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Abstract

Gammaherpesviruses are an important class of oncogenic pathogens that are exquisitely evolved 

to their respective hosts. As such, the human gammaherpesviruses Epstein-Barr virus (EBV) and 

Kaposi sarcoma herpesvirus (KSHV) do not naturally infect nonhuman primates or rodents. There 

is a clear need to fully explore mechanisms of gammaherpesvirus pathogenesis, host control, 

and immune evasion in the host. A gammaherpesvirus pathogen isolated from murid rodents was 

first reported in 1980; 40 years later, murine gammaherpesvirus 68 (MHV68, MuHV-4, γHV68) 

infection of laboratory mice is a well-established pathogenesis system recognized for its utility in 

applying state-of-the-art approaches to investigate virus-host interactions ranging from the whole 

host to the individual cell. Here, we highlight recent advancements in our understanding of the 

processes by which MHV68 colonizes the host and drives disease. Lessons that inform KSHV 

and EBV pathogenesis and provide future avenues for novel interventions against infection and 

virus-associated cancers are emphasized.
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1. INTRODUCTION

Murine gammaherpesvirus 68 (MHV68, MuHV-4, γHV68), a natural pathogen of murid 

rodents, is widely used to discover and understand key pathogenic determinants of in vivo 

gammaherpesvirus infections. MHV68 was isolated from bank voles; related strains have 

been isolated from bank voles and yellow-necked mice, and numerous rodent species appear 
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to serve as reservoirs (reviewed in 1). MHV68 infection of Mus musculus generates a 

higher viral load but similar course of infection as compared to bank voles (2), providing a 

powerful system for systematic examination of in vivo gammaherpesvirus infection.

The MHV68 genome (3) is colinear with Kaposi sarcoma herpesvirus (KSHV, HHV-8) 

and thus is classified as a member of the Rhadinovirus genus with the formal designation 

of murid gammaherpesvirus 4 (MuHV-4, MuGHV-4) (Figure 1). MHV68 shares key 

biologic properties with the human gammaherpesviruses KSHV and Epstein-Barr virus 

(EBV, HHV-4), including establishment of latency in B cells and propensity to drive 

tumorigenesis. Wild-type MHV68 grows productively in culture and establishes lifelong 

infection in inbred laboratory and wild mice. Through orchestrated infection and trafficking 

of multiple cell types, MHV68 traverses mucosal surfaces to access the B cell compartment 

and disseminate through the host. In secondary lymphoid organs, MHV68 protein products 

and noncoding RNAs (ncRNAs) engage and usurp germinal center (GC) reactions to gain 

access to the long-lived memory B cell compartment. As is the case for KSHV and EBV, 

the coevolutionary virus-host balance typically results in asymptomatic infection, with the 

oncogenic potential of MHV68 manifesting when host immune control is compromised.

Of the 79 MHV68 open reading frames (ORFs) identified in initial studies (3), 64 and 59 

have direct homologs in KSHV and EBV, respectively (Figure 1). The remaining ORFs are 

unique to MHV68, but several display functional overlap with human gammaherpesvirus 

proteins that hijack host signaling and evade immune control. Recent genome-wide 

transcript structure resolution revealed 258 transcript isoforms, including at least 55 new 

or previously unappreciated ORFs (4). MHV68 encodes numerous types of ncRNAs (see 

sidebar titled Noncoding RNAs, Figure 2). The majority of ORFs and ncRNAs have been 

queried for their requirement for virus replication in cell culture and pathogenesis in mice. 

Summaries and details of the mutant virus phenotypes are provided in Supplemental Tables 

1 and 2, respectively.

The ability to generate high titer stocks, thereby enabling synchronous infections, 

makes MHV68 ideal to mechanistically explore virus-host interactions in culture. Recent 

discoveries of MHV68 subversion of cellular processes to promote viral gene expression and 

evade host responses (5-10) have direct implications for KSHV and EBV. The added power 

of the MHV68 system lies in the ability to query the role of both virus and host factors in the 

whole animal using sophisticated genetic approaches and cutting-edge technologies. Mutant 

viruses are generated using bacterial artificial chromosome (BAC)–based recombineering; 

host factors are evaluated in knockout, bone marrow chimeric and transgenic mice; and 

complementary virus-host platforms allow precise assessment of gene functions in specific 

cell types or phases of infection. Such in vivo studies have revealed numerous MHV68 gene 

products to be multifunctional factors evolved for cell-specific and stage-specific roles in 

pathogenesis. This complexity explains why many gammaherpesvirus genes are nonessential 

in cell lines; in vivo analysis is necessary to fully characterize gene functions. Thus, this 

review primarily focuses on new insights into virus and host determinants required for 

MHV68 infection and pathogenesis, with an emphasis on those that inform the pathobiology 

of human gammaherpesviruses.
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2. PHASES OF THE MHV68 LIFE CYCLE IN VIVO

In vivo, MHV68 infection proceeds in discrete stages from the inoculation site to 

establishment of latency at numerous sites in the periphery, with return to mucosal tissues 

for transmission (Figure 3). In each stage, an array of virus gene products act in concert to 

usurp normal host biological processes and evade host immune responses.

2.1. Acute Phase of Infection

The natural route of MHV68 transmission remains unknown; however, owing to likely 

spread through respiratory and oral routes, most studies utilize intranasal (i.n.) inoculation. 

Inoculations under anesthesia result in highly reproducible infections in the lungs and 

subsequent spread to the periphery, while inoculation in the absence of anesthesia results 

in virus replication in the nasal cavity prior to spread (11). Additional studies use non-

natural inoculation routes such as intraperitoneal (i.p.) to bypass mucosal barriers, allowing 

the assessment of infection determinants at peripheral sites without the restriction of 

dissemination bottlenecks. In parallel with i.n. inoculations, such studies allow important 

insight into the stage of infection at which viral factors act.

2.1.1. Events in tissues of the host during acute infection.—At mucosal sites, 

MHV68 initially establishes a foothold in epithelial cells such as alveolar epithelial cells 

of the lungs (under anesthesia) or the olfactory epithelium of the nose (without anesthesia) 

(11). Macrophages play a cooperative role at the initial site of replication, with macrophage 

infection initiating upon internalization of virus particles presented by epithelial cells (12). 

Local infection results in productive replication in macrophage and then alveolar epithelial 

cells, with time to peak replication dependent upon inoculating dose; typical i.n. inoculations 

result in peak lung titers at 4–7 dpi, with virus largely undetectable by 10–12 dpi.

