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Abstract

With the advent of twenty-first century, we are in cruel grip of a pandemic caused by severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2), the associated illness being called as COVID-19. Since its outbreak in December 2019 in
Wuhan, China, there are no medicines to cure the disease till date. Based on their experience, scientists say that developing a
coronavirus vaccine could take at least a year. There are many steps in place before the vaccine comes for the distribution like its
safety and cost-effectiveness, especially for the developing countries. In this scenario, the only way to prevent the disease is by
following certain safety guidelines and to boost up the body’s immune system. Zinc, a crucial trace element involved in several
biological and metabolic processes, has been found to play a pivotal role in promoting and appropriately regulating the host
defense mechanisms against viral infections. Zinc is naturally present in some foods, fortified in others and also available as
dietary supplement. The current RDA (Recommended Daily Allowance) of zinc is 12 and 10 mg for males and females
respectively. Zinc is the second most common trace mineral after iron in the cell. It is present in all organs and tissues in the
body as it forms catalytic component of all 6 classes of enzymes encompassing almost 2000 enzymes in the body. Zinc is
biologically essential for cellular processes, including growth and development, as well as DNA synthesis and RNA transcrip-
tion. Zinc deficiency results in a number of metabolic changes besides a compromised immune system. In this review, the role of
zinc in regulating the host defense and viral replication is being discussed with the main focus on COVID-19.
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Introduction designates it as SARS-CoV-2 [3]. The electron microscopic

image of coronaviruses resembles that of a crown and hence

According to World Health Organisation (WHO),
coronaviruses are a large family of viruses (Fig. 1) [1, 2]. In
humans, coronaviruses cause respiratory infections ranging
from the common cold to more severe diseases such as
Middle East respiratory syndrome (MERS) and severe acute
respiratory syndrome (SARS). The most recently discovered
coronavirus causes coronavirus disease named as COVID-19.
The Coronaviridae Study Group (CSG) of the International
Committee on Taxonomy of Viruses (ICTV) has found the
virus responsible for this disease to be a prototype of human
and bat SARS coronaviruses (SARS-CoVs) of the species
severe acute respiratory syndrome-related coronavirus, and
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the viruses are prefixed with the term “Corona” [3]. Corona
means crown in Latin language.

SARS-CoV-2 mainly infects cells of the alveoli, the
smallest passageway in the respiratory system. Walls/linings
of alveoli are made up of single layer of two types of cells
(type I and II pneumocytes). Type I pneumocytes are squa-
mous epithelial cells and make 95% of the surface area of each
alveolus. They are responsible for the exchange of oxygen and
carbon dioxide. Type II pneumocytes are cuboidal shape and
are responsible for repairing damage to the alveolar lining and
also secrete surfactant. This surfactant coats the inner surface
of the alveolus and helps reduce surface tension. The surfac-
tant maintains the shape of each alveolus during breathing
process. There are also many alveolar macrophages in the
alveoli. These are mononuclear immune cells that phagocytize
inhaled debris including dead cells and bacteria. Besides, they
also help in presenting antigen to the adaptive immune cells.
In cases of SARS-CoV-2 infection, alveoli get inflamed pri-
marily; the condition is also referred to as pneumonia and is
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Fig. 1 Taxonomic classification
of coronavirus

associated with high mortality rate [4, 5]. Characteristic symp-
toms include fever, chest pain, dry cough and difficulty in
breathing. For the last six months across the world, several
measures like complete to partial lockdowns have been taken
by the governments and Head of States to contain the spread
of disease but now considering the socio-economic condi-
tions, the unlock process has been started. With the continu-
ous surge in the number of COVID-19 cases the individuals,
especially young people with no comorbidities are exposed to
herd immunity. Immunity is a broad and complex term in
itself but it is a fact that when pathogenic organisms like virus
attack human body, we turn to our immune system to fight
such an array of threats. The timeline of the production and
distribution of vaccine seems long; it is better to make our
immune system strong because if the immune system func-
tions optimally, the other systems can concentrate on their
respective functions. It has been reported that in case of dys-
functional immune system, even the metabolic functions are
disturbed. The intestinal epithelium starts performing some of
the missing immune functions like secretion of IgA
(immunoglobin A) at the expense of its own metabolic activity
[6]. The micronutrient zinc (Zn) is important for safeguarding
immune cells of both the innate and adaptive immunity. An
imbalance in Zn homeostasis causes impaired immune func-
tion, leading to compromised host defense and an increased
risk of contracting diseases. This review will focus on the
potential role of Zn in boosting immunity and also its role in
fighting against COVID-19 pandemic.

