, besides the presence of previous underlying comorbidities, may have
a worse pulmonary function performance, presenting lower levels of PaO2 and SatO2
at admission and the requirement for higher volumes of oxygen [48]. Obese patients
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express ACE2 more often in the epithelial cells of the lungs [49], which contributes to a
worse prognosis.

In line with these findings, chronic kidney disease, which is mainly associated with
hypertension, DM, cardio- and cerebrovascular diseases, and obesity, is also correlated to a
worse COVID-19 outcome [25,32,43]. SARS-CoV-2 may affect kidney function by several
mechanisms, including direct virus toxicity, cytokine storm, rhabdomyolysis, and cardiac
decompensation [50].

Solid organ transplant recipients [51] and autoimmune diseases [52] are chronic con-
ditions associated with more severe lymphopenia, a hallmark of COVID-19, and more
severe disease, increased viral shedding, lower rates of seroconversion, displaying higher
rates of case fatality. Although hematologic solid cancer patients exhibit prolonged viral
shedding, delayed or no seroconversion, and sustained immune dysregulation following
viral clearance (heterogeneous humoral response and an exhausted T cell phenotype),
solid cancer patients present some prolonged viral shedding, early sustained seroconver-
sion, and near-complete resolution of immune dysregulation following viral clearance [53].
Importantly, the need for hospitalization and mortality rates remain higher during all
waves of the pandemic, which is a critical condition worldwide and prompts an immediate
vaccination regimen for these individuals.

Unexpectedly, smoking and COPD were not correlated to the need for hospitalization,
as opposed to the literature [14,18,32]. Both conditions are associated with higher expression
of ACE2 in epithelial bronchial and pulmonary cells [19] and systemic inflammatory
dysregulation [54]. However, chronic respiratory diseases, yet associated with a higher risk
of COVID-19 progression and mortality, were not associated with an augmented risk of
hospitalization [55]. The discrepancy in our data may be explained at least in part by the
number of patients included in the study and the missing data, which contributed to the
under-representation of these patients, or better adherence to precautionary measures.

The impact of asthma on COVID-19 progression is a subject of debate in the liter-
ature. Some reports indicate that asthma is an independent risk factor for COVID-19
hospitalization, but not for COVID-19 infection [56]. Our findings showed that pre-existing
asthma was not a risk factor for hospitalization, as documented by a meta-analysis [57].
We speculate that better adherence to asthmatic treatments during the pandemic [58], the
fact that the gene expression of ACE2, TMPRSS2, and furin is not upregulated in asthmatic
patients [59], or that the differences in asthma phenotype that were not deeply analyzed
across the studies [60], and the inflammatory milieu in asthmatic patients (type 2 cytokines,
including IL-4 and IL-13 and accumulation of eosinophils) or the conventional therapeutics
for asthma, including inhaled corticosteroids [61] may have conferred a protective effect
for asthmatic patients with COVID-19.

The main limitations of the study were the retrospective analysis, the amount of miss-
ing data, and the lack of testing in those patients who were not hospitalized. Additionally,
we did not provide external validation in an independent cohort.

In conclusion, while recent advances have been made in the areas of diagnostics,
therapeutics, and vaccination for COVID-19, there remains a need for information man-
agement tools and a common platform for cross-border collaboration on future pandemic
preparedness and response. The lessons learned during the current COVID-19 pandemic
have equipped us with a toolbox to tackle future pandemics. Thus, the use of health
surveillance technologies [62] associated with the clinical, laboratory, and imaging pa-
rameters [12,63,64] will pave the way for the development of predictive, preventive, and
personalized solutions.

Therefore, our model had a high discriminatory value that enabled the identification
of a clinical and demographic profile predictive of disease severity. Moreover, our approach
assisted clinical decision triage and provided additional biological insights into disease
progression. However, further research is required to determine whether this tool can also
be applied to outpatient or home-based COVID-19 patients, as well as to novel SARS-CoV-2
variants and in the post-vaccination setting.
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