2.1.2. Viral determinants of acute infection.—Many lytic gene products essential 

for robust replication in cell culture yield potent mutation phenotypes in vivo (reviewed in 

13) (Supplemental Tables 1 and 2). For example, translational stop mutations in ORF50, 

which encodes the critical immediate early protein replication and transcription activator 

(RTA), result in replication-incompetent virus. Although infectious mutant virus can be 

grown on complementing cell lines, RTA-deficient viruses do not replicate in vivo (14). 

Similarly, ORF49 protein, a derepressor of RTA, is required for efficient lytic replication 

both in vitro and in vivo (15). Recent studies validated critical roles in the acute phase 

for lytic genes ORF35 (16), ORF48 (17), and ORF63 (18), in addition to genetic elements 

including the lytic origins of replication (oriLyt) (19).

Viral gene products essential for key facets of the acute phase, such as cell type–specific 

infectivity or immune evasion, cannot be accurately modeled in cell culture. For example, a 

virus carrying a mutation in the glycoprotein B furin cleavage site is marginally attenuated 

in fibroblasts in vitro but results in significantly reduced lytic infection in vivo due to a 

defect in alveolar macrophage infection (20). Although the viral uracil DNA deglycosylase 

(vUNG, ORF46) is not essential for replication in culture, a vUNG stop mutant is highly 

attenuated for acute replication in the lungs (21) and demonstrates a cooperative role 

with the viral dUTPase (22), supporting a model wherein uracil incorporation in viral 
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genomes hinders productive replication in the more restrictive, nondividing cells of mucosal 

tissues. Finally, each of the gammaherpesviruses encodes at least one tegument protein with 

homology to a host purine synthesis enzyme; MHV68 encodes three, ORF75A, ORF75B, 

and ORF75C, which have distinct functions revealed through in vivo studies (23). ORF75C 

is best studied as it, like KSHV ORF75, disables host promyelocytic leukemia nuclear 

bodies (PML-NB) (24), in addition to its novel role in mediating the deamidation of retinoic 

acid-inducible gene I (RIG-I) to thwart inflammatory cytokine production (25).

2.2. Trafficking to Draining Lymph Nodes and Peripheral Dissemination

Following localized replication, MHV68 spreads to local draining lymph nodes (LN) 

primarily via dendritic cell transport (26). Following passage through dendritic cells, the 

virus infects other leukocytes in the draining LN, including B cells. This process requires 

some degree of lytic replication, as viruses deficient in essential lytic genes are unable 

to surmount mucosal barriers to traffic beyond regional sites. Although not yet rigorously 

demonstrated, it is presumed that B cells in the LN are latently infected in a manner 

consistent with latency establishment at peripheral sites.

2.2.1. Events in tissues of the host during trafficking and dissemination.—
The virus seeds peripheral sites through hematogenous dissemination. Rather than direct 

release of virus particles into circulation, efficient dissemination from mucosal sites requires 

entry of infected B cells into circulation (27). The ensuing entry of circulating, latently 

infected B cells, coupled with in situ reactivation (28,29), provides the primary means by 

which distal organs are seeded with infectious virus (reviewed in 13, 30).

Peripheral infection is commonly assessed in the spleen due to its rich source of B cells and 

ease of access; however, virus is also present in LNs, peritoneal cavity, liver, thymus, and 

bone marrow (31-34). The spleen is likely among the first organs infected due to its vascular 

filtration function. Following i.n. inoculation, virus remains undetectable until 7–8 dpi (28). 

Replication in myeloid cells precedes infection of B cells (12, 28). MHV68 also appears 

to pass through marginal zone B cells and/or follicular dendritic cells prior to reaching 

the follicular B cell compartment (12, 28). Following secondary amplification in peripheral 

organs, the acute phase of infection ends with infectious virus throughout the host reduced to 

a level below the limit of detection by 14–16 dpi.

2.2.2. Viral determinants of trafficking and dissemination.—Recent studies have 

begun to elucidate the role of MHV68 genes in trafficking and dissemination. A striking 

example is the small ncRNA transfer RNA-microRNA-encoded RNA (TMER) 4. TMER4-

deficient viruses undergo normal replication in the lung and traffic to the draining LN but 

demonstrate a significant reduction in infected cells in circulation (27) and an increase in 

infected cells in the draining LN (35). Remarkably, replacement of TMER4 with the EBV 

encoded small RNA (EBER) 1 fully restores virus fitness (35), implicating a conserved 

function of TMER4 and EBER1 as mediators of infected B cell egress and highlighting 

the draining LN as a critical bottleneck for hematogenous dissemination. Additional 

multifunctional virus proteins likely promote MHV68 dissemination. Cre-mediated deletion 

of virus genes in vivo reveals that MHV68 latency-associated nuclear antigen (mLANA) and 
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M2 may facilitate GC B cell infection in draining LN, which in turn facilitates peripheral 

dissemination (36, 37).

2.3. Latency and Reactivation

Following dissemination, MHV68 establishes stable lifelong latency, a hallmark of the 

chronic phase of infection. The spleen is a major site, with up to 1 in 100 splenocytes 

harboring latent viral genome during the establishment phase (typically assessed at 16–18 

dpi). The load of latently infected cells is independent of inoculation dose with doses 

ranging from 1 × 106 to 0.1 PFU resulting in identical frequencies of latently infected cells.

2.3.1. Events in host tissues that support latency and reactivation.—The 

primary cellular compartment for MHV68 latency in secondary lymphoid tissues is B cells. 

As for EBV, naïve follicular B cells are thought to be the initial target, with the virus 

driving infected cells through GC reactions into long-lived memory B cells (reviewed in 

38) (Supplemental Figure 1). Consistent with this, during latency establishment, the virus 

genome is detectable in naïve follicular B2 B cells (sIgD+), GC B cells (GL7+/CD95+), 

and isotype-switched memory B cells (reviewed in 13, 39). Cumulative data indicate that 

MHV68-infected naïve B cells enter into the GC to undergo proliferative expansion prior 

to differentiation to class-switched memory B cells (see the sidebar titled Immunoglobulin 

Gene Repertoire). Reflecting this, the number of infected GC B cells rapidly expands from 

13 to 18 days, and 60–80% of infected B cells carry GC markers during peak latency.