Role of Zinc in Body’s Physiological Functions

In 1869, Raulin for the first time recognized the role of Zn in
biological systems. Raulin was a student of Louis Pasteur who
worked on Aspergillus niger, a fungus that caused black mold
in some agricultural crops. He reported that Zn was required
for the growth of the fungus [7]. However, the significance of
Zn remained questionable until 1961 when a study was pub-
lished which described that Zn deficiency may have caused
growth retardation and hypogonadism in Iranian males [8].
Since then myriad research was conducted that proved bene-
ficial therapeutic response of Zn supplementation in diarrhea
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of children, chronic hepatitis C, shigellosis, leprosy, tubercu-
losis, pneumonia, acute lower respiratory tract infection, com-
mon cold, and leishmaniasis [9]. The primary source of Zn is a
diet rich in fish, eggs, shellfish (especially oysters), and red
meat for non-vegetarians [10] and grains, peanuts, fruits, dairy
products, and green leafy vegetables for vegetarians [11].

Zn is the second most common trace mineral after iron in
the cells. It is present in all body tissues and fluids (total body
Zn content is approximately 2 g). Figure 2 summarizes the
tissue distribution of Zn in the body. Approximately 60% Zn
is stored in skeletal muscle, 30% in bone and 5% in liver and
skin and the remainder distributed in other tissues that include
the brain, kidneys, pancreas and heart [12]. Only about 0.1%
of this metal ion circulates in plasma and plays a major role of
maintaining homeostasis in the body [13, 14]. Excess zinc is
primarily released through gastrointestinal secretion and en-
dogenous excretion, with minor loss through urinary
excretion.

Zinc Transporters and Functions of Zinc

In mammalian cells, intracellular Zn exists in two forms:

Fig. 2 Distribution of zinc in human body



Trace Element Zinc, a Nature's Gift to Fight Unprecedented Global Pandemic COVID-19 3215

Fig. 3 Functions of zinc in
human body
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Unbound form as free Zn>* ions are present at very low
concentrations which functions in cell control and cell-
to-cell communication [15]. Therefore, strict regulation
of the intracellular level of Zn is required for the main-
tenance of physiological conditions. Both intracellular
and compartmental Zn homeostasis is tightly controlled
by the ZnT and ZIP families of transporter proteins. Zn
transporter proteins or simply Zn transporters, are mem-
brane transport proteins of the solute carrier family
which control the membrane transport of Zn and regulate
its intracellular and cytoplasmic concentrations. They
include two major groups: (1) the Zn transporter (ZnT)
or solute carrier 30 (SLC30) families, which control the
efflux of Zn from the cytoplasm out of the cell and from
the cytoplasm into vesicles. The family consists 10 sub-
types (ZnT1-10) and (2) the Zn importer, Zrt- and Irt-like
protein (ZIP), or solute carrier 39A (SLC39A) family,
which controls the influx of zinc into the cytoplasm from
outside the cell and from vesicles. The family consists of
14 subtypes (ZIP1-14) [16]. These crucial transporters
are responsible for stabilizing intracellular Zn within
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cells. These transporters are either tissue specific or uni-
versally expressed in tissues depending on transporter
subtype. Deregulation or malfunction of these trans-
porters lead to various diseases. Zn is a structural con-
stituent of about 750 Zn-finger transcription factors [17]
enabling gene transcription, and is a catalytic component
of all 6 classes of enzymes (hydrolase, transferase,
oxido-reductase, ligase, lyase, and isomerase) [18] that
encompasses almost 2000 enzymes. Hence, Zn is biolog-
ically essential for cellular processes, including growth
and development, as well as DNA synthesis and RNA
transcription [19]. Globally, Zn deficiency is estimated
to range from ~ 17 to 20% [20, 21] with the vast majority
occurring in developing countries of Africa and Asia. In
high-income nations, Zn deficiency occurs mostly in the
elderly, vegetarians, and in the individuals with chronic
disease such as liver cirrhosis [22] or inflammatory bow-
el disease [23]. Notably, Zn deficiency results in a com-
promised immune system, as evidenced by thymic atro-
phy, lymphopenia, and defective lymphocyte responses
in animal studies [24].