Within 4 weeks, coincident with cell-mediated immune control of infection, the frequency 

of latently infected cells begins to contract, achieving a stable level of approximately 1 in 

10,000 by 6–8 weeks that is maintained for the life of the host. This maintenance phase 

of latency is defined by greatly diminished numbers of infected naïve B cells and stable 

maintenance of latency in the isotype-switched memory B cell compartment (40, 41). This 

identification of a latency setpoint is consistent with models of long-term EBV infection and 

strongly suggests that homeostatic mechanisms regulate the latency reservoir (reviewed in 

42).

Although mature B2 B cells are the predominant reservoir for latency, B1 B cells and 

macrophages in the peritoneal cavity harbor latent virus during long-term infection (32, 

43). In addition, stable infection of immature B cells in the bone marrow and transitional 

B cells in the spleen, each of which has a high turnover rate, suggests that recurrent 

infection of developing B cells contributes to homeostatic maintenance of the mature B cell 

compartment (34).

A key facet of herpesvirus latency is the ability to reactivate to the lytic cycle. MHV68 

reactivation in vivo is not readily detectable. Instead, spontaneous reactivation from ex vivo 

samples can be monitored by limiting dilution reactivation or infectious center assays. 

Approximately 10% of infected splenocytes harvested during the establishment phase 

reactivate ex vivo (31, 44). During the maintenance phase few splenocytes reactivate, 

supporting the concept that transition to a tightly latent state occurs during latency 

contraction (44). Macrophage infection may represent a distinct form of latency, as this 

reservoir demonstrates greatly enhanced frequency of reactivation as late as 6 months pi 
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(32). Like EBV and KSHV, MHV68 reactivation represents a key step in virus transmission. 

During sexual transmission between infected female and uninfected male mice, splenic 

reactivation precedes lytic replication in the vaginal epithelium (45). This transmission 

model provides a platform to examine the efficacy of antiviral interventions (46-48).

2.3.2. Viral determinants of latency and reactivation.—Multiple MHV68 genes 

affect latent infection. Many of these genes, including ORF48 (17), ORF54 (dUTPase) (49), 

ORF63 (18), and ORF64 (50), promote lytic replication or virus trafficking and thus have 

compound downstream phenotypes during chronic infection. Here we focus instead on viral 

factors that have demonstrated clear effects on latency and/or reactivation, with special focus 

on those genes that are well conserved with EBV or KSHV. For a more comprehensive 

description of MHV68 genes that promote the chronic phase of infection, see Figures 1 and 

3 and Supplemental Tables 1 and 2.

2.3.2.1. MHV68 latency-associated nuclear antigen.: All gammaherpesviruses encode 

an episomal maintenance protein that is expressed during latency and is requisite for virus 

genome segregation in dividing cells. For MHV68, this protein is a latency-associated 

nuclear antigen (mLANA; ORF73), which shares homology with KSHV LANA (kLANA) 

and Epstein-Barr nuclear antigen 1 (EBNA1). Viruses deficient in mLANA display 

dramatic defects in latency and reactivation (13, 36). Studies using a loxP-flanked ORF73 

recombinant virus enabled cell type–specific assessment of mLANA functions in B cells in 

vivo; the infection of mice expressing Cre under the activation-induced cytidine deaminase 

(AID) promoter revealed that mLANA expression in GC B cells is critical for latency 

establishment (36).

Structure and mutation studies have revealed the importance of conserved domains that 

contribute to mLANA function. The C-terminal region of mLANA carries a DNA binding 

domain reminiscent of EBNA1 (51) that interacts with the MHV68 terminal repeats to 

mediate episome persistence (52, 53). Mutation of this region significantly attenuates latency 

and reduces reactivation (51-53). mLANA also carries an E3 ligase domain essential for 

GC B cell expansion (54). Conservation between mLANA and kLANA facilitated studies 

examining precise domains of kLANA crucial for in vivo function (55-57) and revealed that 

kLANA and mLANA are functionally interchangeable for episome maintenance (58, 59).

2.3.2.2. The latency determinant M2.: M2 protein plays a crucial role in mediating 

signaling pathways of infected B cells to facilitate latency and B cell differentiation. M2 

exhibits functional overlap with EBV LMP1 and LMP2A and KSHV K1 despite its lack of 

homology. M2 acts as an adaptor to modify B cell signaling via interaction with SH2- and 

SH3-containing proteins. These interactions mediate numerous events, including activation 

of the nuclear factor of activated T cells (NFAT) pathway and interferon regulatory factor 

4 (IRF4), key steps in the induction of IL-10 (60). IL-10 is an anti-inflammatory cytokine 

that also functions in MHV68 latency to promote B cell proliferation and differentiation 

(61) and to inhibit apoptosis (62). Consistent with the high level of M2 in GC B cells (61), 

specific deletion of M2 in AID-expressing GC B cells significantly impairs latency (37). 

MHV68 M2 mutants display a deficiency in infected plasma cells and reactivation in the 

spleen (63), and M2 expression alone promotes activated B cells to differentiate to GC B 
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and plasma cells (61). M2 is not required following i.p. inoculation. Thus, the most essential 

functions of M2 may lie within GC reactions in the initial draining LNs, which seed the B 

cell reservoir to facilitate virus dissemination and reactivation at peripheral sites (37).

2.3.2.3. V-cyclin.: Subversion of cell cycle inhibitors is a strategy shared among 

gammaherpesviruses. Like KSHV, MHV68 ORF72 encodes a v-cyclin homologous to 

cellular D-type cyclins that can interact with host cyclin-dependent kinases (CDKs) to 

promote cell cycle progression. KSHV v-cyclin substitutes for MHV68 v-cyclin in vivo, 

indicating functional conservation (64). V-cyclin plays a key role in the ability of latently 

infected cells to undergo reactivation in part due to its ability to antagonize the host CDK 

inhibitor p18INK4c (65). Knocking out or attenuating p18INK4c restores the reactivation 

defect of v-cyclin knockout virus (65) and replacement of v-cyclin with host p18INK4c 

phenocopies defects of v-cyclin mutant virus in reactivation and pneumonia (66).

2.3.2.4. vBcl-2.: Each gammaherpesvirus encodes at least one homolog of the cellular 

anti-apoptotic protein Bcl-2. The MHV68 vBcl-2 protein (M11) is a functional inhibitor of 

both apoptosis and autophagy. MHV68 carrying vBcl-2 mutations functions normally during 

acute replication but displays moderate defects in latency and reactivation due to these dual 

functions (reviewed in 13). vBcl-2 may be particularly important for survival of infected 

immature B cells in the bone marrow and transitional B cells in the spleen, which normally 

display low levels of host Bcl-2 as they undergo selection (34). Notably, in vivo depletion of 

developing B cells significantly reduces mature B cell latency, suggesting that homeostatic 

maintenance of the latency reservoir is at least partially sustained through recurrent infection 

and vBcl-2-mediated survival of developing B cells (34).

2.3.3. Host determinants of latency and reactivation.—A growing list of host 

factors have been found to promote or antagonize MHV68 latency and reactivation. For 

example, the tyrosine phosphatase SHP1 attenuates B cell receptor signaling yet its loss in 

B cells leads to a decrease in MHV68 latency that coincides with a loss of germinal center 

expansion (67). In contrast, nuclear liver X receptor alpha counteracts MHV68 infection 

by altering MHV68 replication and myeloid cell tropism (68, 69). Here we summarize 

insights into major pathways and host factors that the virus requires to establish a foothold in 

long-term latency reservoirs.

2.3.3.1. Nuclear factor kappa B.: The nuclear factor kappa B (NF-κB) signaling pathway 

drives interferon (IFN) and inflammatory cytokine production, in addition to playing a role 

in the activation, proliferation, and differentiation of B cells. Targeting the canonical NF-κB 

signaling pathway dramatically reduces latency in B cells, implicating NF-κB activation as 

a central step in latent infection (reviewed in 70). Nevertheless, NF-κB signaling is likely 

downregulated during specific phases of infection, as both mLANA and MHV-68 RTA target 

NF-κB subunit RelA/p65 for degradation. Mutation of the mLANA E3L domain abrogates 

MHV68-driven GC B cell infection, implicating mLANA E3L activity in GC B cell 

proliferative expansion (54). Toll-like receptor (TLR)-induced NF-κB activation disrupts 

an established latency program to increase genome-positive cells or reactivation in vivo 
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(70). Consistent with this, RTA binding to the oriLyt is enhanced upon lipopolysaccharide 

stimulation (71).

2.3.3.2. Signal transducer and activator of transcription 3.: Mice lacking signal 

transducer and activator of transcription 3 (STAT3) in CD19+ B cells demonstrate 

dramatically reduced MHV68 latency (72). This defect remains throughout the maintenance 

phase of infection (72), which is reminiscent of the pronounced phenotype in CD40-

deficient mice (73). STAT3 is induced in response to IFNs, as well as key cytokines such 

as IL-6, IL-10, and IL-21. MHV68 activates STAT3 via M2-induced cellular IL-10 (74). 

Further, IL-21 produced by T follicular cells in MHV68-infected animals promotes GC 

expansion and MHV68 latency (75). Similarly, IL-16 is upregulated in the serum of infected 

mice and inhibits reactivation through the STAT3-p21 axis (76). Direct gene targets of 

STAT3 are not known in the context of MHV68 infection, but the interaction of STAT3 with 

the lytic transactivator RTA is enhanced by IL-6 (77).

2.3.3.3. Plasma cell factors.: Plasma cells represent a major source of reactivating virus, 

in large part because, as is the case for EBV and KSHV, transcription factors expressed 

in plasma cells are triggers for reactivation (63). Consistent with this, Blimp1 and IRF4, 

major regulators of plasma cell differentiation, are required for splenic reactivation (78,79). 

In contrast, X-box binding protein 1, a plasma cell factor that induces the expression of lytic 

transactivators of gammaherpesviruses, is surprisingly dispensable for MHV68 reactivation 

in vivo (79). Host microRNA-155 plays a B cell–intrinsic role critical for reactivation (80), 

perhaps due to roles in plasmablast proliferation and survival.

2.3.3.4. Hypoxia inducible factor 1 alpha.: Hypoxia inducible factor 1 alpha (HIF1α) 

acts as an oxygen sensor to upregulate genes that facilitate cell survival and anerobic 

metabolism in oxygen-deprived tissues. B cells transiting through GCs are exposed to 

hypoxic conditions, and KSHV lesions are notable for their presentation in lower extremities 

where low oxygen predominates. HIF1α transactivates gammaherpesvirus lytic switch 

proteins, and ex vivo reactivation of MHV68 from splenocytes is accelerated in hypoxia 

(81). In addition, conditional HIF1α deletion in vivo decreases lytic replication in the lungs 

and reactivation from the spleen (81).

2.3.3.5. Ataxia-telangiectasia mutated.: Host ataxia-telangiectasia mutated (ATM) 

protein kinase is critical for responding to double-stranded DNA breaks and has roles in 

inflammation and virus control. While MHV68 infection induces an ATM-dependent p53 

response at an early stage of lytic infection in culture, downstream p53 target genes and 

exogenous triggers of apoptosis are blocked by mLANA at later times, which protects the 

infected cells from p53-mediated cell death (9). Depletion of ATM in B cells in vivo leads 

to decreased MHV68 latency likely through impairing the differentiation of ATM-deficient 

B cells (82). Myeloid cells deficient in ATM lead to reduced reactivation of MHV68 upon 

explant through an unknown mechanism (83).
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3. IMMUNE CONTROL OF MHV68 INFECTION

MHV68 infection is an ideal platform to study immune control of gammaherpesvirus 

infections (reviewed in 13, 30, 84). Studies reveal immune factors that regulate chronic 

infection and evasive strategies used by these viruses to block immune control. This insight 

is harnessed for new vaccination approaches.

3.1. Innate Immune Control

Type I IFN cytokines dampen both acute replication and reactivation from latency; their 

potency is evident in the mortality that manifests in MHV68-infected mice lacking IFNαβ 
receptor or STAT1 (85). Type III IFN suppresses MHV68 replication in the olfactory 

epithelium (86). Host factors that sense viruses and drive IFN-mediated defense, including 

GMP-AMP synthase (cGAS), TLR7, TLR9, IRF1 (87), IRF3, and IRF7, restrict lytic 

replication in vitro and in vivo (reviewed in 88). Innate responses also regulate chronic 

infection. IRF7 restricts latency in peritoneal B cells (89), and mice lacking both TLR7 and 

TLR9 exhibit increased reactivation and viral load from splenocytes (90).