The symptoms of a moderate deficiency of Zn include
growth retardation, male hypogonadism in adolescents, rough
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Table 1 Structure of Zn-ionophores
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skin, poor appetite, mental lethargy, delayed wound healing,
cell-mediated immune dysfunctions, and abnormal neurosen-
sory changes [25]. Figure 3 summarizes major functions of Zn
in human body.

Today when the world is under severe impact of COVID-
19 pandemic, Zn is of particular interest. It has direct antiviral
effect as well as immunomodulatory effect [26]. Reports show
impaired Zn levels in cases of diabetes, obesity, and cardio-
vascular diseases [27] (Olechnowicz J, 2018); and also in
aging [28]. Decade earlier Zn was also found to prevent
HINTI influenza (swine flu) [29]. This time also there are
many conjectures that Zn compounds may be used as an ad-
junct therapy to increase antiviral resistance in COVID-19
cases [26, 30, 31].

Zinc in Antiviral Inmunity: Role
of Zn-lonophores
The word “ionophore” means “ion carrier.” lonophores are

the compounds that form complexes with specific ions and
facilitate their transport across cell membranes. An
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ionophore typically has a hydrophilic pocket (or hole) that
forms a reversible binding site specific for a particular ion.
The exterior surface of an ionophore is hydrophobic,
allowing the complexed ion in its pocket to cross the hydro-
phobic membrane [32]. Table 1 gives structure of some im-
portant Zn-ionophores. Zn-ionophores like pyrithione (PT)
have been known to inhibit replications in various RNA vi-
ruses, e.g., picornaviruses [33]. PT inhibits SARS coronavi-
rus RNA polymerase (RNA-dependent RNA polymerase,
RdRp) activity by decreasing its replication (Fig. 4) [34].
This suggest that step/s of virus replication is/are affected
by intracellular Zn** levels (Fig. 5). A combination of Zn**
and Zn-ionophore effectively inhibits nidovirus replication
in cell culture [34]. Zn is also a second messenger for im-
mune cells, and its intracellular status is directly altered by an
extracellular stimulus and then intracellular Zn participates
in signaling events [35]. Zn ions are involved in many dif-
ferent cellular processes and have been proven crucial for the
proper folding and activity of various cellular enzymes and
transcription factors. The phagocytosis, intracellular killing,
and cytokine production are some of the processes which get
affected in the state of Zn deficiency [11].
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Fig. 4 Demonstration of positive
impact of zinc influx in the cell
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Another Zn-ionophore is chloroquine (CQ) which is 4-
aminoquinoline, an antimalarial drug (Table 1) [36, 37].
Earlier findings demonstrated that CQ increased Zn** flux
into the cell that is responsible for anticancer activity of the
compound [38]. Based on these observations it is hypothe-
sized that increasing intracellular Zn** concentration by chlo-
roquine may also mediate its antiviral effect against SARS-
CoV-2, for which trials were conducted and found to be ef-
fective (Fig. 4). CQ can transport ion ligands from extra cel-
lular matrix into the cell in large amounts [39, 40]. CQ and its
derivative hydroxychloroquine (HCQ) act as weak bases that
can target key cellular signal transduction organelles such as
lysosomes and Golgi [41, 42]. An increase in concentration of
CQ in these organelles will catalyze significant disruption of
downstream signaling processes via increase in the endosomal