Host factors involved in IFN signaling inflammation also have proviral roles. B cell–specific 

depletion of IRF1 decreases virus colonization of the spleen that coincides with reduced 

GC responses and virus-specific antibodies (91). IFN-induced transmembrane protein 1 

promotes acute replication of MHV68 in the lungs, consistent with proviral roles uncovered 

for EBV and KSHV in virus entry (92). Mice lacking the IL-1R exhibit defects in levels of 

MHV68 latency, in addition to a decreased GC response and polyclonal antibody response 

(93).

Cells of the innate immune system coordinate with the adaptive immune system to control 

acute replication and limit virus reactivation from latency. Conventional dendritic cells 

prime Th responses in the draining LN after intranasal infection (94), while macrophages 

contribute to the inflammatory response that recruits immune cells and has direct effect on 

infected cells via IFNγ and tumor necrosis factor-α. Inflammatory responses may hinder 

IFN responses: Reactive oxygen species oxidize stimulator of interferon genes (STING) to 

block its polymerization and downstream IFN induction, leading to enhanced lytic MHV68 

replication in macrophages (95).

MHV68 encodes numerous modulators of IFN responses including tegument protein 

ORF11, protein kinase ORF36, ORF54, and the M2 latency protein. In addition, the ORF64 

tegument protein stabilizes incoming capsids and impairs cGAS-STING sensing of virion 

DNA. Loss of ORF64 deubiquitinase activity leads to an increase in IL-1β and type I IFN 

production, and this mutant has a latency defect that is restored in STING−/− mice (50). 

Investigations in mice lacking inflammasome components Caspase1 and Caspase11 (96) and 

the cytidine deaminase apolipoprotein B editing complex 3 (APOBEC3) (97, 98) did not 

reveal antiviral roles against wild-type MHV68; their roles may not be apparent if viral 

modulators counteract their restrictive action.
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3.2. Cell-Mediated Immune Control

CD4 T cells play an essential role in regulating long-term gammaherpesvirus infections 

(reviewed in 13, 30), as indicated by the high incidence of gammaherpesvirus malignancies 

in human acquired immunodeficiency syndrome patients with CD4 T cell loss. MHV68 

infection of mice lacking CD4 T cells leads to uncontrolled MHV68 reactivation in mice 

and eventual death. CD4 T cells directly regulate MHV68 infection through release of 

IFNγ, direct cytotoxic functions (99), and suppression of myeloid cell infection (100) 

(Supplemental Figure 2). In addition, CD4 T cells play a critical role in regulating long-term 

infection by providing CD8 T cell help, in part via CD40L activation of antigen-presenting 

cells (84). CD4 T cells also promote generation of virus-specific antibodies and natural killer 

cell infiltration to control virus replication in the lungs (101). During acute lung infection, 

CD4 T cells serve as a major source of immunosuppressive IL-10, leading to reduced 

infiltration of myeloid cells and activated CD4 T cells (102). IL-21 is produced by CD4 T 

follicular helper cells that drive GC reactions. IL-21R on the infected B cells is critical for 

latency amplification in the spleen (75).

CD8 T cells primarily exert control through direct targeting of latently infected cells 

(reviewed in 13, 30). Although CD8 T cells participate in the acute phase to restrict 

infection, lytic replication is fully controlled even in their absence. CD8 T cell effector 

mechanisms, including perforin, granzyme, and FasL, regulate the number of infected cells 

during acute infection and latency (Supplemental Figure 2). IFNγ produced by CD4 and 

CD8 T cells (as well as myeloid cells) is essential for regulating reactivation through 

IFNγ/STAT1-responsive elements in the RTA promoter (reviewed in 13). Notably, loss of 

autophagy genes in the myeloid compartment heightens inflammation and IFNγ production, 

and it suppresses MHV68 reactivation (103).

CD8 T cells respond to multiple MHV68 epitopes, including at least two waves of responses 

to lytic protein epitopes and a response to the M2 latency protein (104). CD8 T cells 

control lymphoma cells expressing viral epitopes in MHV68-infected mice (105, 106). 

Antiviral CD8 T cells do not display functional exhaustion in immunocompetent mice (84). 

Interestingly though, PD-1 is upregulated on antiviral CD8 T cells in mice that lack CD4 

T cells, leading to an altered hierarchy wherein CD8 T cells that respond to subdominant 

epitopes provide compensatory control (107). While inhibitory markers of exhaustion are 

upregulated on CD8 T cells in the absence of CD4 T cells, their expression on CD8 T cells 

during acute infection in normal mice suggests more studies are required to differentiate 

activation from exhaustion (84).

B cells and antibody contribute to control of MHV68 infection: B cell–deficient mice 

demonstrate increased reactivation from non-B cell reservoirs of latency as well as ongoing 

persistent virus replication (44). Conversely, transfer of antiviral antibody decreases the 

number of latently infected cells and inhibits reactivation (reviewed in 13, 30). Virus-specific 

antibodies block secondary infection of the olfactory epithelium; neutralizing antibodies 

are not sufficient to block infection or control virus reactivation from the vaginal mucosa, 

indicating site-specific functions (108). MHV68 colonization of the spleen drives polyclonal 

B cell activation and a transient burst of self-reactive antibodies (109) that together 

impede the antiviral antibody response. B cells isolated from MHV68-infected mice are 
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suppressed for antibody responses, in part due to virus-mediated upregulation of PTEN, 

which suppresses BCR-mediated activation of the PI3K pathway (110).

MHV68 is used in genetically modified mice to model infection and host responses that 

closely mimic aspects of human immune deficiencies and immune therapies (13, 111, 

112). For example, humans with an autosomal dominant mutant form of human STAT1 

(R274W) have heightened susceptibility to herpesvirus infections, and MHV68 infection 

of mice heterozygous for STAT1 R274W recapitulates this phenotype. CD4 and CD8 T 

cell responses are impaired in these animals, yet virus is controlled in mixed bone marrow 

chimeric mice when wild-type leukocytes are present. Thus, defective antigen-specific CD8 

T cell responses likely contribute to the R274W immunodeficiency observed in humans 

(113).

3.3. Vaccines to Control Gammaherpesvirus Infection and Disease

The murine system enables investigators to capitalize on the knowledge of MHV68 genes, 

most with direct counterparts to KSHV and EBV, to test rational preventive or therapeutic 

vaccine designs that provide sterilizing immunity or control replication and reactivation, 

respectively. Reactivation-defective viruses protect against wild-type virus challenge (114) 

more effectively than vaccine strategies geared toward specific glycoproteins or latent 

epitopes (reviewed in 30). Recent studies refined this approach to generate live-attenuated 

vaccines defective for viral latency. In one case, an MHV68 recombinant lacking ORF73 

and genes of the MHV68 unique latency locus was generated (115). In another, a complex 

recombinant was constructed carrying stop insertions in genes with dual roles in lytic 

replication and immune evasion (ORF10, ORF36, ORF54, mK3), along with replacement 

of the MHV68 conserved latency locus (ORF72, M11, ORF73, ORF74) with a constitutive 

RTA expression construct (116). Both designs provide protection from wild-type virus 

challenge through induction of synergistic CD4 T cell, CD8 T cell, and antibody responses 

(115, 116). Rational design of attenuated MHV68 viruses shows promise in generating 

full-spectrum protective immune responses against gammaherpesvirus infections.

4. PATHOGENESIS

4.1. Oncogenesis Models

As for EBV and KSHV, inoculation of fully immunocompetent hosts with MHV68 typically 

results in asymptomatic infection. For example, although EBV infects greater than 90% of 

the human population, only a small frequency of those infected develop EBV-associated 

malignancies. However, as evidenced by the vastly increased prevalence of EBV- and 

KSHV-associated tumors in human immunodeficiency virus (HIV)–infected individuals and 

transplant recipients, disruption of key host immune factors leads to a variety of deleterious 

outcomes that favor the virus (Figure 4). Likewise, while B cell lymphomas arise at a 

penetrance of 9% in wild-type mice inoculated with MHV68 over 3 years, the frequency 

of lymphoma in wild-type mice treated with immunosuppressive agents is markedly higher 

(117). Consistent with the role of CD8 T cells in regulating EBV tumors, infection of 

CD8 T cell–deficient (β2 microglobulin−/−, β2m−/−) BALB/c mice reproducibly results in 

B cell lymphoproliferative disease or B cell lymphoma with a cumulative penetrance above 
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80% by 12–14 months (118). Early-stage lymphoproliferative lesions are polyclonal, while 

late-stage lymphomas appear monoclonal and display features reminiscent of large B cell 

lymphomas (118). Interestingly, MHV68 infection of IFNγ receptor–deficient (IFNγR−/−) 

mice results in pulmonary B cell lymphoma (119).

A powerful aspect of MHV68 tumor models is the ability to examine the contribution 

of virus genes to tumorigenesis. For example, MHV68 v-cyclin and vBcl-2 contribute to 

enhanced disease in β2m−/− BALB/c mice, consistent with their roles as negative regulators 

of virus reactivation (120). In keeping with the function of the KSHV viral G protein–

coupled receptor (vGPCR) as a more potent activator of downstream signaling than the 

MHV68 vGPCR, immunosuppressed mice inoculated with recombinant MHV68 carrying 

KSHV vGPCR in place of MHV68 vGPCR develop angiogenic lesions that resemble 

Kaposi sarcoma (121). MHV68 infection drives immortalization of primary murine fetal 

liver B cells, and mLANA and v-cyclin both contribute to this process (122). Notably, 

transplant of MHV68 immortalized cells to athymic nude or Rag2-deficient mice results in 

metastatic lymphomas that resemble KSHV B cell lymphomas (122).

4.2. Other Disease Models

In contrast to the asymptomatic infection observed in immunocompetent mice, infection of 

mice lacking immune factors drives pathologies that lead to morbidities that recapitulate 

aspects of human disease (reviewed in 111) (Supplemental Figure 2). Rapid death is 

observed upon infection of mice that lack type I IFN receptors or IFN-responsive STAT1 

due to uncontrolled virus replication (85). A slower progression to death occurs in CD4 

T cell–deficient mice that are unable to control persistent infection (123). The loss of 

chronic virus control in MHV68-infected mice lacking IFNγ signaling leads to an array of 

pathologies, dependent on background genetics. IFNγ−/− mice on a BALB/c background 

develop lethal pneumonia when infected with wild-type MHV68 but not mutants lacking 

v-cyclin, vBcl-2 (124), or the TMER-derived microRNAs (125). IFNγR deficiency on the 

C57BL/6J background leads to multiorgan fibrosis (126), lymphoproliferation and frank 

lymphoma (119), and gastrointestinal dilatation (127). IFNγR deficiency on the 129Sv/Ev 

background induces large vessel vasculitis (128). Fibrosis of the lungs is also modeled by 

MHV68 infection following bleomycin instillation of BALB/c mice or MHV68 infection 

of aged C57BL/6J mice (reviewed in 129). Examination of viral mutants and host factors 

has revealed key virus-host interactions that promote fibrosis, vasculitis, pneumonia, and 

arthritis (111, 130, 131). Interestingly, the gut microbiome differentially influences MHV68-

driven pathologies (132, 133). Such models serve as a foundation to explore therapeutics 

that impair virus-driven inflammatory processes in the specific tissues that relate to human 

disease (127, 132).

4.3. Coinfection Models

Single pathogen infections fall short of modeling the complexity of the host biome. The 

outcome of coinfection of MHV68 with other pathogens varies with the stage and order 

of infection (reviewed in 134) (Supplemental Figure 3). Latent MHV68 infection induces 

an inflammatory milieu that is protective against numerous bacterial pathogens (135, 136) 

and virus infections (13, 137). In many cases, this protection is mediated by elevated IFNγ 
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or other immune factors induced by chronic MHV68 infection. However, infection with 

MHV68 followed by influenza and helminth challenge reduces vaccine-induced antibody 

responses (138).

KSHV and EBV cancers are leading causes of mortality where malaria coinfection rates 

are high. Notably, the nonlethal mouse malarial pathogen Plasmodium yoelii XNL leads to 

100% lethality in mice undergoing acute MHV68 infection (139). Dually infected animals 

are suppressed for GC and T follicular helper responses that correlate with a reduction in 

parasite-specific antibodies, an effect that is dependent upon MHV68 latency protein M2 

(139).

Coinfecting pathogens may likewise alter the course of MHV68 infection. Helminth 

infection after established MHV68 infection induces IL-4 that promotes MHV68 

reactivation (140). In contrast, helminth infection prior to MHV68 infection decreases acute 

virus replication due to enhanced antiviral CD8 T cell responses (141). Multi-infection 

approaches reveal host mechanisms that modulate herpesvirus latency (134) and imply that 

vaccine efficacy might be more rigorously tested during coinfections (138).