Fig.5 Working of Zn-ionophores: (1) cell membrane; (2) cell cytoplasm;
(3) Zn-ionophores (green) are extracellular; (4) cell membrane’s importer
molecules (blue) aid zinc to penetrate into the cell cytoplasm; (5) inside
the cell, zinc is then able to block the enzyme RNA-dependent RNA
polymerase of viral machinery (white); (6) viral replication stops
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activity JReplication
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12n flux into the cell T Anticancer activity
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and lysosomal pH [42]. Zn has been demonstrated to enhance
chloroquine-induced apoptosis in A2780 cancer cell line. Zn
along with CQ inhibited autophagy in the same cell line [38].
Based upon these observations Zn-ionophore CQ has been
used to treat COVID-19 patients and is found to be potent to
an extent.

Targeting Zn lons in Proteins Present in Viral
Structure

The coronaviruses are enveloped positive-strand RNA viruses
that replicate in the cytoplasm of infected cells [43] (Barretto,
2005). They have large RNA genomes (27 to 32 kb), and viral
replication is mediated by the viral RNA-dependent, RNA
polymerase, termed the replicase [44].

The coronavirus replicase is initially translated from the 5'-
terminal which makes up to 21 kb out of the total 29.7 kb of
SARS-CoV genomic RNA to produce two replicase
polyproteins, termed ppla and pplb. These polyproteins are
processed by replicase-encoded proteases, PLpro (papain-like
proteases), and 3CLpro (3C-like proteases), to generate 16
replicase products, termed non-structural proteins (nsp) 1 to
16. The coronavirus replicase intermediates and processing
products assemble on intracellular membranes to generate
double-membrane vesicles (DMVs), which are the site of viral
RNA synthesis [45-47]. nsp14 of coronaviruses is important
for viral replication and transcription. SARS-CoV complex
comprises nspl4, nspl0 (activator), and functional ligands.
Single molecule of nspl0 interacts with exon of nspl4 to
stabilize it and stimulate its activity. The catalytic core of
nspl4 exon is reminiscent of proofreading exonucleases;
however there is presence of two Zn fingers that are essential
for folding and functionality of nsp14 [48]. The presence of
these two Zn fingers indicates that there is another approach to
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modulate COVID-19 by targeting Zn ions in the structure of
viral proteins.

Drugs like disulfiram can bind to cysteine moieties of pro-
teins present in virus [49]. Studies have indicated that disulfi-
ram may inhibit or destabilize proteins present in the structure
of virus by ejecting Zn from Zn-bound cysteines. Disulfiram
binds both to active site and also to Zn-binding sites in SARS-
CoV PLpro [50]. The studies on coronavirus structure re-
vealed the presence of residual cysteine moieties in its envelop
which plays role in virus biogenesis [51].

Zn Levels: Influence of Age and Comorbidities

Various case studies published on COVID-19 indicated that
hospitalized subjects with old age are more prone to this dis-
ease. This may be due to the fact that comorbidities like hy-
pertension, diabetes, cardiovascular disease, and cerebrovas-
cular disease are more prevalent in old aged people [52]. Such
people also have compromised immune system because of
restricted diets and lesser amount of food intake. Sometimes
due to medications appetite is reduced in elderly persons. As
mentioned above in this review, Zn ions are indispensable for
immune function. There is prevalence of Zn deficiency in
hospitalized subjects and it is therefore justified that Zn sup-
plementation to these subjects normalize Zn levels and ulti-
mately restore their immune functions [40]. Zn is very essen-
tial for maintaining homeostasis as it is fundamental for bio-
chemical reactions in our bodies. Zn is not stored in the body
and hence required in daily dietary intake. The levels of Zn
can be maintained in the body through regulated intestinal
uptake followed by fecal excretion and renal reabsorption.
Zn deficiency is frequently found in elderly patients, more
often in those who have underlying conditions of respiratory
infections, cardiac failure and atherosclerosis [53]. Elderly
people tend to avoid high cholesterol diets like meat etc. that
are rich source of Zn. They consume refined wheat products
and hence gradually their body becomes Zn deficient and
become susceptible to various ailments [54, 55]. It has been
demonstrated that the level of Zn was low in whole blood and
scalp hair of diabetic patients; moreover the severity is higher
in older age group (6175 Years). Further with advancement
of age, the absorption of Zn also becomes low in the gut [56].
Zn is responsible for synthesis, storage, secretion, and confor-
mational integrity of insulin monomers. Thus, lower levels of
Zn may affect the ability of pancreatic islet cells to produce
insulin [57]. Decreased plasma and intracellular Zn concen-
trations is in concurrence with increased urinary Zn excretion
in diabetic patients. In subjects with type 2 diabetes mellitus
with low Zn intake, the risk of coronary heart disease increases
by a factor of two to four times and is a major cause of mor-
tality among diabetic patients [56].
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In addition it has been found that with advancement of age
as the Zn level goes down, there is deregulation of immune
functions that may further lead to age-related infections, in-
flammation and morbidities [58]. Studies indicate that in old
age, methylation of specific zinc transporters may take place
resulting in zinc transporter deregulation further leading to
age-related Zn deficiency and inflammation. Reduced ZIP6
mRNA expression, enhanced proinflammatory responses
and age-specific ZIP6 deregulation correlated with an in-
crease in ZIP6 promoter methylation. However, dietary sup-
plementation of Zn reduced aged-associated inflammation
[58].

Mechanism of COVID-19 Infections: Role
of Zinc in Cardiorespiratory Function

There is remarkable similarity between RNA sequence of
SARS-CoV and SARS-CoV-2 [59]. In 2005 the mechanism
of infection by SARS-CoV has already been identified in
details [60]. It has been held that both these viruses follow
same mechanism and this has led to an enhancement and
application of knowledge to study SARS-CoV-2. Mainly
lungs get infected by SARS-CoV virus [60]. Angiotensin-
converting enzyme (ACE) 2 present in lungs, mainly in lung
endothelium, vascular epithelial cells, and alveolar cells
(pneumocytes—type II), acts as receptor for the virus [61].
Both SARS-CoV and SARS-CoV-2 use their spike proteins
of the envelope to infect mammalian cells. These spike pro-
teins share 76.5% homology in the amino acid sequence and
thus almost identical 3-D structure to bind to the ACE-2
receptors of the spike (S) protein of the envelope that both
viruses use to infect mammalian cells. But SARS-CoV-2 has
higher affinity than SARS-CoV for receptors and this may
account for its increased virulence [60]. SARS-CoV and
SARS-CoV-2 binds with ACE-2 activate transmembrane
serine protease-2 (TMPRSS2) and get entry into the cells.
This activation of TMPRSS2 may be responsible for fatal
conditions of COVID-9 [62, 63]. In addition ACE also forms
an important component of renin-angiotensin system (RAS).
RAS plays role in pathogenesis of essential hypertension and
its complications. Hypertension may also be caused due to
endothelial dysfunction. Thus, RAS modulation and ACE-
inhibitors play crucial role in the treatment of hypertension.
ACE converts angiotensin I to angiotensin II (vasoconstric-
tor). Angiotensin II degrades bradykinin (a vasodilator) and
maintains vascular tone and cardiac functions [64]. ACE is a
Zinc metallopeptidase that means Zinc is essential for the
catalytic activity of this enzyme. The enzyme contains one
g-atom of zinc per mole of protein [65, 66]. Thus, Zn plays
significant role in cardiac function and finds its potential role
in preventing viral infections as well.
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Perspectives and Conclusions

Till date, there is no effective medicine or vaccine for COVID-
19. Worldwide, almost 8 lakhs people have lost their life till
date. In such scenario, the target is to save human life. The
strategy should concentrate upon boosting immune system
and repurposing of old drugs to control the viral replication.
Zn is identified as one of the most essential trace element to
fulfill this interesting proposition. Zinc is known to enhance
antiviral potential in mammalian cells. Different approaches
are there in which this trace element could prove useful in
fighting life-threatening infections. Zinc makes structural
component of numerous enzymes in the cell thus zinc supple-
mentation may help in treatment and prophylaxis of COVID-
19 like it did in the case of SARS-CoV.
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