5. CONCLUDING REMARKS

MHV68 infection of mice offers a robust and highly tractable system to examine all 

aspects of in vivo gammaherpesvirus infections, ranging from the complex molecular 

details of virus-driven B cell differentiation to the multifaceted interplay between virus 

and host factors during chronic infection. As evidenced by new findings demonstrating 

conservation of gene function and pathogenic strategies, it is clear that lymphotropic 

gammaherpesviruses endemic to rodent populations have much to teach us regarding 

KSHV and EBV pathogenesis. Future research using the MHV68 system will continue 

to provide a deeper understanding of the specific virus and host mechanisms that govern 

in vivo gammaherpesvirus infections and disease. MHV68 serves as a powerful model for 

preclinical tests of experimental antivirals, lytic induction strategies, immunotherapies, and 

vaccines.
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Refer to Web version on PubMed Central for supplementary material.
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MHV68:

murine gammaherpesvirus 68, common isolate, referred to as γHV68 or MuHV-4; 

formally annotated as murid gammaherpesvirus 4, MuGHV-4
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Latency:

state of infection where viral genome is maintained as an episome with minimal viral 

gene expression and no infectious particle production
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Pathogenesis:

strictly defined as the process by which the virus drives pathology; loosely applied as the 

process of host colonization
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Acute phase of infection:

typically defined as 1- to 12-day period of active replication after inoculation of mucosal 

site
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TMER:

MHV68 genes that encode a transfer RNA-like molecule fused to one or more microRNA 

stem loops, transcribed by RNA polymerase III
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Chronic phase of infection:

loosely applied to describe a period wherein latency is established, although reactivation 

may occur concomitantly
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Limiting dilution assay:

sensitive, PCR-based assay to enumerate frequency of intact cells that harbor viral 

genome
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Reactivation:

switch from latent to productive infection; may occur spontaneously in host or upon 

explant; may be induced
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Infectious center assay:

plaque-based assay that enumerates frequency of infectious particles derived from 

tissues, measures preformed, and reactivated virus
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NONCODING RNAS

Murine gammaherpesvirus 68 (MHV68) encodes a wide breadth of noncoding RNAs 

(ncRNAs), ranging from 10-kb long ncRNAs (lncRNAs) to 21-nt microRNAs (miRNAs) 

(Figure 2). As evidenced by the conserved activity of MHV68 transfer RNA-miRNA-

encoded RNA (TMER) 4 and Epstein-Barr virus (EBV) encoded small RNA (EBER) 1, 

many of these molecules likely exhibit functional overlap with EBV and Kaposi sarcoma 

herpesvirus (KSHV) ncRNAs. Consistent with this, of 1,505 identified host messenger 

RNA targets of MHV68 miRNAs, 86% are shared with EBV and/or KSHV (142). And 

a circular RNA (circRNA) identified in MHV68 exhibits features of EBV and KSHV 

circRNAs (143). Recent studies have begun to elucidate in vivo functions of MHV68 

ncRNAs: MHV68 miRNAs contribute to establishment of memory B cell latency (125) 

and may alter long-term latency (144). The miRNA mghv-miR-7–5p suppresses host 

Ewing sarcoma breakpoint region 1 in vivo to promote germinal center B cell latency 

(145). TMER molecules, including a processed viral tRNA element itself, contribute to 

pneumonia pathogenesis (27, 125, 146). To add to the complexity, miRNA regulation 

of a viral lncRNA regulates the acute phase of infection (147). Future research will 

undoubtedly continue to unveil surprising functions for ncRNAs in gammaherpesvirus 

pathobiology.
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IMMUNOGLOBULIN GENE REPERTOIRE

High-throughput sequencing of the immunoglobulin genes indicates that infected B cells 

participate in the germinal center (GC), with evidence of somatic hypermutation and 

isotype class switching (38, 148, 149). There is a striking occurrence of clonal expansion 

and recurrence of Ighv10-1 usage in infected GC B cells, with little clonal overlap of V 

genes in uninfected B cells of the same animal at the peak of splenic latency. Infected 

B cells have a skew toward lambda light chain usage, as reported for tonsillar B cells 

newly infected with Kaposi sarcoma herpesvirus (150). The origin of plasmablasts and 

the link between GC reactions and long-term latency in memory B cells are unknown. 

The potential for the selection and expansion of virus nonreactive and autoreactive 

pathological B cells is an important issue for the field (reviewed in 38).

Wang et al. Page 33

Annu Rev Virol. Author manuscript; available in PMC 2022 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SUMMARY POINTS

1. Gammaherpesvirus infection in the host is dynamic and complex, involving 

trafficking between mucosal sites and peripheral lymphoid tissues. Multiple 

rounds of lytic replication, latency, and reactivation transpire in cells of the 

hematopoietic and stromal compartments before latency is established in the 

memory B cell compartment.

2. Engagement of the germinal center (GC) is a key aspect of establishing 

latency, but the role of GC-experienced infected B cells in the long-term 

maintenance of latency is less understood.

3. Viral noncoding RNAs are a diverse family of molecules that directly 

participate in conserved aspects of gammaherpesvirus biology.

4. Host factors that control proliferation, cell survival, and differentiation of 

B cells can be targeted to reduce viral load and prevent gammaherpesvirus 

disease.

5. During coinfection, gammaherpesviruses and other pathogens influence the 

pathobiology of one another by altering effector functions of immune cells 

and by regulating viral gene expression via changes in the cytokine milieu.
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FUTURE ISSUES

1. The discovery of alternate transcript structures has uncovered 

an unprecedented layer of coding and regulatory potential in 

gammaherpesviruses that will be leveraged to mechanistically link 

extracellular signaling cues to controls of latency and reactivation.

2. Technological advancements including mass cytometry and single-cell 

sequencing will provide higher resolution of gammaherpesvirus latency 

reservoirs, better define the lineage of effector cell subsets, and define how 

the virus reprograms the cell to support latency.

3. Powerful genetic approaches including conditional cell-specific 

recombination and CRISPR strategies will inform the spatial and temporal 

roles of virus and host genes.

4. The generation of chimeric viruses wherein an Epstein-Barr virus or 

Kaposi sarcoma herpesvirus gene replaces the murine gammaherpesvirus 

68 (MHV68) homolog will continue to inform studies of the human 

gammaherpesvirus counterparts.

5. The study of individual virus genes will advance the development of refined 

vaccine platforms that provide protection through induction of broad humoral 

and cell-mediated immunity.

6. Deeper study using MHV68-induced tumor models will reveal critical 

determinants of gammaherpesvirus oncogenesis.
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Figure 1. 
Functional annotation of MHV68 genes and genomic alignment with KSHV and EBV. 

Diagrams are based on annotations and coordinates in GenBank: U97553.2 (MHV68 strain 

WUMS), U75698 (human herpesvirus 8 BC-1), and NC_007605 (EBV strain B95-8). 

Terminal repeats and internal repeats are indicated by gray boxes. Open reading frames 

considered likely to encode expressed proteins are indicated by triangles that are oriented 

to show their direction of transcription. Interspersed between core conserved genes are 

shaded blocks for genes that are unique to each virus (designated M genes for MHV68) or 

found only in the rhadinovirus (represented by MHV68 and KSHV) or gammaherpesviruses 

(MHV68, KSHV, and EBV). Colors indicate the broad role of genes in vivo/mice based 

on phenotypes of viruses with specific mutations in those genes. Detailed descriptions of 

putative gene functions and mutant phenotypes are available in Supplemental Tables 1 and 

2. Abbreviations: EBER, EBV encoded small RNA; EBV, Epstein-Barr virus; kLANA, 

KSHV latency-associated nuclear antigen; KSHV, Kaposi sarcoma herpesvirus; MHV68, 

murine gammaherpesvirus 68; mLANA, MHV68 latency-associated nuclear antigen; RTA, 

replication and transcription activator; TMER, transfer RNA-microRNA-encoded RNA; 

vCyc, v-cyclin; vGPCR, viral G protein–coupled receptor. Figure adapted with permission 

from Reference 151.
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Figure 2. 
Overview of MHV68 ncRNA types (see sidebar titled Noncoding RNAs). (a) MHV68 

encodes eight TMER molecules that are expressed as full-length RNAs or intermediate 

RNAs and are processed to transfer RNA-like molecules (vtRNAs) and microRNAs. The 

image depicts specific TMER products with published in vivo phenotypes. (b) MHV68 

encodes at least one circRNA. circRNA is generated by a backsplice, a noncanonical 

splicing event wherein a downstream donor is spliced to an upstream acceptor. The image 

depicts the location and orientation of genomic sequences within the circM11-ORF69 RNA. 

The backsplice is generated from a site within vBcl-2 to just upstream of ORF69. (c) 

MHV68 encodes at least 25 lncRNAs. The image depicts the location and orientation 

of transcript M3-04, which directly overlaps the M3 and M2 ORFs. Abbreviations: circ, 

circular; lncRNA, long noncoding RNA; MHV68, murine gammaherpesvirus 68; ncRNA, 

noncoding RNA; ORF, open reading frame; TMER, transfer RNA-microRNA-encoded 

RNA; vtRNA, viral tRNA. Figure adapted from images created with BioRender.com.
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Figure 3. 
Overview of the MHV68 course of infection. ① Airway inoculation of mice with MHV68 

leads to a 4- to 12-day course of acute replication in the lung (with anesthesia) or 

in the nose (without anesthesia). ② MHV68 traffics via myeloid cells to the draining 

lymph nodes, either to the mediastinal nodes subsequent to replication in the lungs or 

to the superficial cervical nodes following replication in the nasal cavity, prior to ③ 
engagement of B cells for dissemination to peripheral lymphoid tissues. ④ By 16 days 

post infection, the virus has initiated the establishment of latency in B cells of the spleen 

and other lymphoid tissues, where it participates in the germinal center and maintains 

long-term infection primarily in memory B cells during the chronic phase of infection. 

Macrophage and B cells of the peritoneal cavity are also reservoirs of latency and 

reactivation. Reactivation cues lead to dissemination to mucosal surfaces for transmission 

to naïve animals. Viral factors that promote acute replication and dissemination in vivo are 

located in the left panel. Viral and host factors that promote latency and/or replication in 

vivo are located in the right panels. A summary of viral mutant phenotypes is provided 

in Supplemental Table 1, and detailed route-dependent and organ-specific phenotypes are 

provided in Supplemental Table 2. Abbreviations: ATG4, autophagy-regulating protease; 

ATM, ataxia-telangiectasia mutated; BAFFR, B cell activating factor receptor; Dnmt, DNA 

methyltransferase; H2AX, histone 2A family member X; HDAC, histone deacetylase; HIF, 

hypoxia-inducible factor; HOIL, hemoxidized iron-regulatory protein 2 ubiquitin ligase-1; 

IFN, interferon; IRF, interferon regulatory factor; LXR, liver X receptor; MHV68, murine 

gammaherpesvirus 68; miRNA, microRNA; mLANA, MHV68 latency-associated nuclear 

antigen; MyD88, myeloid differentiation factor 88; NF-κB, nuclear factor kappa B; ORF, 

open reading frame; RTA, replication and transcription activator; SHP1, Src homology 

region 2 domain-containing phosphatase-1; STAT3, signal transducer and activator of 

transcription 3; TLR, Toll-like receptor; TMER, transfer RNA-microRNA-encoded RNA; 

vGPCR, viral G protein–coupled receptor; vtRNA, viral tRNA. Figure adapted from images 

created with BioRender.com.
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Figure 4. 
MHV68 infection of immune-compromised mice leading to disease and mortality. (a) 

Lymphoproliferative disease precedes the development of lymphomas in β2m−/− mice 

that are largely deficient in CD8+ T cells. MHV68 v-cyclin and vBcl-2 promote disease 

(118, 120). (b) MHC II−/− mice that are CD4+ T cell deficient succumb within 4 

months of infection (123). (c) Infection of IFNαβR−/− or STAT1−/− mice defective in 

type I IFN signaling leads to a rapid onset of mortality (85). (d) Infected BALB/c mice 

that fail to produce IFNγ develop lethal pneumonia by 15 dpi in a v-cyclin-dependent 

manner (124). (e) The infection of IFNγR−/− mice on a 129/SvEv background leads 

to a slower progression of large vessel vasculitis that leads to mortality over a 2- to 

14-week period (128). (f) The infection of IFNγR−/− mice on a C57BL/6J background 

leads to a range of pathologies including GI dilatation (127), fibrosis (126), and lymphoma 

(119). Abbreviations: GI, gastrointestinal; IFN, interferon; MHC II, major histocompatibility 

complex class II; MHV68, murine gammaherpesvirus 68; STAT1, signal transducer and 

activator of transcription 1. Figure adapted from images created with BioRender.com.
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